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Abstract
Werevisit the secular 3Dplanetary three-bodyproblem, aiming to provide a unified formalism
representing all basic phenomena in the phase space as the mutual inclination between the
planetary orbits increases. We propose a ‘book-keeping’ technique allowing to decompose
the Hamiltonian as Hsec = Hplanar + Hspace, with Hspace collecting all terms depending
on the planets mutual inclination imut. We numerically compare several models obtained
by multipole (Legendre) or Laplace–Lagrange expansions ofHsec, aiming to define suitable
truncation orders for thesemodels.We explore the transition, as imut increases, from a ‘planar-
like’ to a ‘Lidov–Kozai’ regime. Using a numerical example far from hierarchical limits, we
find that the structure of the phase portraits of the (integrable) planar case is reproduced to
a large extent also in the 3D case. A semi-analytical criterion allows to estimate the level of
imut up to which the dynamics remains nearly integrable. We propose a normal form method
to compute the basic periodic orbits (apsidal corotation orbits A and B) in this regime. We
explore the sequence of saddle-node and pitchfork bifurcations bywhich theA andB families
are connected to the highly inclined periodic orbits of the Lidov–Kozai regime. Finally, we
perform a numerical study of phase portraits for different planetary mass and distance ratios
and qualitatively describe the approach to the corresponding hierarchical limits.
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1 Introduction

In the present paper we revisit the planetary three-body problem in Poincaré heliocentric
canonical variables governed by the Hamiltonian

H(r2, r3, p2, p3) = p22

2m2
− Gm0 m2

r2
+ p32

2m3
− Gm0 m3

r3
+ ( p2 + p3)2

2m0
− Gm2 m3

|r2 − r3| ,
(1)

where m0 � m2, m3 . Thus, m0 represents the mass of a star, and mi , pi , ri , i = 2, 3 the
masses, barycentric momenta and heliocentric position vectors of two planets orbiting the
star, at distances ri = |ri | .

Our focus is on a systematic study of how the structure of the phase space of the above
Hamiltonian system is altered as the planetary masses and distances and, most importantly,
themutual inclination between the two planets’ trajectories is varied. Answering this question
in the framework of the three-body problem is a key step towards understanding the phase-
space architecture in planetary systems with two or more planets in orbits with high mutual
inclination. A well-studied case of the latter, used in all our numerical studies below, is
the υ-Andromedae system. The choice of this system is motivated by the fact that it has
been proposed (see references below) as an archetype example of exoplanetary system with
substantially 3D dynamics. It is a double star system with four planets (b, c, d and e) orbiting
one of the stars. Since mb � mc, md the motion of the innermost planet b can be modeled
to a good approximation via a restricted four-body problem, with planets c, d providing the
main perturbations (this motivates the use of the indices 2 , 3 in the Hamiltonian (1) for
the masses and canonical variables of the planets); the long-term motion of the innermost
planet (m1, r1, p1) is considered in a separate work (Mastroianni and Locatelli 2023). More
detailed models can include planet e as well as the second star. At any rate, all the above
models require providing first a good analytical model for the orbits of the giant planets c
and d, whose masses, as estimated by observations, are larger than 10 MJ (see, e.g., Deitrick
et al. 2015; McArthur et al. 2010).

The available data for the orbital parameters of an extrasolar system are typically affected
by wide observational error bars. As discussed below, one important problem with the uncer-
tainties in the observations stems from the fact that even small changes in a system’s estimated
parameters, consistent with the observations, may imply a drastic change in the type of orbital
state in which the observed system is assumed to have been settled. We will argue that this
sensitive dependence on available parameter estimates affects mostly those predictions refer-
ring to the secular (long-term) evolution of the orbital state, i.e., the variations of the planets’
eccentricity and inclination vectors which take place in timescales of the order of∼ 102−104

orbital periods. Characterizing the whole variety of possible stable secular orbital states of
exoplanetary systems can be relevant also in the interpretation of short-in-time observations:
most importantly, it can serve the purpose of constraining observational uncertainties on the
basis of stability considerations, i.e., indicating which subdomains in parameter space favor
the long-term stability of the planetary orbits (Petit et al. 2018; Stalport et al. 2022; Volpi
et al. 2018)

Our study in the present paper focuses on one phenomenon, whose role appears central
to the aim of classifying and characterizing the variety of possible secular orbital states in
3D planetary systems: this is the chain of bifurcations of periodic orbits which mark the
transition, as the planets’ mutual inclination increases, from the apsidal corotation to the
Lidov–Kozai regime.
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As is well known, the apsidal corotation (AC) states (see, for example, Laughlin et al.
2002; Beaugé et al. 2003; Lee and Peale 2003) provide the backbone of the phase space
of secular motions for two planets in coplanar orbits. Formally, the apsidal corotations are
the continuation, in the nonlinear regime, of the linear (Laplace–Lagrange) normal mode
solutions of the planar two-planets secular Hamiltonian. Physically, they represent periodic
orbits along which the pericenters of the two planets constantly precess by always remaining
either anti-aligned (state A) or aligned (state B). Periodic orbits having the same property
in the exact (non-averaged with respect to fast angles) Hamiltonian can also be found Had-
jidemetriou (1975), Hadjidemetriou (2006) once the dynamics is regarded in a frame rotating
with angular velocity equal to the (common) precession rate of the apsides.

Given their importance in the planar case, a natural question regards how the family of
apsidal corotation (AC) orbits is continued, as well as what is the dynamical role played
by the AC periodic, and nearby quasi-periodic, orbits, when we pass from the coplanar to
the 3D planetary orbital configuration. Both questions have been addressed in the literature
using diverse formalisms (see Beaugé et al. 2012 and references therein). Owing to reasons
explained in Sect. 2, in our present study we employ a formalism, in which, by applying a
book-keeping technique already at the level of Jacobi’s reduction of the nodes (Jacobi 1842),
we arrive at a natural decomposition of the 3D secular Hamiltonian of a system with fixed
Angular Momentum Deficit (AMD; see Laskar and Robutel 1995) as

Hsec = Hplanar(X,Y)+Hspace(X,Y;AMD) . (2)

In Eq. (2), (X,Y) are Poincaré canonical variables for the two planets ((X2, Y2), (X3, Y3)

are approximately proportional to the planets’ eccentricity vectors). The AngularMomentum
Deficit is defined by

AMD = L2 + L3 − Lz

where L2, L3 are the angular momenta of the circular orbits at semi-major axes a2, a3 equal
to those of the two planets, and Lz the modulus of the total angular momentum normal to
the system’s Laplace plane.

The methodological benefits from working with a decomposition of the secular Hamilto-
nian as in Eq. (2) stem from the following remarks (see Sect. 2 and 3 for details):

(i) Hplanar(X,Y) is an integrable Hamiltonian, the quantity J = (X2
2 + Y 2

2 + X2
3 + Y 2

3 )/4
being a second integral independent of the energy.

(ii) For every permissible value of the energy E, all the orbits (X(t),Y(t)) under Hamilton’s
equations with the HamiltonianHplanar are confined to the Laplace plane, i.e., they have
zero mutual inclination at the given (and fixed in advance) level of AMD.

(iii) The Hamiltonian Hplanar admits two periodic orbits (called below the ‘modes’ A and
B) which correspond to the anti-aligned and aligned apsidal corotation states for the
two planets in the planar case.

(iv) The Hamiltonian Hspace can be further decomposed as Hspace = H0,space +H1,space,
where H0,space also admits J = (X2

2 + Y 2
2 + X2

3 + Y 2
3 )/4 as a second integral. Then,

the Hamiltonian

Hint = Hplanar +H0,space (3)

is integrable, and it has a formal structure similar toHplanar. In particular, the existence
of periodic orbits of the type A and B can be demonstrated for the Hamiltonian Hint

using the integrability property, in the same way as for Hplanar.
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(v) Focusing, now, on the full secular Hamiltonian

Hsec = Hint +H1,space (4)

a Birkhoff-like normal form construction (Sect. 3) allows to demonstrate (up to an
exponentially small error) that the periodic orbits A, B (accompanied by neighboring
quasi-periodic orbits) continue to exist in the full 3D regime. Hence, we call these orbits
the 3D apsidal corotation states.

(vi) We parameterize the level of non-coplanarity (mutual inclination i2+i3) of the system in
terms of the (constant) energy level of the full Hamiltonian E = Hsec. Oneway to regard
the connection between the value of E and the level of non-coplanarity of the orbits is
by noting that the energy grows in absolute value nearly as a quadratic function of the
planetary eccentricities, i.e., nearly proportionally to a linear combination of e22 and e23.
Restricted to a suitably chosen Poincaré surface of section (see Sect. 2), the constant
energy condition E = Hsec yields an ellipsoid-like surface. Also (see Sect. 3), for fixed
AMD, the condition of constant mutual inclination yields the contour of a function
also quadratic in the orbital eccentricities. Then, for any fixed value of the energy E,
there are two values of the mutual inclination imut = i2 + i3, namely imin

mut (E), imax
mut (E)

such that, the corresponding contours of constant mutual inclination come tangent to
the ellipsoidal surface of constant energy E = Hsec. As a consequence, for any value of
the mutual inclination in the interval imin

mut (E) ≤ imut ≤ imax
mut (E) there is an energetically

permissible domain of motions. Both imin
mut (E) and imax

mut (E) are monotonically increasing
functions of the energy. Thus, selecting a particular level value of the energy E fixes
the overall level of mutual inclinations allowed at the energy E. The minimum possible
energy Emin is defined by the condition that the level surfaceHsec = Emin is tangent to
the level surface of minimum possible mutual inclination imut = 0 (planar case), while
all other points of the surface imut = 0 , except for the points of tangency, are in the
interior of the surface Hsec = Emin. Solving for these conditions allows to specify the
value of Emin.

In conclusion, the level of mutual inclination for all orbits increases in general with the
quantity δE = E− Emin, where Emin ≤ E ≤ 0. Thus, the lowermost value of δE is δEmin = 0,
while the highermost limit is δEmax = −Emin, i.e., E = 0. At this latter limit, the available
phase space shrinks to a point with e2(t) = e3(t) = 0. This means a unique possible
orbital configuration of two mutually inclined circular planetary orbits. We call this the
limiting trajectory of the Lidov–Kozai regime. Actually, in Sect. 3 we show that, for negative
energies E close to zero, the phase space acquires a structure reminiscent to the one of the
non-integrable Lidov–Kozai case of the restricted three-body problem (i.e., non-intersecting
trajectories examined in a higher than quadrupolar development of the disturbing function,
see Libert et al. (2011)). The typical behavior of the trajectories in the Lidov–Kozai regime is
to (quasi-)periodically exchange eccentricity withmutual inclination. However, such a coarse
illustration of the dynamics is rather simplistic in the case of non-hierarchical (in distance
ratios ormasses) two-planet systems; in reality, the dynamics around the central Lidov–Kozai
periodic orbit is highly unstable and the corresponding phase space turns to exhibit strong
chaos.

In summary, our focus in the present paper is on describing, with sufficient detail, the
observed transition in the structure of the phase space, as the parameter δE increases from
its lowermost limit, corresponding to a nearly planar orbital configuration, to the highermost
limit, corresponding to nearly circular orbits with a high degree of mutual inclination. As
expected in the study of any dynamical system, structural changes in the phase space are
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associated with the birth, bifurcations and stability evolution of the most important periodic
orbits of the system. We already mentioned that these are the ACs, in the nearly planar limit,
and theLidov–Kozai orbits, in themaximummutual inclination limit.We follow the evolution
and the connections between these periodic orbits, as well as other ones emerging in half the
way between the two limiting regimes. We work with analytical estimates, as well as with a
numerical example inspired by the υ-Andromedae system, which is reasonably far from any
hierarchical limit. On the other hand, Sect. 4 contains results from a numerical investigation
referring to different choices for the mass and semi-major axis ratios, representing every one
of all possible cases of hierarchicalmodels that could arise in the problemunder consideration.
As a rough guide, the phenomena discussed below should cover most cases of interest in the
range of mass ratios 1/10 ≤ m2/m3 ≤ 10 , distance ratios 1/7 ≤ r2/r3 ≤ 1/3 and mutual
inclination 0 ≤ imut ≤ 45◦ .

The paper is organized as follows. Section2 describes all the steps leading to the finally
adopted secular Hamiltonian model. This includes the introduction of a suitable ‘book-
keeping’, the chain of canonical transformations leading to the Hamiltonian expressed in
Poincaré canonical variables, as well as a number of precision tests about the order of themul-
tipole truncation, comparison with the Laplace–Lagrange series, etc. Section3 analyzes the
dynamics and the phase portraits under the secular Hamiltonianmodel computed as in Sect. 2.
Sections3.2.1 and 3.2.2 discuss the phase-space properties of the integrable approximations
Hplanar and Hint , and introduce the basic terminology for the orbits of the apsidal corota-
tion type (modes A and B). Section3.2.3 deals, instead, with an analysis of the phase-space
structure under the full (non-integrable) Hamiltonian (2). This includes the semi-analytical
method (via a normal form) used to demonstrate the continuation of the A and B modes
as well as to produce the time series yielding the evolution of the eccentricity vectors for
both planets along these modes. Section3.3 discusses numerical results on the form of the
surfaces of section as the energy E (or the parameter δE) increases, showing the sequence
of bifurcations that connect the apsidal corotation with the Lidov–Kozai regime. Section3.4
contains results related to the ‘Kozai mechanism’, i.e., the transition from linear stability
to instability for the inclined circular orbit of one of the two planets. Numerical results
are compared to an analytical approximation obtained in the framework of the quadrupo-
lar approximation. Section4 contains the investigation of how the phase portraits change
in cases with different distance or mass ratios of the planets, covering various hierarchical
models (r2/r3 = 1/7, 1/3, m2/m3 = 1/10, 1/3, 1, 3, 10 ). Section5 summarizes of the
main conclusions from the present study.

2 Hamiltonianmodel

2.1 On the formalism

The spectrumofmethods and formalisms used in the study of the secular planetary three-body
problem is nearly as wide as the literature itself on the subject. Different proposals distin-
guish between cases in which the problem is considered hierarchical (e.g., in the distances
r2/r3 � 1 ; see Brouwer 1959; Ford et al. 2000; Migaszewski and Goździewski 2011), or
non-hierarchical (see Henrard and Libert 2004; Naoz et al. 2013). The choice of variables
and/or proposed representation of the phase space of the system often reflects whether the
focus is on phenomena related to apsidal-corotations (see Beaugé et al. 2003; Laughlin et al.
2002; Lee and Peale 2003), or to the Kozai instability (see Kozai 1962; Libert and Delsate
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2012; Libert and Tsiganis 2009; Lithwick and Naoz 2011). Different formalisms also stem
from:

(i) The type of Hamiltonian expansion: this can be performed as the usual (Laplace–
Lagrange) series expansion in powers of the planets’ eccentricities and inclinations
(see, for example, Murray and Dermott 1999; Libert and Henrard 2007) or as a Leg-
endre multipolar expansion (see Naoz 2016; Libert and Delsate 2012 and references
therein). Although the two types of expansions are equivalent in the limit of infinite
order of the expansion, different truncations (even with the same type of series) can
lead to quantitatively, and even qualitatively, different results. Libert andHenrard (2007)
discuss the question of the correct order of truncation in the framework of the Laplace–
Lagrange expansion. Migaszewski and Goździewski (2011), Naoz et al. (2013), Naoz
(2016) discuss various truncated multipolar models for spatial hierarchical systems. To
our knowledge, there is no literature on a comparison between the results obtained by
truncated models with the two types of expansion for non-hierarchical spatial systems.

(ii) Method of averaging: different secular models are obtained by a different choice of
method for averaging the Hamiltonian with respect to the fast angles. Such methods
include: a) averaging “by scissors”, i.e., by just dropping-off the Hamiltonian all fast
periodic terms (see, for example, Libert and Henrard 2007; Henrard and Libert 2004).
b) “Closed-form” averaging (e.g., Migaszewski and Goździewski 2011). This method
has the benefit of avoiding expansions in the orbital eccentricities (whose convergence
becomes limited due to the limit in the series inversion of Kepler’s equation, see, for
example Szeto and Lambeck 1982). However, closed-form averaging can only be per-
formed after amultipolar expansion of theHamiltonian. Thus, themethod is particularly
suited for systems hierarchicalwith respect to the planetary distances, while its precision
in the case of non-hierarchical systems is an open issue (see some results in Sect. 4).
c) Numerical computation (e.g., by Gauss’ method) of the quadratures involved in the
averaging (see Thomas and Morbidelli 1996; Migaszewski and Goździewski 2008).
This method is particularly suited for systems with intersecting trajectories, owing to
theorems (see, for example, Gronchi andMilani 1998) establishing the continuity of the
secular equations of motion at the points of intersection, which are singularities of the
integrand functions appearing in the quadratures. d) Elimination of the mean anomalies
from the Hamiltonian via a canonical transformation (see Brouwer 1959; Naoz et al.
2013). From the theoretical point of view, the use of a canonical transformation is imper-
ative when precision of second order in the planetary masses is sought for. It should be
stressed that whileO(m2) expansions are straightforward to obtain in the framework of
the Laplace–Lagrange series (see Locatelli and Giorgilli 2000), their counterpart in the
form of closed-form series is an open question. In fact, closed-form averaging in the
framework of the three-body problem requires the use of some ‘relegation’ technique
(see Palacián et al. 2006), or alternatives as those recently proposed in Cavallari and
Efthymiopoulos (2022).

