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Abstract
In this paper, a passive hazard detection and avoidance (HDA) system is presented, relying
only on images as observations. To process these images, convolutional neural networks
(CNNs) are used to perform semantic segmentation and identify hazards corresponding to
three different layers, namely feature detection, shadow detection, and slope estimation. The
absence of active sensors such as light detection and ranging (LiDAR) makes it challenging
to assess the surface geometry of a celestial body, and the training of the neural networks in
this work is oriented towards coping with that drawback. The image data set for the training
is generated using blender, and different body shape models (also referred to as meshes) are
included, onto which stochastic feature populations and illumination conditions are imposed
to produce a more diverse database. The CNNs are trained following a transfer learning
approach to reduce the training effort and take advantage of previously trained networks. The
results accurately predict the hazards in the images belonging to the data set, but struggle to
yield successful predictions for the slope estimation, when images external to the data set are
used, indicating that including the geometry of the target body in the training phase makes an
impact on the quality of these predictions. The obtained predictions are composed to create
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safety maps, which are meant to be given as input to the guidance block of the spacecraft
to evaluate the need for a manoeuvre to avoid hazardous areas. Additionally, preliminary
hardware-in-the-loop (HIL) test results are included, in which the algorithms developed are
confronted against images taken using real hardware.

Keywords Hazard detection and avoidance · Autonomous navigation · Asteroids · Image
processing · Semantic segmentation

1 Introduction

Landing on small celestial bodies has become one of the most important challenges in the
pursuit of space exploration and exploitation. Some missions in the past years have achieved
huge milestones towards this goal, by taking advantage of different strategies. The Rosetta
mission (Schwehm and Schulz 1999; Glassmeier et al. 2007) deployed a lander, Boehnhardt
et al. (2017), whose objective was to obtain information about the comet’s gravitational
field and surface properties. Kawaguchi et al. (2008), OSIRIS-REx Lauretta et al. (2017),
and Watanabe et al. (2017) used a different approach and performed Touch-and-Go (TaG)
manoeuvres, which consist of a controlled touch-down on the surface of the celestial body,
followed immediately by a powered ascent.

Interacting with the surface of the body of interest has, thus, gained prominence in the
mission design and analysis component of the current space exploration activities, even if it
poses some of the most challenging tasks. Landing sequences require very high degrees of
autonomy due to the high latency with ground stations on Earth, so it is key to be able to
rectify the original instructions given to the spacecraft based on the inputs that its on-board
sensors receive.

One of the systems in charge of this is the HDA system, whose typical tasks include
(but are not limited to) shadow detection, feature detection, slope estimation, or surface
roughness estimation. Two main types of HDA systems can be distinguished: passive and
active. Passive systems rely only on camera inputs, while active systems use, additionally,
LiDAR. The difference lies in theway to interact with the environment. LiDARs, for instance,
emit a beam that is then registered in the sensor once it bounces and comes back. This is
considered an active sensor because it registers an observation originally sourced from the
sensor itself. Passive systems, on the other hand, entail sensors that only receive some kind of
input observation, without proactively emitting any kind of interaction with the environment.
Cameras are passive sensors because they only take whatever information is available in the
environment they work in.

Some of the earliest works on HDA systems were presented by Epp and Smith (2007);
Johnson et al. (2008), where the use of active HDA systems for landing on the lunar surface
is discussed and analysed. There, different parametric analyses were performed including
sensor performance, trajectory angle, or vehicle hazard tolerance. Although the use of passive
systems has also been discussed previously by Huertas et al. (2006), it lacked performance
when it came to the estimation of the slopes, as was also concluded in the posterior analysis
performed by Neveu et al. (2015).

Having access to the digital elevation maps (DEMs) generated by LiDAR sensors makes
the slope and roughness estimation processesmuch easier and accurate, but shapes themission
design around these active sensors that could weigh up to 25kg and require up to 200W of
power (Huertas et al. 2006). In addition, they offer very restrictive field-of-view (FoV) angles
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and resolutions and take considerable volume inside the spacecraft’s bus. Cameras, on the
other hand, offer much more flexibility from a mission design perspective in terms of mass,
volume, and power consumption, which is key for missions whose scientific return is highly
valuable.

All of the aforementioned pieces of work related to HDA relied on traditional image
processing (IP) techniques, which pose the additional challenge of having to adapt com-
putationally expensive techniques to the limited space-proven hardware available for space
missions. It was only recently that the use of artificial intelligence (AI) techniques (in par-
ticular artificial neural networks (ANNs)) was proposed to tackle this problem (Lunghi et al.
2015), because of their great generalisation properties, which become very relevant in prob-
lems where it is impossible to determine in advance the different hazards present in the
terminal landing area.

Additionally, ANN techniques are highly computationally efficient due to their working
principle being based on polynomial operations, which is a desirable feature when an on-
board implementation is considered. In Lunghi et al. (2016), two different architectures are
compared: multilayer feedforward and cascade. In that work, information about the altitude
and attitude of the spacecraft are also provided as additional input to the HDA algorithm that,
then, generates the hazard map.

Following the same research line, in Silburt et al. (2019), a CNN was trained to recognise
and count lunar craters. The networks also showed promising results regarding the transfer-
ability of its predictions after testing it on a database with images corresponding to Mercury,
instead of the Moon.

In Pasqualetto Cassinis et al. (2020); Sharma and D’Amico (2020), CNNs were trained to
estimate the position and pose of a non-cooperative spacecraft, using only monocular vision
observations. In Sharma and D’Amico (2020), in particular, the authors also detail how a
database generation functionality needed to be developed, due to the scarcity of resources
available for the training. In that same year, in Tomita et al. (2020), the superiority of CNN-
based algorithms over traditional techniques was demonstrated.

More recently, Silvestrini et al. (2022); Pugliatti et al. (2022) have shown how these
networks can be used to perform orbital navigation using lunar craters and binary asteroid
system geometry, respectively. The authors show how the great generalisation capabilities
of such algorithms greatly improve the quality of the predictions made by the networks. The
applicability of these algorithms to landing sequences and hazard detection is discussed and,
in Pugliatti et al. (2022), a U-shaped network is developed and trained to detect features on
small celestial bodies, using an ad hoc data set generation tool.

Because of the benefits they offer, CNNs have been used in many different projects in
the last few years. However, one of the main drawbacks of deep learning (DL) architectures
is that they require a relatively large amount of data to be trained (Al-Moosawi et al. 2021;
Gao et al. 2021). On top of that, since the training scheme follows a supervised approach,
the labelling of the available data is an effort required to ensure the quality of the training.
These two factors make it very expensive to properly train such a network from scratch.

Considering all the above, and in spite of the amount of research put towards HDA systems
and IP techniques, very few researchers have tackled the problem of combining both fields.
In particular, developing algorithms capable of processing passive observations and still
accounting for the geometry or roughness of the surface of a celestial body is a task that still
remains unexplored. AI-based passive HDA systems are a very challenging problem mainly
because they involve the prediction of a 3Dgeometry fromvisual, 2D inputs.However, finding
a solution would greatly benefit future spacemissions to planetary bodies by providing a low-
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impact solution (in terms of both cost and mission design) that would increase the autonomy
of the spacecraft and its capability to interact with the bodies it would explore.

Thus, in this work, passive HDA systems based on CNNs are developed and tested against
different image data sets. CNNs offer the benefit of achieving high accuracies, at the cost
of a more expensive training phase. Three separate layers are proposed for the complete
system: shadow detection, feature detection, and slope estimation. The input to the algorithm
is the raw image as it would be taken by a camera, without any additional information about
the spacecraft’s state. The algorithm developed under this research is named astroHda and
has been included in the Astrodynamics Simulator (AstroSim) suite (Peñarroya et al. 2022).
Unlike previouslymentionedworks, astroHda is intended to be capable of predicting hazards
for any small body it could encounter, taking advantage of the generalisation capabilities that
deep learning techniques such as CNN offer.

In the following, Sect. 2 talks about the architecture chosen for the neural networks and the
techniques exploited for its development. After that, Sect. 3 introduces the followed training
scheme and explains how the images used for the training and included in the data sets are
generated. Section4 shows the results obtained with the developed networks and analyses the
different elements involved in the HDA system. It also explains how safety maps are created
and includes network predictions for additionally rendered images not used for the training,
and images taken by real sensors. Finally, Sect. 5 gathers some conclusions about the results
obtained and discusses strengths and weaknesses of the developed techniques.

2 Architecture

CNNs are multilayer feedforward neural networks that apply image analysis filters as con-
volutions. This architecture is a type of DL method with the capability of very accurately
classifying images and detecting patterns or other features in pictures. By stacking several
layers, a pixel-by-pixel classification can be obtained as output. In each of these layers, mul-
tiple filters are convoluted over the input to the layer to obtain the so-called feature maps.
Thus, CNNs are composed of mainly three types of layers:

1. Convolutional layers, where the image filters are applied in order to identify a certain
pattern or feature.

2. Pooling layers, where the feature maps are reduced to their main attributes to reduce the
computational cost while maintaining the main feature characteristics of the map.

3. Fully connected layers, which are responsible for the final classification and take into
consideration all the previously stacked layers.

As it has been introduced in Sect. 1, training a DL network from zero could become
quite expensive computationally. An alternative, proposed in Akçay et al. (2016), is transfer
learning. This method is based on taking advantage of pre-trained networks as a baseline
for the training of a neural network destined for a different task (or maybe a similar one).
The weights obtained after training such a network are used as initial values for the training
phase of a particular project. Some of the layers are initially frozen so that the first steps of
the training do not modify the core hidden layers of the network. The reason why these core
layers are frozen is that they contain the key feature maps that were previously learned by the
network, which consist of more basic features that can be easily applied to many different
image classification types. These key features include straight lines, circles, directionalities,
or other basic geometric entities. On the other hand, the last layers of a network learn features
that become much more case-specific, and are, thus, not frozen from the beginning to allow
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Fig. 1 Feature maps at different stages of a network. The feature maps at the initial layers encode edges and
direction, i.e. horizontal or vertical lines, the feature maps obtained at the middle of the network visualise
textures and patterns, and the feature maps at the last layers depict parts of objects and objects in the image
(Vignesh 2020)

the pre-trained network to adapt to the new data set. For instance, a network that has been
trained to differentiate and classify different object images, as the one shown in Liu et al.
(2014), would offer more detailed features as the layers go deeper. Figure1 shows how, for
deeper layers, the detail and case specificity of the feature maps increase (Zeiler et al. 2014).