(iii) Choice of coordinates: Several sets of variables have been proposed to visualize and
study the phase space of secular motions. Examples are: (e2 sin(ω2), e3 sin(ω3)) (see,
for instance, Libert and Henrard 2007; Migaszewski and Goździewski 2011; Lib-
ert and Tsiganis 2009); (e j cos(��), e j sin(��)) , j = 2, 3 (see Michtchenko
and Malhotra 2004); (e2 cos(2ω2), e3 cos(�ω)) (see Libert and Delsate 2012);
(e2 cos(��), e3 cos(2ω2) ) (see Migaszewski and Goździewski 2011; Michtchenko
et al. 2006); (e j cos(ω j ), e j sin(ω j )) (see Thomas and Morbidelli 1996). Among the
motivations behind the choice of a particular set of variables are: a) the treatment of
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singular cases (e.g., e2 = 0, e3 = 0, in which the longitude of the perihelium is no
longer defined), b) the possibility to include all the main families of possible orbital
states in one plot. As a characteristic example of the latter, see figure 3 of Michtchenko
et al. (2006); one can remark, however, the complexity involved in properly deciphering
the information given in that figure, which is evident from the accompanying caption.

Our own choice regarding the points (i) to (iii) above is: as regards the choices of the type of
Hamiltonian expansion and themethod of averaging, we base most of our results on a closed-
form averaging of a multipolar expansion (in powers of the distance ratio r2/r3 < 1) of the
Hamiltonian (1). Besides its compact form, convenient for analytic studies (as, for example,
in Sect. 3.4), such a model, truncated at a sufficiently high multipole order, circumvents the
problem of slow convergence of the Laplace–Lagrange series for highly eccentric orbits,
without compromising precision even far from the hierarchical limit (e.g., for r2/r3 ∼ 0.3 ).
Indeed, the closed-form averaging is based on a multipolar expansion, which produces a
smaller number of terms in the Hamiltonian with respect to the Laplace–Lagrange expansion,
rendering the procedure faster. Moreover, the closed-form averaging allows to avoid the
singularity of Kepler’s equation. The rational dependence of the Hamiltonian on the quantity√
1− e23 implies that any expansion in the eccentricities performed after the closed-form

averaging is convergent in the entire domain |e2| < 1, |e3| < 1 . However, we have to recall
that multipolar expansions have singularities for values of the eccentricities e2 and e3 for
which the distance of the apocenter of the inner planet is equal to the distance of the pericenter
of the outer planet, i.e., such that a2(1+e2) = a3(1−e3) . In order to specify the suitable order
of multipole truncation, in Sect. 2 we make a comparison of the phase portraits obtained via
the secular Hamiltonian arrived at by the above method versus those obtained by a scissors’
averaging of the Laplace–Lagrange series truncated at order 10 in the eccentricities. Also,
in obtaining the final Hamiltonian we introduce a book-keeping procedure for the Jacobi
reduction of the nodes, which, as mentioned already, leads to a convenient decomposition of
the Hamiltonian as in Eq. (2). As regards the choice of coordinates, we illustrate all phase
portraits using the usual Poincaré surface of section (e2 cosω2, e2 sinω2) every time when
ω3 = π , ω̇3 ≥ 0. The sequence of canonical transformations leading to such a representation
of phase portraits is described inSect. 2.Owing to the conservation of angularmomentum, one
can easily see (Cushman andBates 1997) that the phase space of the integrablemodelsHplanar

and Hint is the sphere S2 (instead of R4, as generically true for Hamiltonian systems with
two degrees of freedom). Furthermore (see Sect. 3.2.2), some points of the sphere ‘inflate’ to
curves in the Poincaré surface of section defined as above. Finally, using an appropriate set of
variableswhose Poisson algebra admits the angularmomentumas aCasimir, the twomodesA
and B are seen to be separated by ameridian circle in the sphere S2, which, nevertheless, does
not correspond to a dynamical separatrix (since the integrable model contains no unstable
periodic orbits).Wedevote someeffort to carefully describe these phenomena,which are often
found to generate confusion in the literature when use is made of some of the components
of the planets’ eccentricity vectors to describe the structure of the problem’s phase space.

2.2 Averaged Hamiltonian

We focus mostly on the properties of a secular model Hsec for the Hamiltonian (1)
obtained by performing averaging with respect to the fast angles just ‘by scissors’. We
denote by (a, e, i, M, ω,�) the Keplerian elements of a body (semi-major axis, eccentric-
ity, inclination, mean anomaly, argument of the periastron, argument of the nodes), and by
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λ = M+ω+�,� = ω+� themean longitude and longitude of the periastron, respectively.
A secular model can be obtained after averagingH with respect to the fast angles M2 , M3 :

Hsec = 1

4π2

∫ 2π

0

∫ 2π

0
H(r2, r3, p2, p3) dM2 dM3

= 1

4π2

∫ 2π

0

∫ 2π

0

((
1

m0
+ 1

m2

)
p22

2
− Gm0 m2

r2

)
dM2 dM3

+ 1

4π2

∫ 2π

0

∫ 2π

0

((
1

m0
+ 1

m3

)
p32

2
− Gm0 m3

r3

)
dM2 dM3

+ 1

4π2

∫ 2π

0

∫ 2π

0

p2 · p3
m0

dM2 dM3 − 1

4π2

∫ 2π

0

∫ 2π

0

Gm2 m3

|r2 − r3| dM2 dM3.

(5)

We have

1

4π2

∫ 2π

0

∫ 2π

0

((
1

m0
+ 1

m2

)
p22

2
− Gm0 m2

r2

)
dM2 dM3

+ 1

4π2

∫ 2π

0

∫ 2π

0

((
1

m0
+ 1

m3

)
p32

2
− Gm0 m3

r3

)
dM2 dM3

= −Gm0m2

2a2
− Gm0m3

2a3
+ Gm2

2

2a2
+ Gm2

3

2a3
.

(6)

The indirect part of the disturbing function, depending on the product p2 · p3, yields zero
average

1

4π2

∫ 2π

0

∫ 2π

0

p2 · p3
m0

dM2 dM3 = 1

4π2

Gm2m3√
a3
2 a3

3

∫ 2π

0

dr2
dM2

dM2

∫ 2π

0

dr3
dM3

dM3 = 0.

(7)

To compute the average of the direct part Gm2m3/|r2 − r3|, we assume a dynamical regime
of the planetary system in which the distance ratio r2/r3 (where ri = |ri | , i = 2, 3) remains
always smaller than unity. Then, the quantity Gm2m3/|r2− r3| admits a convergent Legendre
multipolar expansion in powers of the quantity r2/r3 < 1:

− 1

4π2

∫ 2π

0

∫ 2π

0

Gm2 m3

|r2 − r3| dM2 dM3

= −Gm2 m3

4π2

∫ 2π

0

∫ 2π

0

(
1

r3
+ r2 · r3

r33
− 1

2

r22
r33
+ 3

2

(r2 · r3)2
r53

+ . . .

)
dM2 dM3 .

We have:

− Gm2 m3

4π2

∫ 2π

0

∫ 2π

0

1

r3
dM1dM2 = −Gm2m3

a3
,

∫ 2π

0

∫ 2π

0

r2 · r3
r33

dM2 dM3 = 0 .

We then need to compute

Rsec = 1

4π2

∫ 2π

0

∫ 2π

0
−Gm2 m3

r3

(
−1

2

r22
r23
+ 3

2

(r2 · r3)2
r43

+ . . .

)
dM2 dM3. (8)

Keeping only the lowest order term in the integrand of (8), proportional to (r2/r3)2 , leads
to the so-called quadrupole approximation; the next truncation (up to terms proportional to

123



The phase-space architecture in extrasolar systems with two... Page 9 of 59 22

(r2/r3)3 ) is the octupole approximation, etc. The integrals of any multipole approximation
can be computed in so-called closed form (i.e., without expansions in the eccentricities), by
avoiding completely the series reversion of Kepler’s equation, using, instead, the change of
variables M2 → u2 (eccentric anomaly), M3 → f3 (true anomaly). We have

dM2 = (1− e2 cos u2) du2, dM3 = r23

a2
3

√
1− e23

d f3,

r2 = a2(1− e2 cos(u2)),
1

r3
= 1+ e3 cos( f3)

a3 (1− e23)
.

(9)

Replacing the above expressions in (8) and performing all trigonometric reductions, we find
a trigonometric polynomial series containing only terms of the form cos(K2u2+K3 f3+ . . .),
with K2, K3 integers. This implies that the average can be computed by just scissor-cutting
all the terms in the integrand of (8) for which |K2| + |K3| 	= 0. This leads to a closed-form
expression for the secular Hamiltonian

Hsec = −Gm0m2

2a2
− Gm0m3

2a3
+ Gm2

2

2a2
+ Gm2

3

2a3
− Gm2m3

a3
+Rsec(a2, a3, e2, e3, i2, i3, ω2, ω3,�2 −�3) .

(10)

The following are some relevant remarks regarding the Hamiltonian (10):

Remark 1 The averaging (8) yields a valid secular model only when the system is assumed to
be far from any low-order mean-motion resonance. By ‘low’ it is implied that no resonance
condition of the form

|K2n2 + K3n3| < O
(
(Gm0μ)1/2/a3/2

2

)
,

should be satisfied, with K2, K3 integers, μ = max(m2/m0, m3/m0), n2 = (G(m0 + m2)

/a3
2

)1/2
, n3 =

(G(m0 + m3)/a3
3

)1/2
, for an order |K2| + |K3| inferior or equal to the order

NP of the multipole expansion in Eq. (8). Formally, such a requirement reflects the fact that
the averaging by scissors serves to substitute the complete procedure of first-order averaging,
which involves a canonical transformation to properly eliminate from the Hamiltonian the
fast angles M2, M3. Such a transformation can be defined in closed form (see, for example,
Cavallari and Efthymiopoulos 2022), but it involves divisors of the form K2n2+K3n3 which
become very small near any mean motion resonance of order smaller or equal to NP .

Remark 2 The functionRsec is trigonometric polynomial in the anglesω2, ω3, and�2−�3.
The dependence on �2, �3 only by the difference �2−�3 is a consequence of the fact that
the sum of the angular momenta H2 + H3 perpendicularly to the system’s Laplace plane is
an invariant of the motion of the complete Hamiltonian (1), which is preserved also in the
secular Hamiltonian (10).

Remark 3 The functionRsec is polynomial in the quantities a2 , e2 , e3 , sin i2 , sin i3 , cos i2 ,

cos i3 , while it is rational in the quantities a3, η3 =
√
1− e23. As regards the dependence

on sin i2 , sin i3 , cos i2 , cos i3 , this follows the symmetry that Rsec can only depend on
the quantity cos(i2 + i3), where i2 + i3 = imut is the mutual inclination of the planetary
trajectories. This symmetry is exploited when performing Jacobi reduction of the nodes in
the Hamiltonian Hsec (see next subsection). On the other hand, the rational dependence on

the quantity
√
1− e23 implies that any expansion in the eccentricities performed after the
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22 Page 10 of 59 R. Mastroianni, C. Efthymiopoulos

closed-form averaging is convergent in the entire domain |e2| < 1, |e3| < 1. The possibility
to perform an a posteriori expansion of the Hamiltonian Hsec in the planetary eccentricities
proves useful in the theoretical analysis of the dynamical properties of such a Hamiltonian
(see Sect. 3).

2.3 Book-keeping and Jacobi reduction of the nodes

Consider the set of Delaunay canonical variables:

L j = m j
√Gm0 a j , l j = M j ,

G j = L j

√
1− e2j , g j = ω j ,

Hj = G j cos(i j ) , h j = � j (11)

with j = 2, 3. Since a j = a j (L j ), e j = e j (L j , G j ), i j = i j (L j , G j , Hj ), substituting the
corresponding expressions in the HamiltonianHsec (Eq. (10)) leads to a Hamiltonian model
with six degrees of freedom

Hsec ≡ Hsec(L2, L3, G2, G3, H2, H3, g2, g3, h2 − h3) . (12)

Since the angles M2, M3 are ignorable, the Delaunaymomenta L2, L3 are integrals of motion
under the Hamiltonian flow of Hsec. There are two more integrals of motion in involution
with L2, L3, corresponding to the two components of the total angular momentum, normal
and parallel to the Laplace plane. For the normal component we have Lz = H2 + H3 =
C = const , while for the parallel component we have L‖ = G2 sin(i2(L2, G2, H2)) −
G3 sin(i3(L3, G3, H3)) = 0. Thus, with an appropriate reduction, we can reduce the system
to a Hamiltonian with two degrees of freedom. This reduction, implemented on the invariant
manifold Lz = C , L‖ = 0 is called the Jacobi reduction of the nodes (Jacobi 1842) and it
exploits one more invariance of the system: since L‖ = 0 we necessarily have �2 − �3 =
π =const.

In our analytical treatment of the Hamiltonian Hsec it turns convenient to perform the
Jacobi reduction of the nodes by simultaneously introducing two ‘book-keeping symbols’, ε,
η (Efthymiopoulos 2012), both with numerical values equal to 1, whose role is the following:
i) ε keeps track of the order of a certain term in the planetary eccentricities and inclinations,
ii) η separates Hamiltonian terms which depend on powers of the quantity cos(i2 + i3) from
those terms which do not depend on the mutual inclination imut = i2 + i3.

More specifically, we Jacobi-reduce the HamiltonianHsec by the following steps:
Step 1: Canonical transformation. Similarly as in Libert and Henrard (2007), we introduce
the canonical transformation

�2 = L2 , λ2 = M2 + ω2 +�2 ,

�3 = L3 , λ3 = M3 + ω3 +�3 ,

W2 = L2 − G2 , w2 = −ω2 ,

W3 = L3 − G3 , w3 = −ω3 ,

R2 = L2 − H2 , θr2 = �3 −�2 ,

R3 = L2 + L3 − H2 − H3 = AMD , θr3 = −�3 . (13)
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Inverting the transformation (13) and substituting the result into the Hamiltonian (12), the
secular Hamiltonian obtains the form:

Hsec ≡ Hsec(�2,�3, W2, W3, R2, R3, w2, w3, θr2) . (14)

Step 2: Jacobi reduction with book-keeping. Hamilton’s equations for the Hamiltonian (14)
yield �̇2 = �̇3 = 0 (constancy of the semi-major axes a2, a3), as well as Ṙ3 = 0 (constancy
of Lz , implying the constancy of the AMD). The crucial point stems from the following
invariance property of the Hamiltonian (14):

θ̇r2 = ∂Hsec(�2,�3, W2, W3, R2, R3 = AMD, w2, w3, θr2 = π)

∂ R2
= 0 (15)

corresponding to the invariance in time of the relation θr2 = �3−�2 = π for all trajectories.
Equation (15), however, implies that when the substitution �3 = �2 + π is made in the
Hamiltonian (14), the resulting expression becomes independent of R2, and the reduced set
of Hamilton’s equations

ẇ2 = ∂Hsec(�2,�3, W2, W3, R3 = AMD, w2, w3, θr2 = π)

∂W2
,

ẇ3 = ∂Hsec(�2,�3, W2, W3, R3 = AMD, w2, w3, θr2 = π)

∂W3
,

Ẇ2 = −∂Hsec(�2,�3, W2, W3, R3 = AMD, w2, w3, θr2 = π)

∂w2
,

Ẇ3 = −∂Hsec(�2,�3, W2, W3, R3 = AMD, w2, w3, θr2 = π)

∂w3
, (16)

remains valid. Note that �2, �3 in the above secular equations of motion are constant, and
can be effectively treated as parameters, depending on the (also constant) parameters a2, a3.
Also, the terms

−Gm0m2

2a2
− Gm0m3

2a3
+ Gm2

2

2a2
+ Gm2

3

2a3
− Gm2m3

a3

appearing in Eq. (10), do not contribute to the secular equations ofmotion, and can be omitted
from further analysis, by just renamingRsec → Hsec. Finally, Eqs. (16) allow to compute the
secular evolution of only the eccentricity vectors of the two planets. To obtain the evolution in
inclination, instead, we use the following relations, obtained directly from the conservation
of the angular momentum:

cos(i2) = �2
2(1− e22)−�2

3(1− e23)+ L2
z

2Lz�2

√
1− e22

, cos(i3) =
Lz −�2

√
1− e22 cos(i2)

�3

√
1− e23

.