Making use of such a technique is paramount when training a neural network for space
applications, where the amount of available real data is relatively limited and not pre-
processed for supervised learning. The next section will explain how this problem is tackled
using both transfer learning and a pipeline for the generation of an artificial data set for the
specific study case of a landing sequence in an asteroid environment.

Another of themainproblemsof deepneural networks iswhat is calledvanishinggradients.
In plane architectures, it could happen that the derivatives for the weights of each layer are
small and that, when multiplying them (following the chain rule) for the back-propagation,
they become even smaller to a point where an update of the initial layers could lose its
effectiveness. In He et al. (2015), the idea of using residual layers is proposed, where the
vanishing gradients problem is minimised by using skip connections, where a number of
convolutional layers are skipped, at every basic block of the network. Figure2 shows how a
skip connection looks like in a basic convolution block. The input, xl , is bypassed downstream
to the output of the convolution filter. This allows for much deeper architectures, without
overloading the training with the computational effort of excess parameters.

Taking advantage of this structure, a novel architecture was proposed in He et al. (2015),
which was named residual network (ResNet)-34, referring to the 34 layers it is composed of.
(Table 1 gives a summary of the structure of the network.) The network was trained using
the ImageNet data set (Deng et al. 2009), which consists of 1000 classes (therefore, the
last layer of the network in Table 1), distributed around 1.28 million training images and
50.000 validation images. After more than 500.000 epochs of training, the model was found
to considerably reduce the top-1 error (by 3.5%) with respect to its non-residual counterpart,
due to the improvement in the degradation problem.

For the results shown in this work, ResNet-34 has been chosen as the backbone archi-
tecture, because, as has been shown above, it is very effective when applied to semantic

123



34 Page 6 of 26 P. Peñarroya et al.

Fig. 2 Comparison between a traditional convolutional block (left) and a residual block (right)

Table 1 ResNet-34 architecture

Layer Output size 34-Layer

Conv1 112 × 112 7 × 7, 64, stride2 3 × 3maxpool, stride2

Conv2-x 56 × 56

[
3 × 3, 64
3 × 3, 64

]
× 3

Conv3-x 28 × 28

[
3 × 3, 128
3 × 3, 128

]
× 4

Conv4-x 14 × 14

[
3 × 3, 256
3 × 3, 256

]
× 6

Conv5-x 7 × 7

[
3 × 3, 512
3 × 3, 512

]
× 3

1 × 1 Average pool, 1000-d, softmax

segmentation tasks. The higher depths that are achievable when using residual networks
greatly benefit the capability of the network to detect certain patterns and shapes, without
raising the computational burden of the training phase. Several ResNet architectures are
available, the most-used ones ranging from 18 to 101. ResNet-34, which was introduced in
Table 1, offers a great trade-off for the problem at stake and it is also available in the fastai
pre-trained networks collection, which makes its implementation much simpler. The weights
with which the network is initialised correspond to those obtained by training it with the
ImageNet data set, as introduced in He et al. (2015). This transfer learning approach reduces
the computational load needed to fit the network to the particular needs of the study case
posed in this paper.

3 Data set generation and training

According toRipley (2007); Ghilardi et al. (2022), CNN-based approaches require the assess-
ment of the network in three stages:

• Training set: a set of examples used for learning, that is to fit the parameters of the
classifier.
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Fig. 3 Arbitrary rendered images for comet 67P/Churyumov-Gerasimenko generated using AstroSim. Notice
how features (craters and boulders) have been randomly distributed around the surface of the comet to enrich
the data set

• Validation set: a set of examples used to tune the parameters of a classifier, for example,
to choose the number of hidden units in a neural network.

• Test set: a set of examples used only to assess the performance of a fully specified
classifier.

Since the training scheme follows a supervised approach, the generation of ground truth
images is fundamental for the creation of the database. The images used as input to the CNN
should be the raw input as they would appear on the camera, i.e. the original mesh, with
shadows and features (this will be referred to as featured mesh).

Thus, the ground truth information required for the astroHda database must include
labelling about shadowed areas, feature location, and slope information. The former can
be obtained by pixel subtraction between the featured body and the mesh observed from the
same position and with the same orientation but once all of its features have been removed
(this will be the naked mesh). For the latter, i.e. the slope estimation, the slope at each facelet
of the mesh is computed, as depicted in Fig. 4, using the local gravity vector as a vertical
reference for the computation of the slope. To compute the gravity vector, and exploiting the
fact that a shape model is available, AstroSim is used to compute the gravitational potential
at the centre of each facet using a polyhedral model-based gravity model, implemented fol-
lowing (Werner 1994). Then, the slope estimation can be tackled in two different manners:
with a regression algorithm or a classification method.