(17)

In the practical implementation of step 2, we perform the substitutions of the angle vari-
ables �3 = �2+π , as well as ω2 = −w2, ω3 = −w3 in the Hamiltonian, but leave implicit
the latter’s dependence on the action variables (�2,�3, W2, W3, R2, R3) through the ele-
ments (a2, a3, e2, e3, i2, i3). Owing to the non-dependence of the Hamiltonian on R2 after
the substitution �3 = �2 + π , we have that the Hamiltonian depends on the inclinations
only through the trigonometric combination cos(i2+ i3) = cos(i2) cos(i3)− sin(i2) sin(i3) .
Taking into account that

(1− cos(i2) cos(i3)) = O(ε2), sin(i2) sin(i3) = O(ε2) ,
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22 Page 12 of 59 R. Mastroianni, C. Efthymiopoulos

where the attribution ofO(ε2) to an expression stands for ‘second order in the eccentricities
and inclinations’, we then introduce the following book-keeping control identities:

cos(i2) cos(i3)=ε2η (cos(i2) cos(i3)− 1)+ 1 , sin(i2) sin(i3)=ε2η sin(i2) sin(i3) .

(18)

We also use the substitution rule

sin(i2) sin(i3) =

cos(i2) cos(i3)+
�2

√
1− e22

2�3

√
1− e23

+
�3

√
1− e23

2�2

√
1− e22

− L2
z

2�2

√
1− e22 �3

√
1− e23

.
(19)

Substituting the above expressions into the Hamiltonian, and truncating the resulting expres-
sion up to a preselected maximum order in book-keeping Nbk, by symmetry the terms in
equal powers of the products sin(i2) sin(i3) and cos(i2) cos(i3) are opposite, and thus, they
are canceled. Hence, the Hamiltonian resumes the form:

Hsec =
Nbk/2∑
s1=0

ηs1ε2s1Hsec,s1(e2, e3, w2, w3; a2, a3, Lz) . (20)

We finally restore the values ε = 1 and η = 1 of the book-keeping parameters, and write the
truncated (up to book-keeping order Nbk) Hamiltonian as:

Hsec = Hplanar +Hspace (21)

where

Hplanar = Hsec,0(e2, e3, w2 − w3; a2, a3),

Hspace =
Nbk/2∑
s1=1

Hsec,s1(e2, e3, w2, w3; a2, a3, Lz) .
(22)

Note that the termHplanar depends only on the difference w2−w3, since, in the planar case,
the sum W2 +W3, which represents the total angular momentum deficit for planar orbits, is
a conserved quantity.
Step 3: Expansion in the orbital eccentricities. We re-introduce the book-keeping:

e2 → εe2, e3 → εe3, Lz → �2 +�3 − ε2AMD. (23)

Substituting the above expressions in the Hamiltonian (22), and expanding the resulting
expressions in powers of the book-keeping parameter ε, apart from a term depending only
on the constants a2, a3 and AMD, we arrive at the truncated Hamiltonian:

Hsec = Hplanar +Hspace

=
Nbk/2∑
s2=1

ε2s2hs2(e2, e3, w2 − w3; a2, a3)+
Nbk/2∑
s2=1

ε2s2 h̃s2(e2, e3, w2, w3; a2, a3,AMD).

(24)

Step 4: introduction of Poincaré variables: The Hamiltonian (24) is polynomial in the eccen-
tricities e2, e3. It was already stressed that the series expansion with respect to the quantities

η2 =
√
1− e22 and η3 =

√
1− e23 introduces no divergence in the polydisc |e2| < 1, |e3| < 1.
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Besides, the Hamiltonian satisfies the D’Alembert rules in the eccentricities: every trigono-
metric term in it is of the form h�2,�3,k2,k3(a2, a3)(AMD)�1e�2

2 e�3
3 cos(k2w2+ k3w3), with �1

positive integer, and the integers �2, �3, k2, k3 satisfying i) �2, �3 > 0, ii) �2+�3 ≥ |k2|+|k3|,
and iii) mod(�2, 2) = mod(k2, 2), mod(�3, 2) = mod(k3, 2). Rules (i) to (iii) imply, now,
that the Hamiltonian is polynomial in the Poincaré canonical variables stemming from the
variables (w j , W j ), j = 2, 3 through the canonical transformation

X j = −√2 W j cos(w j ) , Y j =
√
2 W j sin(w j ) , j = 2, 3 . (25)

To obtain a truncated polynomial series of the Hamiltonian in the variables (X j , Y j ), we
substitute into the Hamiltonian (24) the expressions

sin(w j ) = Y j√
2W j

, cos(w j ) = − X j√
2W j

, e j =
√
2W j

� j
− ε2

(
W j

� j

)2

, j = 2, 3

and expand the result in powers of the book-keeping parameter ε, up to the truncation order
Nbk. This leads to an expression which no longer contains trigonometric functions of the
angles w j , while it still contains integer powers of the actions W j . We then substitute W j →
(X2

j + Y 2
j )/2, and, finally, set back ε = 1. In this way we arrive at the final secular model:

Hsec(X2, X3, Y2, Y3;AMD)

= Hplanar(X2, X3, Y2, Y3)+Hspace(X2, X3, Y2, Y3;AMD)

=
Nbk∑

�∈N4
,|�|=2

Kplanar,� X�1
2 X�2

3 Y �3
2 Y �4

3 +
Nbk∑

�∈N4
,|�|=2

Kspace,�(AMD)X�1
2 X�2

3 Y �3
2 Y �4

3 .

(26)

Note that, by symmetry, the value of the disturbing function (and hence of the secular Hamil-
tonian) remains invariant by the rotation of both planets’ argument of the pericenter by π ,
hence the secular Hamiltonian is necessarily even in the planetary eccentricities. This implies
that the Hamiltonian (26) contains only even powers of the Poincaré variables (X j , Y j ) , i.e.,
�1 + �2 and �3 + �4 are even. In particular, Hamilton’s equations take the form:

Ẋi = ∂Hsec

∂Yi
= Y2 FXi ,2(X2, X3, Y2, Y3)+ Y3 FXi ,3(X2, X3, Y2, Y3),

Ẏi = −∂Hsec

∂ Xi
= X2 FYi ,2(X2, X3, Y2, Y3)+ X3 FYi ,3(X2, X3, Y2, Y3),

(27)

where the polynomials FXi ,2, FXi ,3, FYi ,2, FYi ,3 , i = 2, 3, are even, starting with constant
terms.

2.4 Poincaré surface of section: precision tests

We will now discuss several precision tests, based on the method of comparison of phase
portraits, which aim to establish which is the minimum multipole order, as well as minimum
order in the eccentricities of the Hamiltonian Hsec, such that the Hamiltonian, truncated at
the above orders, represents with sufficient precision the dynamics at the timescales of the
secular system produced by averaging of the original Hamiltonian (1).

In all the numerical exampleswhich follow,we refer to themass, periods andAMDparam-
eters as estimated for theυ-Andromedae system.Weadopt the valueG = 4π2 AU 3/(yr2M)
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for Newton’s gravity constant, as well as the mass parameters m0 = 1.31M, m2 =
13.98MJ , m3 = 10.25MJ (M = mass of the Sun, MJ = 0.0009546, M = mass of
Jupiter), and the semi-major axes a2 = 0.829 AU, a3 = 2.53 AU (according to Table
13 of McArthur et al. 2010). For what concerns the constants Lz or AMD, we esti-
mate their values adopting for the two planets’ eccentricities, inclinations and arguments
of periastron and of the nodes the values proposed in Table 1 of Deitrick et al. (2015),
namely, e2 = 0.2445, e3 = 0.316, i2 = 11.347◦, i3 = 25.609◦, ω2 = 247.629◦,
ω3 = 252.991◦, �2 = 248.181◦, �3 = 11.425◦. As emphasized in the introduction,
there are great uncertainties in the observation as regards, in particular, the estimates on the
planetary eccentricity and inclination vectors. However, starting with parameters as above,
we can have a representative value for the system’s AMD, which then serves to analyze
the secular orbital dynamics under different assumptions for the planets’ initial conditions.
The value of the AMD is estimated from the above data, by first computing the angular
momentum vector with respect to a heliocentric frame of reference whose x-axis points
to the observer, then computing the rotation matrix connecting the observer’s frame with
Laplace’s reference frame, and finally rotating the positions and velocities of both plan-
ets to the Laplace frame of reference and re-calculating their inclinations and arguments
of periastron and of the nodes. This yields the values i2 = 18.4748◦, i3 = 14.6462◦,
ω2 = 289.049◦, ω3 = 235.464◦, �2 = 217.318◦, �3 = 37.3176◦. Then, we obtain
Lz = 0.183101 AU 2M/yr , which, together with �2 = 0.0873819, �3 = 0.111923,
leads to AMD = �2 +�3 − Lz = 0.0162044 AU 2M/yr .

The complete expression of the Hamiltonian (26) up to terms of order 4 in the eccentricity
is provided as a supplementary online material.

2.4.1 Poincaré surface of section: definitions

To visualize phase portraits, use is made of a Poincaré surface of sectionP(E;AMD) defined
by the relations:

P(E;AMD) =
{
(X2, Y2, X3, Y3) ∈ R

4 : Hsec(X2, Y2, X3, Y3 = 0;AMD) = E,

Y3 = 0, Ẏ3 = −∂Hsec(X2, Y2, X3, Y3 = 0;AMD)

∂ X3
≥ 0,

cos(imax) ≤ cos(imut)(X2, Y2, X3, Y3 = 0;AMD) ≤ 1

}
,

(28)

where the mutual inclination imut = i2 + i3 for fixed AMD, or angular momentum Lz =
�2 +�3 − AMD , is given (consistently with Eq. (12) of Robutel 1995) by

cos(imut) = L2
z −�2

2 −�2
3 +�2

2 e22 +�2
3 e23

2�2�3

√
1− e22

√
1− e23

= L2
z − G2

2 − G2
3

2G2G3

=
L2

z −�2
2

(
1− X2

2+Y 2
2

2�2

)2

−�2
3

(
1− X2

3+Y 2
3

2�3

)2

2�2�3

(
1− X2

2+Y 2
2

2�2

)(
1− X2

3+Y 2
3

2�3

)
(29)
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and the maximum possible mutual inclination consistent with the given AMD is

imax = cos−1
(

L2
z −�2

2 −�2
3

2�2�3

)
. (30)

The phase portrait corresponding to the Poincaré surface of section at a fixed level of energy
E is obtained numerically, by choosing several initial conditions (X2, Y2) ∈ D(E) ⊂ R

2,
whereD(E) is the domain of permissible initial conditions consistent with the definition of the
surface of section as in Eq. (28). For each initial condition, we then iterate the corresponding
orbit under the Hamiltonian Hsec, and plot the consequent points (X2, Y2), or, equivalently
(e2 cosω2, e2 sinω2), with

e2=
⎛
⎝1−

(
1− (X2

2 + Y 2
2 )

2�2

)2
⎞
⎠

1/2

, ω2=sgn

⎛
⎝ −Y2√

X2
2 + Y 2

2

⎞
⎠arccos

⎛
⎝ −X2√

X2
2 + Y 2

2

⎞
⎠

(31)

every time the orbit intersects the surface of section. Note that the conditions Y3 = 0, Ẏ3 ≥ 0
imply i) that the Poincaré mapping defined by the successive iterates is symplectic, and ii)
that the section definition corresponds physically to instants when the orbit of the outer planet
crosses the pericenter ω3 = π . The symplecticity of the Poincaré mapping, along with the
straightforward physical interpretation, is the main motive for the choice of variables and for
the visualization of phase portraits via the definition of the Poincaré section as above.

The domain D(E) is non-null in a range of energies Emin ≤ E < 0. The energy Emin is
computed as follows: consider the surface I0 of all possible points satisfying the section
condition Y3 = 0 as well as the lowermost limit of possible mutual inclination imut = 0. The
surface I0 is the sphere given by

I0 =
{

X2
3 + X2

2 + Y 2
2 = 2AMD

}
. (32)

We then find the point (X2,0, Y2,0) on the surface I0 where the energy is minimum by looking
to the solutions of the system of equations

∂Hsec(X2, Y2, X2
3 = 2AMD− X2

2 − Y 2
2 , Y3 = 0;AMD)

∂ X2
= 0

∂Hsec(X2, Y2, X2
3 = 2AMD− X2

2 − Y 2
2 , Y3 = 0;AMD)

∂Y2
= 0 , (33)

satisfying also the section condition

Ẏ3 =
(
−∂Hsec(X2, Y2, X3, Y3 = 0;AMD)

∂ X3

)

X2
3=2AMD−X2

2−Y 2
2

≥ 0 . (34)

We find two solutions (X2,0, Y2,0 = 0) and (X2,1, Y2,1 = 0) of the system of equations (33)
and (34); however, only (X2,0, Y2,0 = 0) corresponds to the minimum value of the energy,

i.e., Hsec(X2 = X2,0, Y2 = Y2,0 = 0, X3 = X3,0 =
√
2AMD− X2

2,0, Y3 = 0) = Emin, as
verified by the Hessian matrix

⎛
⎜⎜⎝

∂2Hsec(X3=
√
2AMD−X2

2−Y 2
2 ,Y3=0)

∂ X2
2

∂2Hsec(X3=
√
2AMD−X2

2−Y 2
2 ,Y3=0)

∂Y2∂ X2

∂2Hsec(X3=
√
2AMD−X2

2−Y 2
2 ,Y3=0)

∂ X2∂Y2

∂2Hsec(X3=
√
2AMD−X2

2−Y 2
2 ,Y3=0)

∂Y 2
2

⎞
⎟⎟⎠
(X2=X2,0,Y2=Y2,0)
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which is positive definite. On the other hand, the solution (X2,1, Y2,1 = 0, X3,1 =√
2AMD− X2

2,1) corresponds to the energyE2,3, and yield a negative definiteHessianmatrix.

Thus, E2,3 corresponds to the maximum energy for which we can have co-planar orbits (see
discussion below).

The uniqueness of the solution realizing theminimal value of the energy can be understood
by the following argument: for every fixed value of the energy E, sufficiently close to the
origin the restriction of the manifold of constant energy to the section Y3 = 0

M(E) =
{
(X2, Y2, X3) ∈ R

3 : Hsec(X2, X3, Y2, Y3 = 0;AMD) = E
}

(35)

yields a surface. We will show in the next section that, for energies smaller than a suitably
defined threshold, the surfaceM(E) is close to the surface of an integrable model

Mint(E) =
{
(X2, Y2, X3) ∈ R

3 : Hint(X2, X3, Y2, Y3 = 0;AMD) = E
}

(36)

where Hint contains Hplanar as well as a part of Hspace. The manifolds Mint(E), in turn, are
ellipsoidal-like closed convex surfaces. The ellipsoidal form follows from the fact that the
leading order terms of the restriction of Hint to the section Y3 = 0 yield a negative-definite
quadratic form1

Hint(X2, X3, Y2, Y3 = 0) = −ν2

(
X2
2 + Y 2

2

2

)
− ν3

X2
3

2
+ c23X2X3 + . . .

with ν2, ν3 > 0, |c2,3| < min(ν2, ν3).
Owing to their proximity to themanifoldsMint(E), for energies low enough, themanifolds

M(E) are also ellipsoidal-like (the exact evolutionof the formofM(E) as the energy increases
will be discussed in the next section). As a consequence, there is a negative value of the
energy E = Emin such that for E < Emin the ellipsoidal manifold M(E) surrounds the
sphere I0. Since, however, from Eq. (29) it follows that the condition cos(imut) ≤ 1 leads2

to X2
3 + X2

2 + Y 2
2 ≤ 2AMD , the condition E < Emin leads to the unphysical condition

cos(imut) > 1 . At the energy E = Emin the ellipsoidal manifold M(Emin) has two points
of tangency with the sphere I0 (see Fig. 1). Both tangencies occur at the plane Y2 = 0,
but only one of them satisfies the condition Ẏ3 ≥ 0. Then, we set (X2,0, Y2,0 = 0, X2

3,0 =
2AMD− X2

2,0 ) equal to the coordinates of the corresponding point of tangency, and Emin =
Hsec(X2 = X2,0, Y2 = 0, X3 = X3,0, Y3 = 0;AMD).