The first option implies predicting the numerical value of the slope at each pixel corre-
sponding to the body’s surface. Since the pixels need to be ultimately translated into “safe”
or “dangerous” areas, a simplified approach was chosen, where a threshold is defined to
categorise facelets between safe and unsafe. Transforming these regression problems into a
classification problem also allows for the use of a similar neural network structure to the one
used for shadow or feature detection.

The slope threshold was set to 15◦ in this work based on Wang et al. (2020). Then, the
equivalent image for the featured mesh is generated colouring the mesh accordingly (this
will be called sloped mesh).

Images for the training database were generated using four different body meshes, one
crater model, and three boulder models in three random combinations and distributions. To
render the images, ten different orbits were simulated for each of the obtained bodies (the
naked mesh, the three featured bodies, and the sloped mesh) and twenty pictures were taken
from the spacecraft using a nadir-pointing attitude profile.

123



34 Page 8 of 26 P. Peñarroya et al.

Fig. 4 Example of the slope computation result for asteroid Lutetia. Around the body, an arbitrary orbit is
displayed in orange

Fig. 5 Examples of the different base meshes and feature distributions for the training and validation data set
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Fig. 6 Examples of the masks generated for an arbitrary rendering of Bennu. Blue represents deep space, red
represents dangerous areas, and green represents safe areas

Table 2 Label meaning for each of the layers developed for astroHda

Shadow detection Feature detection Slope estimation Colour

Safe area Illuminated Non-featured Slope < 15◦ Green

Hazard Shadowed Featured Slope ≥ 15◦ Red

Deep space Blue

Undetected Black

The resulting set contains 2000 images that are then processed to generate the masks used
as ground truth for the semantic segmentation training, using the pipeline described before.
Examples of the different meshes used (with overlaid feature distributions) can be observed
in Fig. 5. The corresponding masks for a rendering of Bennu from the training set are also
depicted in Fig. 6, where the labels for deep space, danger, and safe areas are depicted. Table
2 shows the different labels used and their colour codes.

This training data set is divided into training and validation sets (as described at the
beginning of Sect. 2) using a random split of 80–20, respectively. This means that 80% of the
data set is being used to compute the optimal change in the internal weights of the network,
and 20% as online cross-check to estimate whether the network is fitting too closely to
the images it is being trained on. The rendered images are downsized to a 300x300 pixel
resolution, and they are normalised using the parameters obtained from ImageNet (He et al.
2015). The reason is that the initial weights for the architectures used are extracted from the
ImageNet data set, so the normalisation is also performed accordingly, exploiting transfer
learning (Akçay et al. 2016) as a way to more efficiently train the networks developed for this
work. Additionally, to increase the robustness of the training, the augmentations collected in
Table 3 are implemented on the data set, and an exemplification of the resulting images is
shown in Fig. 7, for the slope estimation layer. There, it becomes clear how the scaling for the
image or the granularity added by the inclusion of the Gaussian noise impact the rendered
images.

The accuracy metric used for the training relies on the dice loss from fastai Howard
(2018), which builds on the traditional Intersection-over-Union methods. The optimiser used
is Ranger, which is a combination of RAdam and Lookahead optimisers (Wright et al. 2021).
As for the loss function, FlattenedLoss of CrossEntropyLoss is utilised, following what is
common practice in semantic segmentation problems.

The training scheme, as mentioned before, is based on a transfer learning approach, where
the network weights from ResNet-34 (used as the backbone) for ImageNet are taken as an
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Table 3 Augmentation
parameters for training data set

Random flip True

Max rotation angle 10.0 deg

Min/Max zoom 1.0 / 5.0

Max lightning change 0.2

Max warping 0.2

Probability of affine transformation 0.75

Probability of brightness change 0.75

Gaussian noise mean/σ 0.0 / 10.0

Fig. 7 Example of the augmentations applied to the training set, for the slope estimation layer. In the images
shown, the label colouring is superimposed over the original image

initial guess. A first stage of 10 epochs is performed, where only the last layer of the network
is available for tuning, followed by a second phase of 12 epochs, where all the weights are
unfrozen and freed to be modified by the optimiser to achieve a better fit to the data set used
for this development.

The obtained networks are then tested using a new, smaller, data set, which is generated
using the same pipeline described before, butwith four newbasemeshes and features. This set
consists of 100 images, and its role is to check the accuracy of the developed functionalities
when used outside the data set they have been trained with. Examples of the used renderings
can be observed in Fig. 8.

4 Results

The networks are tested on each of the aforementioned data sets to evaluate the predictions
they are capable of doing. To understand howwell the developed algorithms can be transferred
to a HIL scenario, the networks are tested on a number of real-world images, even if the
training data set included none of this type of images.