In order to numerically specify, now, the limits of the domainD(E) on the Poincaré section
for any value of the energy in the range Emin < E < 0 we work as follows: fixing any value
of the angle w2 = −ω2 in the interval 0 ≤ w2 ≤ π , the line defined parametrically by the
relations:

L(w2) : {X2 = s2 cos(w2), Y2 = s2 sin(w2), s2 ∈ R} (37)

defines a plane PL(w2) = {(X2, Y2) ∈ L(w2), X3 ∈ R}. The plane PL(w2) intersects the
ellipsoidal manifoldM(E) at a nearly elliptic closed curve CP L M (E, w2), while it intersects
the sphere I0 at the circle CP L I0 : s22 + X2

3 = 2AMD. The curve CP L M (E, w2) has central
symmetry, and, owing to the fact that its quadratic-form approximation is negative definite, its

1 In our numerical examples, ν2 = 0.00212539 , ν3 = 0.00216703 and c23 = 0.000151982 .
2 From Eq. (29) it easily follows that cos(imut) ≤ 1 if and only if Lz ≤ G2 + G3 . By the definitions of
Lz = �2 +�3 − AMD and of G2 , G3 (see Eq. (11)) it follows X2

3 + X2
2 + Y 2

2 ≤ 2AMD .
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Fig. 1 Left: tangency between the ellipsoidal surfaces of minimum possible energy M(Emin), with Emin =
−1.18237 · 10−4 (light gray) and the sphere I0 (gray). The only permissible initial condition on the surface
of section corresponds to the point of tangency (black dot). The green slightly inclined surface represents the
condition Ẏ3 = 0. Right: the tangency between the surfaces M(Emin) (thick light gray closed curves) and
the sphere I0 (thin gray curve) as seen in the plane (X2, X3) for Y2 = 0. The green slightly inclined curve
represents the condition Ẏ3 = 0 and separates the plane (X2, X3) in an upper domain, where Ẏ3 > 0, and a
lower domain (Ẏ3 < 0). The point of tangency (thick dot)marks a fixed point corresponding to a planar periodic
orbit of the apsidal corotation type called ‘modeA’ (anti-aligned) in Sect. 3, yielding (X2 = X2,0 = 0.101237,

X3 = X3,0 =
√
2AMD− X2

2,0 = 0.148862, Y2 = Y2,0 = 0, Y3 = 0 ), that correspond to e2 = 0.337415,

e3 = 0.433811

overall size decreases as E increases from the most negative possible value E = Emin towards
the value E = 0, at which CP L M (E, w2) reduces to a point at the origin of the plane PL(w2).
Finally, the surface Ẏ3 = 0 also intersects the plane PL(w2) at a curve CP LẎ3=0(w2). As a
result, fixing the value of w2, there are three possibilities as regards the intersections of the
curve CP L M (E, w2), which varies with the energy, and the curves CP LẎ3=0(w2) and CP L I0 :

Regime 1 the curve CP L M (E, w2) intersects the circle CP L I0 at four points, two of which
(P1, P2) are above the curve CP LẎ3=0(w2), hence corresponding to Ẏ3 > 0, while it intersects
the curve CP LẎ3=0(w2) itself at two points which are exterior to the circle CP L I0 (Fig. 2). In
this case, the permissible initial conditions in the Poincaré surface of section are given by
X2 = s2 cos(w2), Y2 = s2 sin(w2) with s2 in the interval sP1 ≤ s2 ≤ sP2 , where sP1 , sP2 are
the values of s2 to which project the points of intersection P1, P2. At both these points we
have Ẏ3 > 0.

Regime 2 for larger energies, the curve CP L M (E, w2) still intersects the circle CP L I0 at
four points, two of which (P1, P2) are above the curve CP LẎ3=0(w2), while now intersecting
the curve CP LẎ3=0(w2) itself at two points (P3, P4), which are interior to the circle CP L I0
(Fig. 3). In this case, the permissible initial conditions in the Poincaré surface of section are
given by X2 = s2 cos(w2), Y2 = s2 sin(w2) with s2 in one of the intervals sP3 ≤ s2 ≤ sP1 ,
or sP2 ≤ s2 ≤ sP4 , where sP1 , sP2 , sP3 , sP4 are the values of s2 to which project the points of
intersection P1, P2, P3, P4. In this case we have Ẏ3 > 0 at the inner limits P1, P2, while we
have Ẏ3 = 0 (i.e., the orbit arrives tangently to the surface of section) at the outer limits P3,
P4.

Regime 3 for still larger energies, the curve CP L M (E, w2) decreases in size in such a way
that it no longer intersects the circle CP L I0 . Then the only limits are posed by its intersections
with the curve CP LẎ3=0(w2) at the points (P3, P4), which remain interior to the circle CP L I0
(Fig. 4). Then, the permissible initial conditions in the Poincaré surface of section are given
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Fig. 2 Left: intersections between the surfacesM(E) at the energy E = −9.16 · 10−5 (light gray), the sphere
I0 (thin gray), and the surface Ẏ3 = 0 (green slightly inclined). The thick black curve projected on the plane
(X2, Y2) defines the permissible domain of initial conditions (see text). Right: the intersections between the
surfaceM(E) (thick light gray closed curve), the sphere I0 (thin gray curve) and the condition Ẏ3 = 0 (green
slightly inclined curve) as viewed in the plane (X2, X3) for Y2 = 0. The points of intersection mark the limits
of possible initial conditions along X2 for X3 = Y2 = 0

Fig. 3 Same as in Fig. 2 but for the surface M(E) calculated at E = −7.09 · 10−5. The limits of possible
initial conditions along X2 for X3 = Y2 = 0 are marked by the intersections M(E) both with I0 and the
curve CP LẎ3=0(w2), for w2 = 0 (see text)

by X2 = s2 cos(w2), Y2 = s2 sin(w2) with s2 in the interval sP3 ≤ s2 ≤ sP4 , and both limits
correspond to Ẏ3 = 0, i.e., to orbits tangent to the surface of section.

Having fixed the value of the energy E, and repeating the computation of the above
intersection points for various lines L(w2) (i.e., various choices of the argument of the
perihelion ω2), we can explicitly compute the limits of the whole domain D(E) and proceed
in the computation of the phase portraits, obtaining several initial conditions within the
domain D(E). In practice, by symmetry, it is sufficient to consider only initial conditions
along the line L(w2 = 0), i.e., X2 = s2, Y2 = 0. Note also that the regimes 1 and 2, and then
2 and 3, are separated at the energies E1,2 and E2,3, respectively.We discuss in the next section
the topological differences in the phase portraits between the various regimes. We only note
here that the generic regime is regime 3, which emerges beyond the energy E2,3, at which
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Fig. 4 Inner tangency between the surface M(E2,3) at the energy E2,3 = −6.77 · 10−5 and the sphere I0.
The point of tangency marks a fixed point which corresponds to a planar periodic orbit of the type ‘mode B’
(aligned apsidal corotation)

the manifold of constant energy M(E2,3) has an inner tangency with the sphere I0. Finally,
we note that both critical tangencies occurring at the energies Emin and E2,3 correspond to
basic periodic orbits of the system (the apsidal corotation resonances), while the final limit
E = 0 corresponds to the Kozai–Lidov fixed point of the system, at which imut = imax and
e2 = e3 = 0.

2.4.2 Poincaré surface of section: precision tests

Figure 5 shows a summary of our basic example of computation of phase portraits, in the
form of Poincaré surfaces of section computed as explained in the previous subsection.

In Fig. 5 we already observe some of the significant changes in the phase portraits when
the energy is varied from a value close to Emin � −1.2 · 10−4 (slightly different in each
of the models considered in the figure), to another close to Emax = 0. In the next section,
we make a detailed discussion of the changes observed in the phase portraits as the energy
moves from a value, in which the system is closer to the planar regime, to another, in which
the system is highly inclined. Here, instead, we only discuss how these figures control the
robustness of the phase portraits with respect to the model chosen, which can differ in the
maximum multipole degree NP up to which the original HamiltonianH is expanded, before
the averaging, as well as in the maximum order in book-keeping Nbk of the Hamiltonian
Hsec, which is also equal to the maximum order at which the eccentricities appear in Hsec.
Checking with increasing values of NP and Nbk, we find that the phase portraits stabilize at
NP = 5, Nbk = 10. Beyond these values, the sequence of bifurcations of new fixed points
and the corresponding changes in the topological features of the phase portraits become
marginal, with only changes in the second significant figure observed in both the value of
the energy E where a bifurcation occurs, and the position of the corresponding fixed points,
separatrices, etc.

Since we are interested only in a qualitative description of the structure and evolution of
the phase portraits, for reducing computational time we choose as our basic model the one
with NP = 5, Nbk = 10.

As shown in Fig. 6, fixing Nbk = 10 , the multipolar order of truncation NP = 4 is not
sufficient to reproduce correctly the evolution of the phase portraits. In particular, while the
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Fig. 5 Poincaré surfaces of section in the plane (e2 cos(ω2), e2 sin(ω2)) with Lz fixed and different values
of energy. The surfaces of section are computed by a numerical integration of trajectories in the Hamiltonian
truncated at: Top multipolar degree NP = 5, order Nbk = 10 in the eccentricities, and energies (from left
to right) E = −6.67 · 10−5,−2.53 · 10−5,−1.9 · 10−5,−1.17 · 10−5,−2.61 · 10−6. (Middle) NP = 6,
Nbk = 10, and energies E = −6.75 ·10−5,−2.69 ·10−5,−1.9 ·10−5,−1.16 ·10−5,−2.61 ·10−6. (Bottom)
NP = 6, Nbk = 12, and energies E = −6.75 ·10−5,−2.69 ·10−5,−1.9 ·10−5,−1.16 ·10−5,−2.59 ·10−6

cases NP = 4 and NP = 5 exhibit a similar sequence of bifurcations of new fixed points,
we observe an important difference in the curve C , which divides two regions dominated by
the continuation of the apsidal corotation orbit. Namely, C surrounds only one fixed point
(called, in the following, A) in the case NP = 5 , while it surrounds also the new fixed points
(called C1 and C2 ) when NP = 4.

As an independent test,weperforma comparisonbetween the phase portraits obtainedwith
this model and those obtained by a completely independent Laplace–Lagrange expansion of
the HamiltonianH averaged over the fast angles. In the latter case, the book-keeping process
described in Sect. 2.3 must be altered for the decomposition Hsec = Hplanar + Hspace to
naturally emerge while the Jacobi reduction is performed. Namely, we first introduce the
book-keeping e j → εe j , j = 2, 3 and expand the direct term−Gm2m3/|r2−r3| in powers of
the orbital eccentricities up to the book-keeping order Nbk = 10. The so-computed expression
has the form:

− Gm2m3

|r2 − r3|

=
Nbk∑
s=0

∑
α,β,γ

Dα,β,γ (a j , e j , i j ; ε)
(�2,3)

2 s+1
2

cos(α2λ2+α3λ3+β2�2+β3�3+γ2�2+γ3�3),

(38)

j = 2, 3 , where the denominator �2,3, after the substitution �3 = �2+π , takes the form:

�2,3 = a2
2 + a2

3 − a2a3 cos(λ2 − λ3)− a2a3 cos(λ2 − λ3) cos(i2 + i3)

+a2a3 cos(λ2+λ3−2�2) cos(i2+i3)−a2a3 cos(λ2+λ3−2�2),
(39)
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Fig. 6 Poincaré surfaces of section in the plane (e2 cos(ω2), e2 sin(ω2)) with Lz fixed and different values
of energy. The surfaces of section are computed by a numerical integration of trajectories in the Hamiltonian
truncated at: Top multipolar degree NP = 5, order Nbk = 10 in the eccentricities, and energies (from left
to right) E = −6.67 · 10−5,−2.53 · 10−5,−2.61 · 10−6. (Bottom) NP = 4, Nbk = 10, and energies top
E = −6.53 · 10−5,−2.16 · 10−5,−2.62 · 10−6

with � j = ω j + � j and λ j = M j + � j denoting the longitudes of the pericenter and
the mean longitudes of the bodies j = 2, 3, respectively. The integer vectors α ≡ (α2, α3),
β ≡ (β2, β3), γ ≡ (γ2, γ3) satisfy the D’Alembert rule α2 + α3 + β2 + β3 + γ2 + γ3 = 0 .
The coefficients Dα,β,γ are polynomial in the book-keeping parameter ε. At this point, we
introduce the book-keeping identities:

cos(i2 + i3) = ηε2(cos(i2 + i3)− 1)+ 1,

i.e., (see Eq (18))

cos(i2) cos(i3)=ε2η (cos(i2) cos(i3)− 1)+ 1 , sin(i2) sin(i3)=ε2η sin(i2) sin(i3) ,

and expand again the expression (38) with respect to the book-keeping parameter ε up to the
truncation order Nbk = 10. This leads to an expression of the form

− Gm2m3

|r2 − r3| =
Nbk∑
s=0

∑
α,β,γ

Cα,β,γ (a2, a3, e2, e3, i2, i3; ε, η)

(
a2
2 + a2

3 − 2 a2 a3 cos(λ2 − λ3)
) 2 s+1

2

cos(α2λ2 + α3λ3 + (β2 + β3)�2 + γ2�2 + γ3�3),

(40)

where the coefficients C(a2, a3, e2, e3, i2, i3; ε, η) are polynomial in the book-keeping
parameters ε, η. Finally, we perform the classical Laplace–Lagrange averaging ‘by scissors’:
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Fig. 7 Comparison of the Poincaré surfaces of section in the plane (e2 cos(ω2), e2 sin(ω2)) with Lz fixed and
different values of the energy, in two models: Top: our basic model NP = 5, Nbk = 10 (same as in the top row
of Fig. 5). Bottom: the Laplace–Lagrange secular Hamiltonian modelHL L (see text) truncated at order 10 in
the eccentricities, with energies (from left to right) E = −6.62 · 10−5,−2.94 · 10−5,−1.92 · 10−5,−1.18 ·
10−5,−2.73 · 10−6

the denominator of (40) is Fourier-expanded

1
(
a2
2 + a2

3 − 2 a2 a3 cos(λ2 − λ3)
) 2 s+1

2

=a−(2 s+1)
3

∑
j≥0

b( j)
s+ 1

2

(
a2
a3

)
cos( j(λ2 − λ3)) ,

(41)

where b( j)
s+ 1

2
are Laplace coefficients, which can be computed numerically, as

b(0)
s+ 1

2
(α) = 1

2π

∫ 2π

0

(
1+ α2 − 2α cos(ϑ)

)−(s+ 1
2 )

dϑ,

b( j)
s+ 1

2
(α) = 1

π

∫ 2π

0

(
1+ α2 − 2α cos(ϑ)

)−(s+ 1
2 )
cos( jϑ) dϑ j ≥ 1,

(42)

where α = a2/a3 , or via a multipolar expansion (see the Appendix A). After performing
the above expansions, the secular Hamiltonian is obtained by dropping from the original
Hamiltonian all terms depending on the ‘fast’ angles λi . This leads to a model in which
the inclinations appear only through the combination cos(i2 + i3). Switching, now, back
to the angles ω j ,� j , performing the Jacobi reduction as in Sect. 2.3 (i.e., using Eq. (19),
collecting together all terms independent or depending on η, and restoring the numerical
values of the book-keeping coefficients ε = η = 1 ), we arrive at a ‘Laplace–Lagrange’
model HL L = HL L,planar + HL L,space which has the same form as the model of Eq. (24).
This is further processed with the introduction of Poincaré variables as in step 4 of Sect. 2.3.

From Fig. 7 we conclude that similar remarks as those of Fig. 5 can be made as regards
the comparison of the secular modelHsec adopted in the present work, based on a multipolar
expansion, and the model HL L obtained by the classical Laplace–Lagrange expansion in
the eccentricities. We note, however, that the latter is much harder to compute, while it is
obtained by using a series reversion of Kepler’s equation which has a limited convergence.
On the other hand, the model based on closed-form averaging of the multipole Hamiltonian
expansion requires a special treatment as regards the computation of the underlying canonical
transformation which eliminates (instead of ‘scissor cutting’) the fast angles (see Cavallari
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Fig. 8 The minimum and maximum possible values of the mutual inclination imin
mut , imax

mut , as a function of
the energy E. The vertical lines correspond to the energies Emin = −1.18237 · 10−4 (birth of the mode A -
anti-aligned apsidal corotation), E1,2 = −8 · 10−5 (completion of the libration domain around the mode A),
E2,3 = −6.77 · 10−5 (birth of the mode B - aligned apsidal corotation), EC = −2.7 · 10−5 (bifurcation of the
inclined Kozai–Lidov periodic orbits C1, C2 ), and EC,2 = −5.0 · 10−6 (inclined orbit C2 becomes unstable,
see text)

and Efthymiopoulos 2022). Since in the present work we do not consider this transformation,
wewill hereafter dealwith results derived only by use of the simplemultipole and closed-form
averaged modelHsec, with the truncation orders NP = 5, Nbk = 10.

3 Dynamics

3.1 General

In this section we are interested in analyzing the most important phenomena observed in
the phase portraits of the HamiltonianHsec(X2, X3, Y2, Y3;AMD) computed with the basic
reference model corresponding to the truncation orders NP = 5, Nbk = 10. In the following
subsections we will first present the general picture of the transitions taking place in the
structure of the phase space as the energy increases in the range Emin ≤ E ≤ 0. Such
transitions are caused, for example, by changes in the nature (e.g., stability) of the main
equilibria of the system, giving birth to new families of periodic orbits which connect the
families dominant in the planar-like regime (high eccentricities, lowmutual inclination) with
those of the highly inclined regime (low eccentricities, high mutual inclination).

In the analysis of phase portraits as in the sequel, we parametrize all transitions due to
bifurcations of new periodic orbits using the fixed (in the Poincaré section) energy E as the
parameter. All energies referred to below are given in units of MAU 2/yr2. It is easy to see
that a certain value of the energy E establishes a range of allowed mutual inclinations

imin
mut (E) ≤ imut ≤ imax

mut (E) (43)

where both imin
mut (E) and imax

mut (E) are increasing functions of E, as shown in Fig. 8.
The minimum and maximum possible values of the mutual inclination imin

mut , imax
mut , as a

function of the energy E are computed as follows: consider the ellipsoidal surface Iimut

defined by setting Y3 = 0 in Eq. (29) for a certain value of imut. Consider the critical energy
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E = E2,3, equal to E2,3 = −6.77 · 10−5 in our example. For energies E ≥ E2,3, we compute
the values imut = imin

mut (E) and imut = imax
mut (E) for which the ellipsoid Iimut comes tangent to

the ellipsoidal manifold of constant energy M(E), with Iimut being at the interior of M(E)
(for imut = imax

mut ) or at the exterior of M(E) (for imut = imin
mut ). For energies Emin ≤ E < E2,3

(with Emin = −1.182 ·10−4 in our example), the condition of tangency of Iimut at the exterior
ofM(E) leads to unphysical values cos(imut) > 1. Thus, in this interval of energies we have
imin
mut = 0, while imax

mut keeps being represented by an increasing function of E (Fig. 8).
The vertical lines in Fig. 8 indicate values of the energy where important changes take

place in the structure of the phase portraits due to the birth, or change of stability character,
of some of the most important families of periodic orbits of the system. The most important
transitions taking place in the structure of the phase portraits are shown in Fig. 9, whose
details will be presented in subsequent subsections. Increasing the energy E, these transitions
appear in summary by the following sequence:

(i) At the energy E = Emin, the available domain D(E) reduces to a point, corresponding
to the point of tangency of Fig. 1. This is a fixed point of the Poincaré map, whose
associated orbit yields two coplanar ellipses with anti-aligned pericenters precessing
by the same frequency, known as the apsidal corotation orbit (see Laughlin et al.
2002; Lee and Peale 2003; Beaugé et al. 2003). For energies E > Emin, the above
fixed point is continued by a family of periodic orbits, called below the mode A. These
correspond physically to inclined planetary orbits whose eccentricities undergo small
periodic oscillations around some non-zero constant values e2,A, e3,A (functions of the
energy), while the arguments of perihelia undergo small periodic oscillations around
the fixed relation ω2 −ω3 = 0 (see Sects. 3.2.3 and 3.3). For energies Emin < E < E2,3
(equal to −6.77 · 10−5 in our numerical example), the mode A, which generalizes the
anti-aligned apsidal corotation family to the non-planar case, is the unique important
stable family in the surface of section (see first three panels of top row of Fig. 9). The
corresponding fixed point is surrounded by closed invariant curves, which represent
orbits performing quasi-periodic oscillations around the configuration of anti-aligned
perihelia. Up to the energy E1,2 (equal to about −8 · 10−5 in our example), which
marks the transition from two to four limits of permissible motion as in Figs. 2 and 3,
only quasi-periodic orbits around the A mode exist. On the other hand for energies
E1,2 < E < E2,3, we can also have trajectories with argument ω3−ω2 either circulating
or librating around the value ω3 − ω2 = π (alignment). As explained in detail in
Sect. 3.2, the separation between the various librating or circulating regimes is not
due to the presence of a dynamical separatrix, but can be explained by an integrable
Hamiltonian model approximating Hsec in the corresponding energy regime, whose
phase space has the topology of a 3-sphere rather than the plane R2.

(ii) For energies E1,2 < E < E2,3 there is a prohibited domain surrounding the center of the
libratingmotions aroundω3−ω2 = π (see fourth panel, top rowof Fig. 9). At the energy
E = E2,3 this domain shrinks to zero, and at the center of the librations appears a second
fixed point of the Poincaré map, which is a periodic orbit physically corresponding
to the planar aligned apsidal corotation orbit (see the first panel in the second row of
Fig. 9). This also marks the inner point of tangency of the sphere I0 with the energy
manifold M(E2,3) (Fig. 4). As indicated in Fig. 8, for energies E > E2,3 there can no
longer be any planar orbit intersecting the surface of section. However, similarly as for
the mode A, the fixed point corresponding to the aligned apsidal corotation is continued
as a family of off-plane periodic orbits, hereafter called the mode B. Physically, such
orbits undergo small periodic oscillations around some non-zero constant values e2,B ,
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Fig. 9 Phase portraits (Poincaré surfaces of section in the plane (e2 cos(ω2), e2 sin(ω2))) in the basic model
NP = 5, Nbk = 10, and for the energies (from top left to bottom right) E = −1.145 · 10−4, −9.16 · 10−5,
−8.23 ·10−5,−7.09 ·10−5,−6.77 ·10−5,−5.72 ·10−5,−4.93 ·10−5,−3.81 ·10−5,−3.19 ·10−5,−2.76 ·
10−5,−2.53 · 10−5,−2.16 · 10−5,−2.08 · 10−5,−1.9 · 10−5,−1.58 · 10−5,−1.53 · 10−5,−1.17 ·
10−5,−7.69 · 10−6,−2.61 · 10−6,−7.39 · 10−7. The positions of the fixed points corresponding to the
periodic orbits of the modes A, B, C1, C2, D1, D2 (see text) are marked by arrows

e3,B (also being both functions of the energy), while the arguments of perihelia undergo
small periodic oscillations around the fixed relation ω2−ω3 = π (see also Sects. 3.2.3
and 3.3). The mode B also is surrounded by quasi-periodic orbits with arguments of the
perihelia librating around the relation ω3 − ω2 = π .
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(iii) The topology of the phase space induced by the alternation between the domains of
libration and circulation around the modes A and B dominates the picture obtained for
the phase portraits in a large subinterval within the permissible range of values of the
energy (up to about E = −3 · 10−5 in our example). As seen in Fig. 8, this covers
most cases of highly inclined orbits, with mutual inclinations being in our example as
high as ∼ 40◦. However, at a critical energy EC (equal to about −2.7 · 10−5 in our
example), a saddle-node bifurcation takes place, giving rise to two new fixed points
of the Poincaré map, corresponding to periodic orbits hereafter called the Kozai–Lidov
orbitsC1 andC2. Physically, these are highly inclined orbitswith planetary eccentricities
e2 and e3 smaller than those of the modes A and B, tending actually to zero as E→ 0.
The detailed sequence of bifurcations related to these orbits is discussed in detail in
Sect. 3.4 (see panels 11–20 of Fig. 9). Themost important transitions regard the orbitC1,
which becomes stable nearly immediately after its birth, while the orbit C2 undergoes
the classical Lidov–Kozai transition from stability to instability, accompanied by the
appearance of chaotic motions around it. Such phenomena appear in a small range of
energies near the limit E = 0, where the whole phase space shrinks again to a unique
point at the origin of the surface of section, corresponding to two circular orbits having
the maximum possible mutual inclination (imax

mut (E = 0) � 46◦ in our example). In fact,
Fig. 8 indicates that in this Lidov–Kozai regime, the range in possible inclinations for
all orbits becomes narrow, being limited to values around the critical EC,2 where the
periodic orbit C2 undergoes the Lidov–Kozai instability.

In the following subsections we examine the above phenomena in more detail, by the
order of their appearance as the value of the energy E increases.

3.2 Planar-like regime

In the present section we discuss the structure of the phase portraits in the range of energies
E2,3 ≤ E < EC , were the dominant periodic orbits are the Modes A and B, which general-
ize the apsidal corotations (anti-aligned and aligned, respectively) of the planar case. It was
already mentioned that the phase portrait in this case contains two domains where the argu-
mentω2−ω3 librates (around the values 0 and π , respectively), separated by a domain where
ω2−ω3 circulates, as in panels 5–10 of Fig. 9. Owing to its similarity with the phase portrait
of the planar problem, this will be called the planar-like regime. It was emphasized, however,
that the maximum mutual inclination can be quite high in this regime (see Fig. 8), thus the
analogy with the planar case stems from the dynamics, and not necessarily from the degree
of coplanarity of the orbits in this regime. Excluding the energetically prohibited domains
(as specified in Sect. 2.4.1), this can be extended to cover the cases where the librational
domains are only partly covered by quasi-periodic orbits, as in panels 1–4 of Fig. 9.

3.2.1 Integrable approximation of the Hamiltonian

The main qualitative features of the planar-like regime, as well as precise computations
regarding its periodic and surrounding quasi-periodic orbits, can be obtained in the context
of an integrable approximation for the HamiltonianHsec, stemming from the splittingHsec =
Hplanar +Hspace as in Eq. (21). Starting from

Hsec(w2, w3, W2, W3; Lz)

= Hplanar(w2 − w3, W2, W3)+Hspace(w2, w3, W2, W3; Lz)
(44)
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and splittingHspace into those termswhich depend only on the differencew2−w3 = ω3−ω2,
denoted byH0,space, and those which do not, denoted byH1,space, we arrive at the following
decomposition of the Hamiltonian

Hsec = Hplanar(w2 − w3, W2, W3)+H0,space(w2 − w3, W2, W3; Lz)︸ ︷︷ ︸
Integrable part:=Hint

+H1,space(w2, w3, W2, W3; Lz).

(45)

The first two terms in the above expression give rise to a 2 degrees of freedom integrable
Hamiltonian

Hint(w2 − w3, W2, W3;AMD)

= Hplanar(w2 − w3, W2, W3)+H0,space(w2 − w3, W2, W3;AMD)
(46)

whose second integral is W2 + W3.
A fact hidden in the process of Jacobi reduction is that a decomposition of the Hamiltonian

as in Eq. (45) yields a relative importance of the terms Hint and H1,space varying with the
energy level E at which the orbits are computed. This is due to the fact that, after throwing
apart constants, all the terms in Hspace stem from substitutions of the inclinations i2 and i3
depending only on the small quantity 1−cos(i2+i3) and being of order second or higher in the
eccentricities, according to Eq. (18) and (19). Thus, bothH0,space andH1,space contain terms
weighted by factors (1− cos(i2 + i3))s(e2j + . . .) (with s ≥ 1, j = 2, 3). On the other hand,
the termsHplanar contain no factors (1−cos(i2+i3))s and are of degree quadratic or higher in
the eccentricities. Thus, due to the bound between increasing energy E and increasing mutual
inclination (Fig. 8), the relative importance of the termsH1,space with respect to the termsHint

in the Hamiltonian rises as the energy (and hence the level of mutual inclination) increases.
This is demonstrated graphically in Fig. 10, which shows a comparison between the shape
of the manifolds of constant energy M(E) and Mint(E) (Eqs. (35) and (36)) computed at
four different energy levels chosen as Emin < E1 < E2,3, E2,3 < E2 < EC,2, E3 = EC,2,
EC,2 < E4 < 0. While the manifolds of Hint remain always ellipsoidal-like, we note the
progressive change of the form of the manifolds of constant energy in the complete model
from an ellipsoidal to a peanut-shaped form, as the energy increases. This is caused by the
growing importance of some terms inH1,space, in particular the terms cos(2ω2) quadratic in
e2, which are the same terms causing the transition to the Lidov–Kozai regime (see Sect. 3.4).
In fact, near the energy EC,2, where the orbit C2 turns from stable to unstable, the manifold
M(E)under the completemodel becomes nearly cylindrical,marking the change of its section
with the plane (X2, Y2) from elliptic-like to hyperbolic-like, as implied by the Lidov–Kozai
mechanism.

Given the above, we will now focus on a description of the phase portraits in the energy
regime (roughly identified as E < EC ) where the dynamics induced by Hsec can be well
approximated by the dynamics ofHint. In this regime, the following canonical transformation
proves useful in semi-analytical (normal form) calculations related to the periodic orbits A
and B and their surrounding quasi-periodic orbits:

ψ = w2 − w3 , � = W2 − W3

2
,

ϕ = w2 + w3 , J = W2 + W3

2
. (47)

The Hamiltonian in the new variables reads (apart from a constant)

Hsec(ψ, ϕ, �, J ) = Hint(ψ, �; J )+H1,space(ψ, ϕ, �, J ). (48)
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Fig. 10 The top row shows the manifolds of constant energy M(E) compared to the manifolds of constant
energyMint(E) of the integrable modelHint (bottom row), for the energies (from left to right) E1 = −8 ·10−5
(E1 < E2,3), E2 = −4 ·10−5 (E2,3 < E2 < EC,2), E3 = −5 ·10−6 (E3 = EC,2), E4 = −5 ·10−7 (E4 > EC,2)

Fig. 11 shows the phase portrait (in the representative planes (e2 cos(ω2), e2 sin(ω2) and
(ω2, e2) ) corresponding to the Hamiltonian Hint at the energy E = −6.6 · 10−5. The phase
portrait, computed as a Poincaré surface of sectionP(E = −6.6 ·10−5, AMD = 0.0162044)
(see Eq. (28)), yields invariant curves equivalent to those obtained by the continuous flow
after treating Hint as a one degree of freedom Hamiltonian in the variables (ψ, �), with J
serving as parameter.

We observe that with the integrable model Hint we obtain a phase portrait with features
qualitatively very similar to those of the phase portraits in the ‘planar-like’ regime under the
complete Hamiltonian (e.g., the panels 5–10 in Fig. 9). In particular, the modes A and B of
the integrable model are found as fixed points ofHint, given by the solutions of the equations

⎧
⎪⎨
⎪⎩

ψ̇ = ∂Hint

∂�
= 0

�̇ = −∂Hint

∂ψ
= 0

. (49)

Since J is an integral of motion of Hint, setting J = K = constant implies that any
solution (ψ∗, �∗) satisfying (49) is a periodic orbit with period given by Tϕ = 2π/ωϕ ,

where ϕ̇ = ωϕ = ∂Hint

∂ J
|(ψ=ψ∗, �=�∗ ,J=K ) . In particular, the modes A and B are given,

respectively, by (ψ(A) = 0, �(A), K (A)) and (ψ(B) = π, �(B), K (B)) , where (ψ(A), �(A)) ,
(ψ(B), �(B)) are solutions of (49). In fact, since the Hamiltonian Hint depends only on the
harmonics cos(kψ), with k ∈ N , the partial derivative in the second of Eqs. (49) yields
only sin(kψ) terms, hence, it admits the solution ψ = ψ(A) = 0 and ψ = ψ(B) = π .
Given now that �3 = �2 + π , the condition ω3 = ω2 , i.e., ψ = 0 = ψ(A) , implies
�3 = �2+π (perihelia anti-aligned),while the conditionω3 = ω2+π , i.e.,ψ = π = ψ(B) ,
implies (modulo 2π) �3 = �2 (perihelia aligned). On the other hand, substituting one
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of the angles, ψ(A) or ψ(B), in the first of Eqs. (49), we obtain an algebraic equation of
the form ψ̇(ψ = ψ(A), �, J ) = 0 or ψ̇(ψ = ψ(B), �, J ) = 0. This, together with the
constant energy condition Hint(ψ = ψ(A), �, J ) = E, or Hint(ψ = ψ(B), �, J ) = E,
can be solved to yield the pairs of values �(A), J = K (A), or �(B), J = K (B). Finally,
the frequency of the apsidal precession for anyone of the periodic orbits A, B is given by
νapsidal = −ωϕ/2 = −ϕ̇/2 = −(1/2)(∂Hint(ψ, J , �)/∂ J ), with (ψ, J , �) substituted with
one of the solutions A or B.