4.1 Shadow detection

Shadow detection was initially implemented following the Multi-Task Mean Teacher
(MTMT) approach proposed by Chen et al. (2020) without further training. In their paper,
they implement an MTMT training scheme where a CNN is trained to perform three dif-
ferent tasks simultaneously, namely, shadow count, shadow detection, and edge detection.
Representative results of the obtained predictions can be observed in Fig. 9. The network was
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Fig. 8 Examples of the different base meshes and feature distributions for the test data set

trained using real-world images, and, in the results obtained, it can be seen how the prediction
struggles to find a limit between shadowed and deep-space areas.

Trying to improve the results obtained using the MTMT network, a new network scheme
(based on the approach introduced in Sect. 2) was developed. The architecture described in
Table 1 was adopted, only with slight modifications to the last layer so that the output labels
would be reduced to four labels (as introduced in Table 2): illuminated, shadowed, deep
space, or undetected.

The labelling methodology chosen was to have a pixel-per-pixel label, as it is typically
done in semantic segmentation tasks, where the last layers of the network are filtered through
a softmax layer which assigns a label to each image coordinate. In the particular case of the
shadow detection algorithm, safe areas correspond to zones where the illumination condi-
tions allow the spacecraft to see the surface in detail, hazard to those shadowed or in weak
illumination conditions, deep space corresponds to the image pixels outside the limb of the
body, and a fourth label is given for those pixels, which the algorithm cannot classify as any
of the previous types. Table 2 gathers the meaning of the different labels for each of the layers
developed in this work.

Following the training scheme introduced in Sect. 3, the predictions shown in Fig. 10
are obtained. Its left-hand side panel shows two examples of the shadow predictions the
algorithm is able to perform. The predicted shadows match very accurately the target (i.e. the
ground truth), even in zones where the shape of the shadowed areas becomes highly irregular
or even around features. On the other hand, the upper example on that figure shows how,
when shadows are cast on the body limbs, it becomes difficult for the CNN to successfully
distinguish between deep space and shadowed area of the body. In fact, when looking at the
right-side panel, where the worst three predictions are gathered, it is clear that most of the
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Fig. 9 Early shadow detection examples based on the MTMTmethod by Chen et al. (2020). Input is an image
rendered using astroRender. Output is a binary map with ones (white pixels) where shadows are detected

Fig. 10 Shadow detection example. Inputs and masks are overlaid. Labels map danger areas in red, safe areas
in green, and deep space in blue

loss value these predictions yield comes from the inaccurate detection of the limit between
shadowed area and deep space.

A more complete overview of the results obtained for the whole data set is provided by
the confusion matrix shown in Fig. 11. There, the predicted labels for each of the images
in the data set are compared to the true labels, as described by the masks. Four categories
can be identified, namely true positive (TP), true negative (TN), false positive (FP), and
false negative (FN). These values are computed for each different category. For the shadow
detection case, deep space and safe labels are very accurately predicted, and shadow detection
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Fig. 11 Confusion matrix for the
shadow detection layer.
Performances are normalised
with respect to the total number
of true labels for each category,
indicated by the colorbar on the
right-hand side of the figure

achieves 67.78% rate for TPs. The rest of the labels predicted as shadowed areas correspond
mostly to deep-space predictions (the 29.29%), and only 2.93% of the cases were labelled
as safe areas.

After close inspection of the generated masks for the training, it was observed that, when
detecting the limb of the body in the original images (using thresholding and pixel subtraction
techniques), some of the pixels around the limbs of the body are labelled as danger. This
can be better observed in Fig. 14, where an arbitrary mask is displayed, together with a more
in-detail view of the labels used for each pixel. It can be observed how a number of danger
pixels close to the limbs of the body are actually wrongly labelled by the pre-processing and
mask generation algorithm.

Nevertheless, the predictions obtained using this layer are capable of correcting this
labelling mistakes and actually label these mistaken TNs correctly as deep space. On top
of that, both deep space and shadowed labels correspond to hazards in the definitions used
for the algorithms developed in this work, so the final set of hazards can be composed from the
combination of these two sets. According to Luo et al. (2020), traditional methods for shadow
estimation present performances of around 80%, while similar CNN-based approaches could
go up to 91.79% (in particular, the network proposed there). In the results presented here, deep
space and danger predictions (all the non-safe conditions) together, both represent 97.07%
of the classified pixels, which is a very high success rate for shadow detection.

4.2 Feature detection

Following the results obtained for the shadow detection layers, and given the similarity of the
study case, the same network architecture was chosen for the feature detection layer. In this
case, safe areas correspond to pixels in absence of any boulder, crater, or feature that could
represent a problem for the landing; hazards correspond to the opposite, and deep space and
undetected keep the same meaning as for the shadow detection layer.

Figure12 shows the results obtained after the training of the network. The left-hand side
picture shows the results on a couple of target images. There, it can be observed how shadowed
areas do not trigger any feature detection, since they are not visible and the target was not set
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Fig. 12 Feature detection example. Inputs and masks are overlaid. Labels map danger areas in red, safe areas
in green, and deep space in blue

Fig. 13 Confusion matrix for the
feature detection layer.
Performances are normalised
with respect to the total number
of true labels for each category,
indicated by the colorbar on the
right-hand side of the figure

to train the network to detect those features in those areas. The detection of the illuminated
sections of the asteroid is very accurate and even achievesmore natural shapes for the features
detected than the original mask, which has enclosing rectangles instead.