3.2.2 The phase space ofHint : Hopf variables

An alternative method to compute the equilibria A and B stems from the use of a particular
set of variables, called the Hopf variables (Cushman and Bates 1997), which, besides the
computation of the equilibria, provides a global mapping of the phase space of the integrable
HamiltonianHint to the 3-sphere, thus allowing for a clear identification of all possible orbital
dynamical regimes. We introduce the variables (σ1, σ2, σ3 ) defined by:

σ1 = X2X3 + Y2Y3, σ2 = Y2X3 − Y3X2, σ3 = 1

2

(
X2
2 + Y 2

2 − X2
3 − Y 2

3

)
, (50)

satisfying the Poisson algebra {σi , σ j } = −2 εi jkσk , where εi jk is the Levi-Civita symbol
and i, j, k = 1, 2, 3. Furthermore, we introduce the variable

σ0 = 1

2

(
X2
2 + Y 2

2 + X2
3 + Y 2

3

)
(51)

which is a Casimir invariant of the previous algebra, since all Poisson brackets {σi , σ0},
i = 1, 2, 3 , vanish. From the definition (50) it follows that

σ1 = 2
√

J + �
√

J − � cos(ψ), σ2 = −2√J + �
√

J − � sin(ψ),

σ3 = W2 − W3 = 2�.
(52)

We also have the relation σ0 = W2 + W3 = 2J , as well as

σ 2
1 + σ 2

2 + σ 2
3 = σ 2

0 = 4J 2. (53)

Then, given the values of (σ1, σ2, σ3), the values of �, J andψ can be computed unequiv-
ocally using the relations (52) and (53). Furthermore, since J = σ0/2, and since the only
trigonometric terms in the HamiltonianHint are terms cos(k(w3−w2)) = cos(kψ), k = N

∗,
it follows that Hint = Hint(σ1, σ3; σ0), i.e., the Hamiltonian Hint does not depend on σ2.
This implies that, fixing a value of σ0 (i.e., of the integral J ), the continuous in time phase
flow obtained by solving the equations

σ̇1 = {σ1, σ3}∂Hint

∂σ3
, σ̇2 = {σ2, σ1}∂Hint

∂σ1
+ {σ2, σ3}∂Hint

∂σ3
,

σ̇3 = −{σ1, σ3}∂Hint

∂σ1
,

(54)

yields a flow equivalent to the one obtained under theHamiltonianHint(ψ, �; J ), i.e., treating
J as a parameter. Due to the constrain on the sphere (Eq. (53)), the curves of the flow (54) are
given by the intersection of the constant energy surfaceHint(σ1, σ3; σ0) = Ewith the sphere,
i.e., they are closed curves which can be mapped to invariant curves in the plane (ψ, �).
These are geometrically equivalent to the invariant curves of the Poincaré surface of section
ofHint treated as a 2DOF system,mapping (X2, Y2) as X2 = −√2(� + J ) cos(ψ−π),Y2 =
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√
2(� + J ) sin(ψ−π). It should be stressed, however, that the above Hamiltonian reduction

only yields a geometric equivalence of the two curves, since in the 1DOF reduced system the
flow is continuous, while in the 2DOF full system the curves are traced stroboscopically, and
they correspond to the intersection of the 2D invariant tori involving both the angles (ψ, ϕ)

with the selected surface of section.
The above information can now be used to the purpose of analyzing the structure of the

phase portraits using the mapping of each invariant curve in the sphere (53) to the corre-
sponding curve in the usual Poincaré surface of section. To this end, let

Sσ0 = {(σ1, σ2, σ3) ∈ R
3 : σ 2

1 + σ 2
2 + σ 2

3 = σ 2
0 } (55)

denote the sphere corresponding to the value σ0 = 2J of the integral J , and

Cσ0,E = {(σ1, σ2, σ3) ∈ R
3 : Hint(σ0, σ1, σ3) = E}, (56)

denote the energy surface in the space (σ1, σ2, σ3) ∈ R
3 corresponding to a fixed energy

value E.We can have a physical trajectory for all values of σ0 (i.e., of J ) for which the surfaces
Sσ0 and Cσ0,E intersect, limited by two values of σ0 , that are σ

(A)
0 and σ

(B)
0 (corresponding

to J (A) = σ
(A)
0 /2 and J (B) = σ

(B)
0 /2 ), where the two surfaces become tangent (Fig. 11). By

the non-dependence ofHint on σ2, the constant energy surface Cσ0,E is normal to any plane
(σ1, σ3) with σ2 = const . Hence, at a tangency point of Sσ0 with Cσ0,E we necessarily have
that σ2 = 0, as well as the tangency condition

rank

⎛
⎝

2σ1 2σ2 2σ3
∂Hint

∂σ1
0

∂Hint

∂σ3

⎞
⎠ = 1 .

The latter condition implies that

σ̇2 = σ3
∂Hint

∂σ1
− σ1

∂Hint

∂σ3
= 0

that is, the point of tangency is a fixed point of the flow. Up to terms of second order in the
variables σi (i.e., of fourth order in the eccentricities), apart from constant, we find

Hint = Aσ 2
1 + Bσ 2

3 + Cσ1σ3 + D(σ0)σ1 + E(σ0)σ3 + F(σ0)+ . . .

where A, B, C are constants, while the functions D(σ0) and E(σ0) are linear in σ0 and F(σ0)

contains terms linear and quadratic in σ0. In our numerical example (i.e., semi-major axes,
masses and AMD parameter as at the beginning of Sect. 2.4) the coefficients are given by:

A= 0.00249352, B= 0.00144184,

C= −0.00317818, D(σ0)= 0.000151982− 0.00327448 σ0,

E(σ0)= 0.0000208226− 0.00552308 σ0, F(σ0)= −0.00214621 σ0 − 0.104387 σ 2
0 .

The quadratic form Aσ 2
1 + Bσ 2

3 +Cσ1σ3 yields hyperbolas, being A, B, C such that C2 >

AB . Thus, for any permissible value σ0 (or, equivalently, of the integral J ), the surface
Cσ0,E intersects the plane σ2 = 0 along hyperbola-like curves (Fig. 11). The two points of

tangency occur at the values σ
(A)
0 = 2J (A) and σ

(B)
0 = 2J (B). We find that σ

(A)
0 < σ

(B)
0 ,

while, checking the sign of cos(w3−w2) for the corresponding fixed points, we identify the
left tangency (see Fig. 11) as the B-mode and the right tangency as the A-mode at the given
level of energy.
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Fig. 11 Left column: The phase portrait of the integrable Hamiltonian Hint at the energy E = −6.6 · 10−5,
projected in the variables (e2 cosω2, e2 sinω2) (top), or simply (ω2, e2) (bottom). Right column, top: At the

values σ0 = σ
(A)
0 and σ0 = σ

(B)
0 , the corresponding spheres S

σ
(A)
0

, S
σ

(B)
0

become tangent to the energy

surfaces C
σ

(A)
0 ,E, Cσ

(B)
0 ,E. The points of tangency yield the position of the fixed points A and B in the surface

of section (see text). Right column, bottom: the intersection of the spheres Sσ0 and of the energy surfaces
Cσ0,E with the plane (σ1, σ3) for σ2 = 0, for various values of σ0. The intersection of one sphere with one
energy surface yields a curve on the sphere which is projected to a curve in the above plane. For a particular

value of σ0 = σ
(S)
0 , the curve (thick purple) passes through the south pole S of the corresponding sphere Sσ0 .

This corresponds to a trajectory forming a closed curve in the Poincaré section, which surrounds mode A and
passes through the origin. This curve delimits the domain of orbits whose angle ψ = ω3−ω2 librates around

the value ψ = 0. At a different value of σ0 = σ
(N )
0 the curve of constant energy (thick black in the right

column, bottom) passes through the corresponding sphere’s north pole N . This corresponds to a curve in the
surface of section which surrounds the previous curve as well as the origin. In particular, the whole black curve,
except for the point N , yields the part of the corresponding curve in the Poincaré section (left, top figure)
contained in the positive semi-plane, while the point N itself inflates to the part of the corresponding closed
curve contained in the negative semi-plane. The domain in the surface of section between the thick purple and
the thick black curves corresponds to orbits whose argument ψ = ω3 −ω2 circulates. All trajectories beyond
the outer delimiting curve exhibit librations of the argument ω3−ω2 around the value π , characteristic of the
B-mode

With the help of the bottom-right panel of Fig. 11 it is possible, now, to interpret the form
of the phase portraits as in the left column of the same figure. To this end, we specify the
correspondence between the various curves of the phase flow on the sphere, obtained by the
intersections between the surfaces Sσ0 and Cσ0,E as σ0 is altered in the interval σ

(A)
0 ≤ σ0 ≤
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σ
(B)
0 , and the mapping of these curves to the surface of section (e2 cosω2, e2 sinω2). Since

Hint does not depend on σ2, all the curves produced by intersections of the surfaces Sσ0 and
Cσ0,E contain points which lie in the meridian circle produced by the intersection of Sσ0

with the plane σ2 = 0. In particular, the points of tangency A and B belong to this meridian.
Besides these points, there are two critical curves which separate domains of libration of the
angle ω2 − ω3 around the value 0 (mode A), or π (mode B), from domains where the angle
ω2 − ω3 circulates.

By varying the value ofσ0 in the intervalσ
(A)
0 ≤ σ0 ≤ σ

(B)
0 we progressively obtain curves

on the sphere which pass from a librating domain around the fixed point A to a circulating
domain, and then to a librating domain around the fixed point B. The first such transition
occurs at a value σ

(S)
0 where the curve corresponding to the intersection between S

σ
(S)
0

and

C
σ

(S)
0 ,E passes from the south pole S of the sphere S

σ
(S)
0

. The coordinates of the south pole

are σ
(S)
1 = σ

(S)
2 = 0, σ

(S)
3 = −σ

(S)
0 , implying J = −� or W2 + W3 = −(W2 − W3),

hence W2 = 0. This means a curve in the Poincaré section (thick purple) which crosses the
origin e2 = 0. As shown in Fig. 11, we stress the well-known fact that this curve means no
real separatrix in the surface of section, generated by any kind of unstable periodic orbit, but
it merely reflects the singularity induced by projecting an (all continuous) transition taking
place in the phase space of the integrable Hamiltonian Hint, which is the 3-sphere, to the
usual Poincaré section applicable to the full problem, i.e., the plane (e2 cosω2, e2 sinω2).

Passing the value σ0 = σ
(S)
0 , we have curves of the sphere which are projected to invariant

curves still surrounding the fixed point A, but for which the argument ω2 − ω3 (or ω2 − π ,
in the surface of section) circulates. A second limit of the circulation domain occurs at a
value σ

(N )
0 where the curve corresponding to the intersection between S

σ
(N )
0

and C
σ

(N )
0 , E

passes from the north pole N of the sphere S
σ

(N )
0

. We readily find that the whole curve in

the sphere S
σ

(N )
0

, except for the pole N itself, yields the open black curve in the surface

of section corresponding to the positive semi-plane e2 cos(ω2) ≥ 0 (or −π/2 ≤ ω2 ≤
π/2), while the north pole itself inflates to the dotted semicircle obtained in the negative
semi-plane e2 cos(ω2) < 0 (or π/2 < ω2 < 3π/2). Here again the singularity is not
real but only due to the choice of the variables representing the surface of section (see,
e.g., Pauwels 1983; Henrard and Libert 2004; Michtchenko et al. 2006). In fact, N has

coordinates
(
σ

(N )
0 , σ

(N )
1 = 0, σ

(N )
2 = 0, σ

(N )
3 = σ

(N )
0

)
, implying W3 = 0, i.e., e3 = 0.

However, the equality σ
(N )
3 = σ

(N )
0 implies also X2

2 + Y 2
2 = 2σ (N )

0 , i.e., a circle on the
section Y3 = 0. Together with the condition Ẏ3 ≥ 0 of the Poincaré section, this implies the
semi-circle X2 ≥ 0, i.e., the dotted part of the black curve in the top-left panel of Fig. 11.
It can be shown that the two parts or the curve join each other smoothly at two limiting

values X2 = 0, Y2 = ±Y2,max = ±
√
2σ (N )

0 . In fact, the semi-circle Y2 = ±
√
2σ (N )

0 − X2
2,

X2 > 0 , corresponding to the inflation of the north pole, yields limX2→0+(dY2/dX2) = 0,
while the open curve Y2 = Y2(X2), corresponding to all other points of the intersection of
S

σ
(N )
0

and C
σ

(N )
0 ,E except for the pole, yields the limit

lim
X2→0−

dY2

dX2
= lim

X2→0−

⎛
⎝−

∂Hint
∂ X2

∂Hint
∂Y2

⎞
⎠ . (57)

From the form of Hint , recalling Eq. (27), we readily find ∂Hint/∂ X2 = 0, ∂Hint/∂Y2 	= 0
at the north pole limit X2 = X3 = Y3 = 0, Y2 = ±Y2,max.
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Finally, for σ0 in the interval σ
(N )
0 < σ0 ≤ σ

(B)
0 we find invariant curves in the sphere

Sσ0 mapped to closed invariant curves around the tangency corresponding to the B-mode
fixed point, which yield also closed curves in the Poincaré section for which the argument
ω2 − ω3 (or ω2 − π in the section) librates around the value π , i.e., ω2 librates around the
value ω2 = 0 of the B-mode.

3.2.3 Semi-analytical (normal form) determination of the periodic orbits A and B

In the previous subsection we have seen how the existence of the A and B modes, which
generalize the apsidal corotation periodic orbits of the modelHplanar to the spatial case, can
be established within the framework of the integrable model Hint = Hplanar +H0,space. In
the present subsection we discuss how to recover semi-analytically the periodic orbits A and
B under the full Hamiltonian Hsec = Hint +H1,space. Besides its relevance in establishing
the existence of these orbits in the full model (up to an exponentially small remainder), a
computation of the orbits A and B using normal forms allows to obtain a semi-analytical
representation of the long term time series of the orbital elements for these planetary tra-
jectories. Since the modes A and B are among the most probable expected end states of the
formation process for exoplanetary systems, such a representation can be of use also in the
interpretation of the observational data regarding the planetary orbital configurations in such
systems.

Let (ψ∗, �∗, J∗) be a fixed point of the integrable HamiltonianHint(ψ, �; J ), correspond-
ing to one of the modes A or B. Introduce the translation

ψ = ψ∗ + δψ, � = �∗ + δ�, J = J∗ + δ J . (58)

The transformation (ψ, ϕ, �, J ) → (δψ, ϕ, δ�, δ J ) is canonical. The Hamiltonian Hsec in
the new variables reads:

Hsec(δψ, ϕ, δ�, δ J ) = Hint(δψ, δ�, δ J )+H1,space(δψ, ϕ, δ�, δ J ). (59)

We then have the following

Proposition There is a near-to-identity canonical transformation

(δψ, ϕ, δ�, δ J ) = �(r)(δψ̃, ϕ̃, δ�̃, δ J̃ ) , (60)

real-analytic in a suitably defined domain, and obtained by a composition of r Lie canonical
transformations, with r a sufficiently high integer, such that the Hamiltonian in the variables
(δψ̃, ϕ̃, δ�̃, δ J̃ ) takes the form:

H(r)
sec(δψ̃, ϕ̃, δ�̃, δ J̃ ) = Z (r)(δψ̃, δ�̃, δ J̃ )+ R(r)(δψ̃, ϕ̃, δ�̃, δ J̃ ) (61)

with ||R(r)|| << ||Z (r)|| for a suitably defined norm in the domain of the transformation.
The superscript (r) in the above expressions means the expression derived after substituting
the original variables (δψ, ϕ, δ�, δ J ) with the new canonical variables obtained by the
transformation inverse to the r-step transformation (62):

(δψ̃, ϕ̃, δ�̃, δ J̃ ) =
(
�(r)

)−1
(δψ, ϕ, δ�, δ J ) . (62)

The functions Z (r) and R(r) are hereafter called the ‘normal form’ and ‘remainder’, respec-
tively.
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The procedure bywhich to obtain the transformation�(r) as well as its inverse is summarized
in Appendix B, while a detailed demonstration of the above proposition is given elsewhere
(Mastroianni and Efthymiopoulos, in preparation). In summary, this is a classical Birkhoff-
like normalization procedure by which the angle ϕ is eliminated from the Hamiltonian via a
sequence of Lie canonical transformations (see Efthymiopoulos 2012).

The physical meaning of the above normalization procedure is the following: in the planar-
like regime, we have ||H1,space|| << Hint. Then, through the normalization we find a new
set of variables in which, except for a very small remainder, the dynamics locally (around
the equilibrium (ψ∗, �∗, J∗)) is given by the normal form Z (r)(ψ̃, �̃, J̃ ), with

ψ̃ = ψ∗ + δψ̃, �̃ = �∗ + δ�̃, J̃ = J∗ + δ J̃ . (63)

The phase flow induced by the integrable Hamiltonian Z (r) has the same structure as the
one of the Hamiltonian Hint analyzed in the previous subsection, differing by it just in the
fact that Z (r) contains terms arising from the normalization of H1,space up to a very small
remainder. In particular, Hamilton’s flow under the normal form in the transformed variables
admits a periodic orbit given by

ψ̃∗ = ψ∗ + δψ̃∗ ,

�̃∗ = �∗ + δ�̃∗ ,

J̃∗ = J∗ + δ J̃∗ ,

ϕ̃(t) = ϕ̃(0)+ ν∗t , (64)

where (ψ̃∗, �̃∗, J̃∗) are computed by the system of algebraic equations

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̃
ψ = ∂ Z (r)

∂�̃
= 0

˙̃
� = −∂ Z (r)

∂ψ̃
= 0

Z (r)(ψ̃, �̃, J̃ ) = E

(65)

and the frequency ν∗ is given by

ν∗ =
(

∂ Z (r)

∂ J̃

)

ψ̃=ψ̃∗,�̃=�̃∗, J̃= J̃∗

. (66)

Figure 12 shows an example of the comparison between the semi-analytical computation
of the periodic orbits A, B on the basis of the normal form flow of Z (r), and a full numeri-
cal computation of the same orbits. The semi-analytical computation of the periodic orbits
proceeds by the following steps:

(i) We use the tangency method of Sect. 3.2.2 to compute the fixed points of the integrable
Hamiltonian Hint , first in the Hopf variables and then in the variables (ψ , �, J ) ,
obtaining ψ∗, �∗, J∗.

(ii) Using an appropriate expansion of the Hamiltonian, as well as the method of com-
position of Lie series truncated at order Nt (see Appendix B for details), we then

obtain the transformation �(r) and its inverse
(
�(r)

)−1
, as well as the normal form

Z (r) representation of the full Hamiltonian.
(iii) Implementing a Newton method, we then compute the root (ψ̃∗, �̃∗, J̃∗) of the system

of algebraic equations (65), as well as the frequency (66). This yields the time evolution
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Fig. 12 First row: Poincaré surfaces of section for the values of the energy (from left to right), E = −5.72 ·
10−5, −3.19 · 10−5, −2.53 · 10−5 . Second and third rows: time series of the evolution of the eccentricities
for both planets along the mode A (anti-apsidal, second row) and B (apsidal, third row). The curves in red and
in magenta show the time series for the eccentricities e2 and e3, respectively, as computed semi-analytically.
The black and blue curves, instead, show the time series e2 and e3 as computed through a numerical evaluation
of the periodic orbits. The numbers of performed normalization steps Nt are: (second row, from left to right)
Nt = 12, 10, 12 , (third row) Nt = 12. They are chosen in the base of optimizing the comparison between
the semi-analytical and the numerical solutions

of all four quantities (δψ̃ = ψ̃∗ −ψ∗, δ�̃ = �̃∗ − �∗, δ J̃ = J̃∗ − J∗) (fixed) and ϕ̃(t)
as in Eq. (64).

(iv) Wefinally obtain the semi-analytical approximation to the time flowof all four variables
ψ(t) = ψ∗ + δψ(t), ϕ(t), �(t) = �∗ + δ�(t), J (t) = J∗ + δ J (t), through the
normalizing transformation

(δψ(t), ϕ(t), δ�(t), δ J (t)) =
(
�(r)(δψ̃, ϕ̃, δ�̃, δ J̃ )

)
δψ̃=δψ̃∗,ϕ̃=ϕ̃(t),δ�̃=δ�̃∗,δ J̃=δ J̃∗

(67)

This can be further transformed into a time series of the evolution of the orbital elements
along the periodic orbit through the equations

ω2 = −ψ − ϕ

2
, W2 = J + � ,

ω3 = ψ − ϕ

2
, W3 = J − � , (68)

which allow to recover the evolution of the arguments of perihelia and eccentricities

e j =
√
1− (1− W j/� j )2, j = 2, 3
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as well as (equivalently to Eq. (17))

�2 = (AMD− W2 − W3)(2�3 + W2 − W3 − AMD)

2(�2 +�3 − AMD)

�3 = (AMD− W2 − W3)(2�2 − W2 + W3 − AMD)

2(�2 +�3 − AMD)
(69)

which allow to compute the time series for the inclinations

i j = cos−1
(
1− � j

� j − W j

)
, j = 2, 3

of the planetary periodic orbits.
As shown in Fig. 12, the semi-analytical representation of the periodic orbits fits with pre-

cision the numerical ones for both the modes A and B. As regards the physical interpretation,
we note that the main effect of the perturbation H1,space is to induce a periodic oscillation
in the eccentricities (and, hence, also the inclinations) of both planets, which are no longer
constant, contrary to what holds for the classical apsidal corotation orbits in the planar case,
or for the orbits of the integrable approximation Hint. From Fig. 12 it is evident that the
amplitude of the oscillation of the eccentricities of both planets increases with the energy E,
and, hence, with the mutual inclination. Most, notably, however, we point out the ability of
the semi-analytical theory to well represent the orbits of both modes A and B in the regime
after the onset of the saddle-node bifurcation giving rise to the periodic orbits C1 and C2,
as in the third panel of Fig. 12 (see Sect. 3.1). This implies that, while at the corresponding
level of energies the structure of the phase portraits is altered considerably with respect to
the one of Hint, the representation of the motions by a local normal form computed in the
neighborhood of each of the modes A or B yields the correct picture of the dynamics, both
qualitatively and quantitatively.

3.3 Transition regime between planar-like and Lidov–Kozai: sequences of
bifurcations

The planar-like regime discussed in the previous subsection characterizes the structure of the
phase portraits of the full system up to the energy EC , where the orbits C1, C2 are generated
by a saddle node bifurcation in the taking place in the neighborhood of the mode B, as in
the transition seen in the third row of Fig. 9. We call transition regime the one holding at
energies in the interval EC≤ E ≤ EC,2.

Figure 13 presents the sequence of bifurcations taking place across the transition regime,
which eventually lead to turning unstable the periodic orbit of mode B. At the beginning of
the transition, for energies slightly larger than EC , the orbit C1 turns from unstable to stable
by a pitchfork bifurcation, which gives rise to an unstable periodic orbit yielding two fixed
points, D1, D2, in the Poincaré surface of section. As the energy increases, these fixed points
move initially away from the fixed point of the orbit C1, while later (for still larger energy)
they approach the fixed point of the mode B. Finally, at a second critical value of the energy
the fixed points D1, D2 collide with the B-mode. This terminates the D-family of periodic
orbits, by an inverse pitchfork bifurcation which renders the B-mode unstable.

Figure 14 illustrates the evolution of the eccentricity vectors for all four periodic orbits
A, B, C1, C2. In all four cases the eccentricities of both planets oscillate periodically, while
the argument ω2 − ω3 undergoes small librations around one of the values 0 or π .

123



The phase-space architecture in extrasolar systems with two... Page 37 of 59 22

Fig. 13 Poincaré surfaces of section for some values of the energy illustrating the sequence of bifurcations
taking place in the ‘transition regime’ (see text): E = −2.53 · 10−5 (top left), E = −2.08 · 10−5 (top right),
E = −1.9 · 10−5 (bottom left), E = −1.58 · 10−5 (bottom right), corresponding, respectively, to panels 11 ,
13 , 14 and 15 of Fig. 9

3.4 Lidov–Kozai regime

We finally discuss the transition observed in the last row of Fig. 9, in which the periodic orbit
C2 turns from stable to unstable via the Lidov–Kozai mechanism. This is accompanied by a
large volume of trajectories around C2 becoming chaotic. In the case of a test inner particle
(m2 = 0) at circular orbit e2 = 0, the mutual inclination is a preserved quantity, equal to
the inclination of the test particle imut = i2 (since m2 = 0 the Laplace plane coincides
with the constant orbital plane of the outer particle). Furthermore, the stability character of
the so-called Lidov–Kozai state (Lidov 1962; Kozai 1962; Lidov and Ziglin 1976; Ito and
Ohtsuka 2019) depends only on the value of the inclination. In particular, in the quadrupolar
approximation, the transition from stability to instability occurs at a critical inclination equal

to cos−1
√

3
5 ∼ 39◦.2 (see Naoz 2016 for a review).
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Fig. 14 Top row: the evolution of the orbital eccentricities e2, e3 for the periodic orbits corresponding to
the modes A (top left panel: top curve e2, bottom curve e3), and B (top middle panel: top curve e2, bottom
curve e3). The top right panel shows the librations of the argument ω2 − ω3 for the B-mode (top curve) or
the A-mode (bottom curve). Bottom row: the evolution of the orbital eccentricities e2, e3 for the periodic
orbits corresponding to the fixed points C1 (bottom left panel: top curve e3, bottom curve e2), and C2 (bottom
middle panel: top curve e2, bottom curve e3).The bottom right panel shows the librations of the argument
ω2 − ω3 for the orbit C2 (top curve) or C1 (bottom curve). The above time series are computed at the value
of the energy E = −2.08 · 10−5 , corresponding to the 13-th panel of Fig. 9

Here, instead, we use a criterion analogous to the one of the classical Lidov–Kozai mecha-
nism in order to obtain an estimate of the critical energy EC,2 at which the orbit C2 turns from
stable to unstable in the framework of the quadrupolar approximation to the secular Hamil-
tonian Hsec in the full three-body problem, i.e., for m2 	= 0. The quadrupolar Hamiltonian,
apart from constants, reads

Hquad = −3Gm2 m3

8 a3

(
a2
a3

)2 1(
1− e23

)3/2Fquad, (70)

where

Fquad = −1

3
− e22

2
+ 3

2
e22 θ2 + θ2 + 5

2
e22
(
1− θ2

)
cos(2ω2), (71)

with θ = cos(i2+ i3) . Following the process of Jacobi reduction, without any book-keeping
control, amounts to expanding the cosine of the mutual inclinations as cos(i2 + i3) =
cos(i2) cos(i3) − sin(i2) sin(i3) , we can use expression (19), that automatically cancel the
dependence of the Hamiltonian on the mutual inclination. The Hamiltonian takes now the
form (apart from constants):

Hquad =

− 3 a2G
(
3 e22 + 2

)
m3

3

64 a2
3

(
1− e22

)√
1− e23 m2

− a2
2G

(
3 e22 + 2

)
m2 m3

32 a3
3

(
1− e23

)3/2 + 3 a3
2G

(
3 e42 − e22 − 2

)
m3

2

64 a4
3

(
1− e23

)5/2
m3

+L2
z

(
3 a2

(
3 e22 + 2

)
m3

32 a3
3

(
1− e22

) (
1− e23

)3/2
m0 m2

+ 3 a2
2

(
3 e22 + 2

)
m2

32 a4
3

(
1− e23

)5/2
m0 m3

)

− 3 a2
(
3 e22 + 2

)
L4

z

64 a4
3G

(
1− e22

) (
1− e23

)5/2
m2

0 m2 m3
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+ cos(2ω2)

[
15 a2G e22 m3

3

64 a2
3

(
1− e22

)√
1− e23 m2

− 15 a2
2G e22 m2 m3

32 a3
3

(
1− e23

)3/2+
15 a3

2G e22
(
1−e22

)
m3

2

64 a4
3

(
1− e23

)5/2
m3

+L2
z

(
− 15 a2 e22 m3

32 a3
3

(
1− e22

) (
1− e23

)3/2
m0 m2

− 15 a2
2 e22 m2

32 a4
3

(
1− e23

)5/2
m0 m3

)

+ 15 a2 e22 L4
z

64 a4
3G

(
1− e22

) (
1− e23

)5/2
m2

0 m2 m3

]
. (72)

Note that the secular Hamiltonian at the quadrupolar level does not depend on the argument
of the pericenter of the outer planet ω3 , therefore the system is integrable (a fact known
as the “happy coincidence”, see Lidov and Ziglin (1976) or Naoz (2016) for a review). In
particular, the non-dependence of the Hamiltonian on ω3 implies that the eccentricity of the
outer planet e3 is a conserved quantity.

Using e3 as a parameter, the Hamiltonian Hquad can now be regarded as a one degree
of freedom system. This can obtain a polynomial form by passing to the Poincaré vari-
ables (X2, Y2) described by (25). After such a substitution, the quadratic part of the above
Hamiltonian is given by

H2,quad(X2, Y2;G3, Lz) = a(G3, Lz)

2
Y 2
2 −

b(G3, Lz)

2
X2
2, (73)

where the coefficients b and a are functions of G3 = L3

√
1− e23 =const and of Lz (see

Eq. (11)); in particular

b = 3G2 L3
2

(
3G2

3 − L2
2 + L2

z

)
m0 m7

3

8G5
3 L3

3 m3
2

a = −3G2 L2
(
5G4

3 − 4G2
3 L2

2 + 3 L4
2 − 10 G2

3 L2
z − 8 L2

2 L2
z + 5 L4

z

)
m0 m7

3

16G5
3 L3

3 m3
2

.

(74)

In order to find the critical value of the energy EC,2, for fixed Lz , at which the periodic
orbit e3 =const, e2 = 0 becomes unstable, it is sufficient to compute the eigenvalues of the
Jacobian matrix of the Hamiltonian vector field:

M =

⎛
⎜⎜⎝

∂ Ẋ2

∂ X2

∂ Ẋ2

∂Y2
∂Ẏ2

∂ X2

∂Ẏ2

∂Y2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∂2Hquad

∂ X2 ∂Y2

∂2Hquad

∂2Y2

−∂2Hquad

∂2X2
− ∂2Hquad

∂Y2 ∂ X2

⎞
⎟⎟⎠ =

(
0 a

b 0

)
. (75)

The transition occurs at a critical value of e3 = e3,C2 at which the eigenvalues of M pass
from imaginary to real. The critical energy is then given by EC,2 = Hquad(e2 = 0, e3,C2 ; Lz).
The critical value e3,C2 can be computed by the following

Proposition 3.1 Consider the secular Hamiltonian developed up to a quadrupolar expansion.
Define the quantities

A = 1

5

(
4L2

2 + 5L2
3(1− e23)− L2

√
L2
2 + 60L2

3(1− e23)

)
,

B = 1

5

(
4L2

2 + 5L2
3(1− e23)+ L2

√
L2
2 + 60L2

3(1− e23)

)
,

C = L2
2 − 3L2

3(1− e23),

(76)
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with L2 = m2
√Gm0a2 > 0 , L3 = m3

√Gm0a3 > 0 . Then, the following cases hold:

Case i) :
(
0 < L2 <

√
3L3

)
∧
(
0 ≤ e3 ≤

√
1− L2

2
3L2

3

)
, the periodic orbit C2 is Floquet-

stable if
(
0 < L2

z < A
)

or
(
L2

z > B
)

and Floquet-unstable if
(

A < L2
z < B

)
.

Case ii) :
(
0 < L2 <

√
3L3

)
∧
(√

1− L2
2

3L2
3

< e3 <

√
1− L2

2
4L2

3

)
or
(√

3L3 ≤ L2 < 2L3

)

∧
(
0 ≤ e3 <

√
1− L2

2
4L2

3

)
, the periodic orbit C2 is Floquet-stable if

(
C < L2

z < A
)

or
(
L2

z > B
)

and Floquet-unstable if
(
0 < L2

z < C
)

or
(

A < L2
z < B

)
.

Case iii) :
(
0 < L2 ≤ 2L3

)
∧
(

e3 =
√
1− L2

2
4L2

3

)
, the periodic orbit C2 is Floquet-stable

if
(
L2

z > B
)

and Floquet-unstable if
(
0 < L2

z < B
)
.

Case iv) :
(
0 < L2 ≤ 2L3

)
∧
(

e3 >

√
1− L2

2
4L2

3

)
or if

(
L2 > 2L3

)
, the periodic orbit

C2 is Floquet-stable if
(

A < L2
z < C

)
or

(
L2

z > B
)

and Floquet-unstable if(
0 < L2

z < A
)

or
(
C < L2

z < B
)
.

Moreover, having the critical points of L2
z , it is easy to compute the critical values for the

mutual inclination, being3 (by Eq. (29))

cos(i2 + i3) = L2
z − L2

2 − L2
3 + L2

2 e22 + L2
3 e23

2L2L3

√
1− e22

√
1− e23

,

max imut = arccos

(
L2

z − L2
2 − L2

3

2 L2 L3

)
.

(77)

The proof of the previous Proposition is reported in the Appendix C. We readily find that in
the limit m2 → 0, e3 → 0, the Kozai angles i = 39.2◦ and i = 140.77◦ are recovered (see
Naoz 2016). In fact, for e3 = 0 , the critical values A , B and C become

A = 1

5

(
4L2

2 + 5L2
3 − L2

√
L2
2 + 60L2

3

)
,

B = 1

5

(
4L2

2 + 5L2
3 + L2

√
L2
2 + 60L2

3

)
,

C = L2
2 − 3 L2

3.

(78)

Then, at the limit m2 → 0 we readily obtain that

(cos imut)L2
z=A =

A − L2
2 − L2

3

2L2L3
= −

√
L2
2 + 60 L2

3 + L2

10 L3

L2→0−−−→ −
√
3

5

(cos imut)L2
z=B =

B − L2
2 − L2

3

2L2L3
=

√
L2
2 + 60 L2

3 − L2

10 L3

L2→0−−−→
√
3

5
.

Note that, while the above proposition strictly establishes the limit of EC,2 only in the
quadrupolar approximation, in practice we find that the estimate is quite precise when the
full Hamiltonian with higher order multipoles is considered. For example, applying the above

3 Recall, from Eq. (13), that � j = L j , j = 2, 3 .
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criterion in the numerical example of Fig. 9 yields the estimate EC,2 ≈ −2.2 ·10−6, which is
in agreement with the value of the energy where the transition is observed in the numerical
phase portraits. On the other hand, since the quadrupolar approximation yields an integrable
Hamiltonian, for any value of the energy E > EC,2 Hquad yields a figure-8 phase portraits
with invariant curves surrounding the ‘frozen’ (stable) orbits on both sides of the unstable
orbit e2 = 0. However, this picture changes by adding just the octupolar terms to the model,
given by

Hoct = Hquad + H̃oct, (79)

where

H̃oct = 75Gm2 m3

64 a3

(
a2
a3

)3 1
(
1− e23

)5/2 e2 e3 Foct (80)

with

Foct = 1

40

(
3 e22 + 4

) (
1+ 11θ − 5θ2 − 15 θ3

)
cos(ω2 − ω3)

+ 1

40

(
3 e22 + 4

) (
1− 11θ − 5θ2 + 15 θ3

)
cos(ω2 + ω3)

+ 7

8
e22(θ

2 − 1)(1+ θ) cos(3ω2 − ω3)+ 7

8
e22(θ

2 − 1)(1− θ) cos(3ω2 + ω3),

(81)

with θ = cos(i2 + i3) . Note that the above formula is equivalent, after some algebraic
operations, to the formulas given in Migaszewski and Goździewski (2011) and Naoz (2016),
see also Lithwick and Naoz (2011), Naoz et al. (2013), Ford et al. (2000). As depicted in
Fig. 15, the addition of more harmonics besides cos(2ω2) via the octupole approximation
implies the creation of a large domain of resonance overlap, mostly between the islands
around the frozen orbits and the island of the C1 orbit, which appears already in the octupole
approximation. This implies, in turn, the disappearance of most quasi-periodic trajectories
around the frozen orbits, and the appearance, instead, of a large domain of chaotic orbits, in
accordance to what is observed in the last two panels of Fig. 9 for the full model.