The right-hand image shows the top-losses for the network, i.e. the input images that have
the worst performances w.r.t. the target mask. All of these cases are images with very poor
illumination conditions where not even the limb of the body can be accurately inferred. These
results are in line with what was expected and would align well with the shadow detection
layer that would discard those areas nevertheless.

In Fig. 13, statistic results for the training data set are shown. There it can be observed
how, similarly to the shadow detection layer, deep space and safe labels are very accurately
estimated. The TPs for the danger label look very low, with an overall accuracy of 37.21%
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Fig. 14 Ground truth mask used in training for feature detection. Right-hand side shows the inaccuracies in
the pre-processing algorithm: features are labelled around the limbs of the body, and rectangles are used to
flag features on the surface

for the data set. When inspecting the results visually (as shown in Fig. 12, for instance), it is
clear that the accuracies shown in the confusion matrix do not look realistic with respect to
the quality of the prediction. Two main reasons have been identified, both related to the way
the data set images are pre-processed.

A 36.95% of all of the true danger labels are labelled as deep space, which is almost as
high as the accuracy rate for the TPs. As for the shadow detection, this is not really a practical
concern, since both labels are considered equally hazardous, and the problems stems again
from the inaccuracies found in the ground truth mask generation algorithm.

On the other hand, 25.84% of the danger labels in the ground truth masks are, according
to the confusion matrix, wrongly labelled as safe pixels. This is due to the fact that, because
of simplicity reasons, the features detected in the pre-processing of the masks were framed in
rectangles. These rectangles, however, also cover areas where no features can be observed in
the original image, mostly next to their corners. This can be seen in Fig. 14b, where rectangles
enclosed featured areas but do not exactly fit the feature’s morphology. Nevertheless, the
network learns how to adopt more natural shapes for the features and to distinguish very
accurately the limbs of those features.

4.3 Slope estimation

Figure15 shows the same structure as discussed for the previous two layers, applied to the
slope estimation network. Again, the left-hand image shows how fully shadowed areas are
problematic for the estimation of the surface slopes (as seen in the upper row example),
but how the illuminated parts yield better performances. The same behaviour shown before,
where the network, learns to naturalise the shapes given in the target is present in these
results too. The predictions estimate the main hazard areas while paying less attention to
very punctual spots, resulting in a more natural prediction of the overall slope of the body.

In the top-losses plot, a particular case appears as the worst prediction. Differently from
the rest of the worst cases, where illumination conditions play a fundamental role in the
accuracy of the estimation, this input image shows a well-lit celestial body. To the human
eye, the prediction does not appear to be that far off from reality, e.g. the main green corridor
in the middle of the asteroid is roughly correct, some of the smaller spots are covered too,
and even the limb detection appears to be accurate. If anything, it appears that the network
has given a conservative prediction, probably influenced by the features that are present on
the right-hand side of the asteroid, which could have raised the loss value.
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Fig. 15 Slope estimation example. Inputs and masks are overlaid. Labels map danger areas in red, safe areas
in green, and deep space in blue

Fig. 16 Confusion matrix for the
slope estimation layer.
Performances are normalised
with respect to the total number
of true labels for each category,
indicated by the colorbar on the
right-hand side of the figure

Differently from how the masks are generated for the shadow and feature detection, slope
thresholds are rendered directly from astroRender, so no pixel subtraction takes place here.
This results in ground truth masks that do not have any mislabelling due to pre-processing.
Thus, the results seen in the confusion matrix actually represent a better statistical interpre-
tation of the quality of the predictions for the slopes. Almost no actually dangerous pixels
are labelled as deep space (around 2.19%), and those detected as danger mostly lie near the
limbs of the body. For the rest of the pixels, which belong to the observable surface of the
body, a 75.09% success rate is achieved for the slope estimation. As described in Fig. 15a,
most of this error comes from the network learning to estimate smoother-sloped areas and
paying less attention to isolated high-slope surface patches.
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Fig. 17 Test data set results on four different rendered images. On each of the panels, the left-hand side
corresponds to the rendered image given as input to the networks, the first column is the target, and the second
column is the prediction. The first row corresponds to feature prediction, the second to shadow detection, and
the third to slope estimation

4.4 Test set

The second round of results is generated using the test data set, which is completely external to
the training of the networks, to assess how robust the predictions are when facing conditions
or environments that are relatively new. Figure17 shows four characteristic examples on
which astroHda was tested. Different bodies are rendered and the corresponding images are
then given to the CNNs, which obtain predictions for each layer. Separately, the target masks
are also generated with the same pre-processing functionalities developed for the data set
pipeline and used to create the training data set.

The results suggest that the feature and shadow detection capabilities of the networks are
robust and adapt well to scenarios they are not familiar with. Remarkably, it can be observed
how the algorithm outperforms the labelling technique used for the pre-processing of the
data set. For instance, in the lower-left panel of Fig. 17, visual inspection reveals that some of
the features detected by the networks had been overlooked by these pre-processing functions
and are, nevertheless, detected by that layer. Shadow prediction is accurate and identifies the
illuminated areas well, even under very constrained Sun-face angles.

On the other hand, functionalities related to the intrinsic geometry of the body are not that
well predicted for the test data set images. Slope and body limb estimation struggle to yield
satisfactory predictions when compared to the training data set. Limb estimation, which was
already one of the main problems in the results shown in the top-losses plots for all layers,
continues to be a challenge under poor illumination conditions and it seems that it becomes
particularly difficult when the geometry of the body is not included in the training of the
network. The same holds true for the slope estimation, which seems to be far from the targets
for most images.
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Fig. 18 Statistics obtained from the test data set for shadow detection, feature detection, and slope estimation

Similarly to what was done in previous sections, Fig. 18 shows statistics obtained from the
test data set predictions and Fig. 19 the top-losses plots for that set. As expected, performances
are in general worse than the ones from the training and validation data set, mainly due to
the fact that the shape models and feature population distributions and geometries used to
conform the test data set were not employed during training.

Nevertheless, the networks are still capable of predicting shadows and features with
accuracies of 86.5% and 92.5%, respectively. A stronger impact can be observed in the
performances for the slope estimation layer, which goes from an overall accuracy of 89.7%
to 78.0%.As has been discussed previously, this layer is themost dependent on the knowledge
of the geometry of the bodies at the training phase, thus suffering the most when completely
new geometries are used as input for the prediction.

Looking at the top-losses plots also helps understand the conditions that make it more
challenging for the networks to perform accurate predictions. Poor illumination conditions
are again present in most of the worst cases for the networks. However, it can be seen how
the limb estimation is much less accurate now that the networks have no a priori knowledge
about the geometry of the body.

These results help confirm that including different geometries in the training phase of the
algorithm greatly affects the performances of the posterior predictions for hazard detection,
especially for slope estimation.
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Fig. 19 Top losses for shadow detection, feature detection, and slope estimation

4.5 Layer composition

The results obtained from each layer have now been shown and discussed; however, they
are not the final result that is expected from an HDA system. Instead, the different layers
involved in hazard detection must be integrated to generate what is typically called a safety
map.

For the creation of the safety maps in this work, a priority-based logic is chosen, where
pixels flagged as deep space are prevalent over the ones flagged as a hazard, which in turn
prevail over the safe pixels. This means that, if in each of the three layers described above
a pixel is labelled differently, e.g. safe for the first layer, hazard for the second, and deep
space for the third; it will be considered as deep space. Figure20 shows the result of the
composition of the three layers included in this work for an arbitrary image of the data set,
and Table 4 shows some examples of how the logic works for a better understanding.

Each of the layers used in astroHda includes a softmax activation function that determines
the label for the pixel, which is used in the generation of the safety maps. However, it is
important to remark that this labelling comes from a probability assigned by the softmax
function of a layer only concerned with its own purpose (i.e. feature detection, shadow
detection, or slope estimation), but that is not aware of other layers. To further explain this
concept, Fig. 21 includes the probability maps for each of the layers in addition to the target
and predictionmasks (already shown in Fig. 17). In case a pixel is simultaneously identified as
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Fig. 20 Example of a rendered image, the evaluation of the different hazard detection layers, and the final
safety map composition. Left is the input rendered image, centre shows (from left to right) feature detection,
shadow detection, and slope estimation, and right displays the final safety map

Table 4 Example of the logic
followed for layer composition

Layer 1 Layer 2 Layer 3 Final prediction

Deep space Deep space Safe Deep space

Safe Safe Safe Safe

Hazard Safe Safe Hazard

Hazard Deep space Safe Deep space

Fig. 21 Example of the probability maps used to conform a safety map on an image of comet Churyumov-
Gerasimenko/67P

shadowed, featured, and sloped, one would need to trace these labels back to their respective
levels of certainty in their corresponding layers. Based on that certainty (or probability), an
overall best fit can be obtained and labelled. For the particular case of a safety map, where
the importance lies on whether a certain pixel represents a hazard or not, this is no longer
needed, since it is not ultimately relevant which type of hazard the spacecraft is looking at,
but the fact that it is indeed a hazard.
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Fig. 22 Set-up used at DFKI Bremen for the image acquisition. On the left, a close-up look on the mount
used to hold together the camera and the processing unit. On the right, an overview of the Space Hall before
completely darkening the room

4.6 HIL

One of the main weaknesses of CNN-based methods for space navigation is the little amount
of experience and testing they gather. Exposing technology to real-world scenarios where the
developed algorithms need to cope with inputs that have not been computer-generated help
point out the weaknesses of these technologies and understandwhether they are ready-to-use.
By performing HIL tests, the Technology Readiness Level (TRL) of the product is increased,
as a measure of how close to a final state a certain technology is.

With that in mind, and to further test the trained networks, real images, obtained at the
Space Hall facility from Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)
Bremen, were taken imitating the lighting conditions that a lander probe or spacecraft could
be facing in the last approach phase of a descent trajectory. Different feature configurations
and illumination conditions are set up, to test the algorithm in plausible space scenarios.

The hardware used for the testing consisted of a Raspberry Pi 4 model B1 and a Raspberry
Pi Camera Module v22. The networks developed were loaded into the processing unit of
the Raspberry Pi and the image acquisition and safety map generation were executed “on-
board”. Although the whole test happens online in the Raspberry Pi, without any connection
to a computer, the results are not considered to be processor-in-the-loop (PIL) because the
algorithms developed lack any kind of processor-oriented optimisation. The computational
times measured from the image acquisition instant until the safety map generation were in
the order of seconds, which can be greatly improved by using dedicated hardware (as it was
done in Pester and Schrittesser (2019)), optimising the input formatting for the networks, or
even with more structural changes to the algorithms such as CNN-merging, for instance. A
support structure for the Raspberry Pi 4 and the camera module was designed and 3D-printed
and a rack was used to suspend the camera above the features. Figure22 shows an overview
of the set-up and the mount for the components utilised for image acquisition and processing.

1 Specifications for the Raspberry Pi 4 Model B can be found here.
2 Specifications for the Raspberry Pi Camera Module v2 can be found here.
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Fig. 23 Images taken at DFKI, with different feature configurations and illumination conditions

Using the described set-up, several images with different feature configurations and light-
ing conditions were taken. Some of these images are shown in Fig. 23. Notice how, differently
from the images used in the data set, the obtained images are saturated by what is meant to be
the surface of the small body, i.e. no deep-space areas are present. These images as inputmade
showed that the inclusion of zooming and noise as augmentation techniques was paramount
to obtaining accurate predictions. Figure24 shows the probability maps obtained for image
(a) in Fig. 23 before and after these two particular augmentations were applied. The main
effect in the probability masks predicted by the networks is the foggy structure of the initial
maps (before noise inclusion), especially in the slope estimation layer. This is due to the
noise introduced by the optical sensor and it is greatly improved by the inclusion of Gaussian
noise in the images in the generated data set. The features and shadows are also improved by
these augmentations and the edges are now better defined.

By substituting the softmax activation functions of the three layers by a high-pass filter
triggering when the probability predicted by the network was higher than 40% (empirically),
some of the remaining noise is removed. The obtained predictions are shown in Fig. 25, where
it can be seen how the trained networks yield accurate results for the detection of hazards even
for images taken with real hardware. Nevertheless, there is still room for improvement and it
can be observed how poor illumination conditions make it more difficult for the networks to
understand the limbs of the features, as was anticipated during training and testing. Also, the
use of entirely different geometric conditions with respect to the data set poses a challenge
for the network (even after including zooming in the augmentations), which struggles to fully
identify the features and leaves some of the interior areas of them as safe spots. For these
tests, the focus was put on the feature and shadow detection layers, since the floor underneath
the features used was flat, so more testing would be required to check how well the networks
can predict slopes when in very close approach conditions.

5 Conclusions

This paper shows how the detection block of a passive HDA system is developed. CNNs
utilised of to perform semantic segmentation on images, which are rendered using a dedicated
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Fig. 24 Probability maps for the images obtained at DFKI facilities at Bremen before (upper row) and after
(lower row) including noise and zoom augmentations for the training data set

Fig. 25 Predictions obtained for the different images taken at DFKI. Hazards are highlighted in yellow

123



34 Page 24 of 26 P. Peñarroya et al.

pipeline for space exploration missions around small bodies. This pipeline is capable of
working with different shape models, modifying their illumination conditions (based on Sun
position, if needed), and even distributing stochastically populations of features over the
surface of the selected body mesh.

With the data set generated, three networks are trained using a transfer learning approach,
takingResNet-34 and ImageNet as the backbone and initial database, respectively.After a few
epochs of training, and including some augmentation techniques for the generated database,
the networks are capable of producing satisfactory predictions for feature detection, shadow
detection, and slope estimation, with the additional sub-product of limb detection.

When the networks are tested on a different data set, external to the training phase, the
feature and shadow detection capabilities still yield accurate results, but the performances for
slope estimation and limb detection are considerably lowered, suggesting that the inclusion of
the target bodies (or at least their rough geometries) could be key to ensure the quality of the
predictions. The predicted masks of the three layers trained are merged into what are called
safety maps, which are a binary representation of the areas with and without hazards on the
surface of the body and that are meant to be fed to the guidance subsystem of the spacecraft to
modify its trajectory if needed. Whether using layer-specific pixel predictions or probability
maps is a better alternative to conform the safety maps remains a very interesting research
point and leaves a door open for future work opportunities in the topic.

Additionally, HIL tests were also performed, where the networks are tested against images
taken by real sensors. The inclusions of Gaussian noise and cropping in the augmentations
for the data set proves to be key for the evaluation of these images, and the outcome of these
tests, albeit preliminary, is satisfactory.
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