We note that the use of the above proposition for the determination of critical values for
the transition to instability has to be done in conjunction with the test that cos(max imut)

does not produce unphysical values | cos(imut)| > 1. Such an unphysical value can occur
in case ii), for the critical value L2

z = C and in case iv), for the critical value L2
z = A .

For example, in the second case of ii), setting
√
3L3 ≤ L2 < 2 L3 and e3 = 0 , we find

C = L2
2 − 3 L2

3 which, together with L2
z = C , leads to cos(max imut) = −2 L3/L2 < −1

iff L2 < 2 L3. Similarly, in the second case of iv), where L2 > 2 L3, setting e3 = 0 , by

the relation L2
z = A = 1

5

(
4L2

2 + 5L2
3 − L2

√
L2
2 + 60L2

3

)
, we obtain cos(max imut) =

−(

√
L2 + 60 L2

3 + L2)/(10 L3), which is physical only iff L2 ≤ 2 L3 .

3.5 Where does the �-Andromedae system lie in phase space?

We finally comment on the implications of the above analysis of the phase space structure
on the interpretation of the data givenby astronomical observations. Figure16 shows the phase
portrait (surface of section) for the value of the energy E = −2.081 · 10−5, corresponding to
the one found after reducing to the Laplace plane the data for the observed υ-Andromedae
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Fig. 15 Comparison between the phase portraits (Poincaré surfaces of section) obtained with the quadrupolar
approximationHquad (left column) and the octupolar approximationHoct (right column), at the energy levels

E = −4.9 · 10−6 (top), and E = −6.9 · 10−7 (bottom). The quadrupolar approximation yields the phase
portrait of an integrable system, which contains a figure-8 separatrix for energies beyond EC,2. The octupolar
approximation is necessary to obtain both periodic orbits C1 and C2, as well as the chaotic zone around C2
caused by the overlapping of resonances in the neighborhood of this orbit

Fig. 16 Poincaré surface of section for the energyE = −2.081·10−5. The red curve (1) shows the orbit obtained
by adopting our basic assumption as regards the initial conditions of the υ-Andromedae system (see Sect. 2.4),
i.e., (after reduction to the Laplace plane) e2 = 0.2445, e3 = 0.316, ω2 = 289.049◦, ω3 = 235.464◦. The
black curve (2) shows the trajectory obtained by changing by only about 10% the eccentricity e2 and argument
of the periastron ω2, while maintaining the energy and argument of periastron of the outer planet invariant
(e2 = 0.269, ω2 = 296.1◦, ω3 = 235.464◦, e3 = 0.299 )
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system (see Sect. 2.4). The invariant curve (1) (marked in red) corresponds to the actual initial
conditions of the system. According to the figure, this is a quasi-periodic orbit surrounding
the family C2. We note, however, that the orbit is very close to the separatrix between the
C2 librational domain and the domain of stability surrounding the fixed point of the mode B
orbit. As a consequence, a change of the initial conditions (e2, ω2) by less than 10% results
in a trajectory ((2), black curve) which undergoes quasi-periodic oscillations around the
(aligned) apsidal corotation orbit of the system. The proximity of the real trajectory to one
of the separatrices generated by the families C1, C2 is noteworthy, as it is in contrast with
the basic scenario of evolution of planetary orbits, according to which the dissipative phase
of planetary migration should lead to an end state close to one of the stable fixed points of
the system (see, for example, Beaugé et al. 2012).

4 Parametric study

The purpose of the present section is to provide an overview of how the form of the phase
portraits (Poincaré sections) is varied with the energy E, and hence with an increase in the
level of mutual inclination, in various types of planetary systems differing from our so far
main example as regards the choice of mass ratio m2/m3 as well as of semi-major axis
ratio a2/a3 between the two planets. A thorough parametric study of the latter question is
beyond our present scope. Instead, here we focus on only one central aspect of this study,
namely the question of how generic is the description, as in Sect. 3, of the transition from the
planar-like to the Lidov–Kozai regime, when either the mass ratio m2/m3 or the semi-major
axis ratio a2/a3 are altered, including the so-called hierarchical limits, which correspond to
mass ratio limits m2/m3 → 0 (restricted three-body problem with the inner planet being a
test particle), or m2/m3 →∞ (the outer planet is a test particle), and semi-major axis ratio
a2/a3 << 1 (outer planet way further from the star than inner planet). To produce a suite of
numerical experiments covering most cases of practical interest, we consider in the sequel
five different values of the mass ratio m2/m3 representative of all possible mass hierarchies
(or lack thereof) namely m2/m3 = 1/10, 1/3, 1, 3, 10, produced by the corresponding
combination of the masses m0 = 1M and 1 MJ , 3 MJ or 10 MJ for m2 and m3 , while
we consider the semimajor axes ratio a2/a3 = 1/7 (a2 = 1 AU , a3 = 7 AU ) as a case
representing distance hierarchy, or a2/a3 = 1/3 (a2 = 1 AU , a3 = 3 AU ) as a case of
no distance hierarchy. In each one of the previous cases, a comparison with the analysis of
Sect. 3 requires keeping fixed the value of the AMD (or Lz) while computing phase portraits
with a varying value of the energy E. To find a relevant value for Lz in each experiment, we
consider a uniform value of the maximum possible mutual inclination imax (Eq. (30)) in all
the experiments, set as imut = 45◦. This typically proves to be slightly above the limit of
the Lidov–Kozai instability (which is equal to 39.2◦ in the quadrupolar approximation of
the restricted three-body problem with m2 = 0 and turns to be about ∼ 42.5◦ in our main
numerical example of Sect. 3). By Eq. (30), this implies setting

Lz =
√

�2
2 +�2

3 +
√
2�2�3

with �2,�3 specified by the choice of masses and semi-major axes in each experiment.
Finally, in order to get some safety from any accuracy issues, we make computations with a
Hamiltonian expanded at slightly larger orders with respect to those of the main numerical
example of the previous section, i.e., multipole order 6, and order 12 in the eccentricities.
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Fig. 17 Poincaré surfaces of section in the plane (e2 cos(ω2), e2 sin(ω2)) with Lz fixed such that max imut
is 45◦ and different values of energy. We consider the models a2/a3 = 1/3 and (from top to bottom)
m2/m3 = 1/10, 1/3, 1, 3, 10 . The values of the energy (from top to bottom) are (from left to right), top
E = −2.71 · 10−6,−1.01 · 10−6,−9.24 · 10−7,−5.73 · 10−7,−8.23 · 10−8, E = −9.03 · 10−7,−3.37 ·
10−7,−2.87 · 10−7,−1.76 · 10−7,−2.35 · 10−8, E = −2.68 · 10−7,−1.39 · 10−7,−1.14 · 10−7,−6.37 ·
10−8,−6.98 · 10−9, E = −1.12 · 10−6,−9.26 · 10−7,−3.37 · 10−7,−2.08 · 10−7,−1.67 · 10−8, bottom
E = −2.75 · 10−6,−1.91 · 10−6,−4.72 · 10−7,−3.54 · 10−7,−2.91 · 10−8 . The surfaces of section have
been computed by a numerical integration of trajectories in a Hamiltonian averaged in closed form with a
multipolar expansion truncated at degree 6 and expanded up to order 12 in the eccentricities

To arrive at the final secular model, all Hamiltonians are processed, and their phase portraits
computed, in the same way as in Sect. 2.

Figure 17 shows the phase portraits obtained for increasing energy E in the case a2/a3 =
1/3, and in various mass hierarchy scenarios, namely, for the values m2/m3 (from top to
bottom row) 1/10, 1/3, 1/1, 3/1, 10/1. The values of the energies whose corresponding
phase portraits are shown are selected in each panel of Fig. 17 so as to visualize the most
important changes observed in the phase-space structure as the energy increases.
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Our main numerical example (Fig. 9) exhibits a similar structural change in the phase
portraits, with increasing energy, as in the fully non-hierarchical case m2/m3 = 1 illustrated
in the third row of Fig. 17. However, in Fig. 17 it is clear that the transition from the planar-
like regime, where the modes A and B dominate the phase space, through the saddle-node
bifurcation giving rise to the orbits C1 and C2 (transition regime), and, finally, the Lidov–
Kozai regime (orbitC2 becomes unstable and surrounded by a chaotic figure-8 separatrix-like
layer) is generic in all cases m2/m3 ≤ 1 (top three rows of Fig. 17) and follows by the same
sequence of bifurcations. As the ratio m2/m3 tends to small values, the main differences
observed with respect to the non-hierarchical case are: i) in the planar like regime (i.e., top
row, first panel), the domain of quasi-periodic orbits around the aligned apsidal corotation
orbit (B-mode) occupies most of the available phase space, and ii) at energies beyond the
one of the Lidov–Kozai instability, there is a significant domain of regular orbits obtained
around two stable periodic orbits of non-zero eccentricity e2 with fixed points along the
axes ω2 = ±π/2 in the surface of section (the so-called frozen orbits). Both properties (i)
and (ii) can be interpreted by analogy with the restricted three-body problem (m2 = 0), in
which, for low inclinations, the only fixed point of the quadratic (Laplace–Lagrange) secular
Hamiltonian is associated with an eccentric orbit of eccentricity e2 equal to the forced value
induced by the outer perturber and pericenter aligned with the one of the outer perturber
(see Ferraz-Mello 2007). On the other hand, in the cases m2/m3 > 1 we do not observe at
all the transition to the Lidov–Kozai regime. Again, this can be interpreted in analogy with
the RTBP, in which the outer Lidov–Kozai instability (m3 → 0) occurs at an inclination
(≈ 63◦; see von Zeipel 1910) much higher than the maximummutual inclination imax = 45◦
considered in our examples. The case of a very highmutual inclination has been considered in
the literature (see for example Hansen and Naoz 2020 and references therein), but it appears
of rather theoretical interest compared to available observations on the orbital inclinations in
exoplanetary systems.

Figure 18 showshow thephase portraits evolvewith the energywhen, in addition to altering
the mass ratio m2/m3, the limit of distance hierarchy is also approached (a2/a3 = 1/7). As
an overall observation, we note again that the full sequence of bifurcations leading from the
planar-like to the Lidov–Kozai regime is realized only in the cases m2/m3 ≤ 1. However,
the main difference, with respect to the case a2/a3 = 1/3, is that in the hierarchical in
distance case the phase portraits contain many more regular orbits, with a considerably large
domain of stability around the frozen orbits surviving the system’s perturbations even at the
mass ratio m2/m3 = 1 (third row of Fig. 18). This can be interpreted by the fact that the
distance hierarchy brings the system closer to the dynamics of the integrable Hamiltonian
Hquad (Eq. (72)), reducing the relative importance of perturbations including and beyond the
octupolar one.

5 Concluding remarks

From what was exposed in Sects. 2, 3 and 4 above, we arrive at the following summary of
conclusions, serving also as a navigation guide to the main methodological steps proposed
in the preceding sections of the paper.

(i) Sect. 2 exposed the methodology for obtaining a suitable secular Hamiltonian model, as
well as our choice of variables and representation for phase portraits, aiming to present
in a unified way both the planar-like regime, where apsidal corotation orbits dominate,
and the Lidov–Kozai regime, where nearly circular highly inclined orbits dominate.
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Fig. 18 Poincaré surfaces of section in the plane (e2 cos(ω2), e2 sin(ω2)) with Lz fixed such that max imut
is 45◦ and different values of energy. We consider the models a2/a3 = 1/7 and (from top to bottom)
m2/m3 = 1/10, 1/3, 1, 3, 10 . The values of the energy (from top to bottom) are (from left to right), top
E = −1.54 · 10−7,−6.71 · 10−8,−5.78 · 10−8,−2.46 · 10−8,−6.15 · 10−9, E = −4.5 · 10−8,−2.05 ·
10−8,−1.7 · 10−8,−7.16 · 10−9,−1.79 · 10−9, E = −2.75 · 10−8,−8.25 · 10−9,−7.01 · 10−9,−4.97 ·
10−9,−5.51 · 10−10, E = −7.5 · 10−8,−5.94 · 10−8,−3.69 · 10−8,−2.5 · 10−8,−1.38 · 10−9, bottom
E = −2.22 · 10−7,−1.21 · 10−7,−8.96 · 10−8,−4.91 · 10−8,−2.42 · 10−9 . The surfaces of section have
been computed by a numerical integration of trajectories in a Hamiltonian averaged in closed form with a
multipolar expansion truncated at degree 6 and expanded up to order 12 in the eccentricities

The use of a particular book-keeping method was explained in Sect. 2.3, leading, after
Jacobi reduction, to a Hamiltonian decomposition of the formHsec = Hplanar+Hspace,
where the termHplanar is integrable and the termHspace depends on the system’s AMD
(or, equivalently, the value of the system’s angular momentum Lz). We argue on the
merits stemming from a choice of simple definition for the Poincaré surface section
as in 2.4.1, allowing for a straightforward mapping of phase portraits to the evolution
of the corresponding orbits in terms of Keplerian elements. This is accompanied by
a detailed analysis of the permissible domains of initial conditions on the surface of
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section as the energy E is altered. It is demonstrated that these limits are defined by the
intersections between any two of three important manifolds, namely the manifold of
constant energyM(E), the manifold of zero mutual inclination I0, and the condition of
tangency of an orbit with the surface of section (Ẏ3 = 0 in the Poincaré variables (25)).
In particular, we explain how the tangencies between M(E) and I0 at two particular
values of the energy EA (= Emin), EB (= E2,3) mark the birth of the planar anti-aligned
and aligned apsidal corotation orbits, respectively. Finally, we test the precision of
various models defined either by a closed-form scissors-averaged model obtained from
a multipole expansion of the Hamiltonian truncated at degree NP , or by the usual
(Jacobi-reduced) Laplace–Lagrange expansion. In both the previous cases, we introduce
an additional ‘book-keeping’ order of truncation Nbk, with a book-keeping collecting at
the same time powers of the eccentricities, of the mutual inclination and of the system’s
AMD. As discussed in Sect. 2.4.2, we find that, in general, a multipole expansion with
NP = 5 or 6 is sufficient to represent even non-hierarchical systems with semi-major
axis ratio between the two planets a2/a3 = 1/3 or smaller. The multipole model has
the salient features of being easy to scissors-average in closed form, while its lowest
order truncations (quadrupolar and octupolar) yield formulas sufficiently small to offer
analytical insight into the results. Comparisonwith theLaplace–Lagrangemodel (harder
to obtain) shows the practical equivalence of the phase portraits at NP = 5 and with
order of expansion as high as Nbk = 10. On the other hand, obtaining the canonical
transformation corresponding to the averaging, or going to second order in the masses,
seems quite harder to achieve with the closed-form approach.

(ii) Sect. 3 gives a qualitative overview of the main mechanism behind the transition from
the ‘planar-like’ to the ‘Lidov–Kozai’ regime, i.e., the birth of the families C1, C2 via a
saddle-node bifurcation around the alignedAC (modeB), accompanied by the transition
of the family C1 from unstable to stable via a pitchfork bifurcation, and, finally, the de-
stabilization of the B-mode via an inverse pitchfork transformation. These phenomena
are described qualitatively via the corresponding phase portraits, i.e., surfaces of section
obtained numerically in a basic example by increasing the value of the energy E. We
demonstrate how this latter increase is connected to the overall rise of the level of
mutual inclination of the orbits (Fig. 8). Finally, we numerically observe the Lidov–
Kozai instability in the same phase portraits which turns the family C2 from stable to
unstable at a critical energy EC,2.

(iii) Based on the form of the phase portraits, we identify three basic regimes in which a
two-planets system with inclined orbits can be found:
- The ‘planar-like’ regime is characterized by a phase-portrait similar to the one of an
integrable model Hint (Sect. 3.2), which is the 3D analogue of the integrable model
Hplanar. As pointed out in past literature (see Cushman and Bates 1997; Pauwels 1983;
Henrard and Libert 2004; Michtchenko et al. 2006) this is a model whose natural phase
space is the two-sphere, represented by theHopf variables ofEq.(52).Wefirst implement
a tangency method (Cushman and Bates 1997; Palacián et al. 2006; Marchesiello and
Pucacco 2016) to locate the periodic orbits of the integrable secular model. Then, by a
normal form approach, we demonstrate how the perturbations to the integrable model
can be normalized and absorbed in the definition of the periodic orbits corresponding
to the apsidal corotations in the non-planar case. The main conclusion is that both the
A (anti-aligned) and B (aligned) modes of the integrable model turn into orbits whose
eccentricities are not exactly constant, but undergo periodic oscillations with a secular
period easy to compute semi-analytically. At the same time, the pericenters of the
planets in either mode do not remain locked exactly to the alignment or anti-alignment
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condition. Instead, the differenceω2−ω3 also undergoes oscillations around the central
value (0 for anti-alignment, π for alignment). The amplitude of these oscillations grows
with the energy, and hence the level of mutual inclination, where each of these periodic
orbits is computed.
- The ‘transition regime’, starting with the birth of the families C1, C2 and ending
with the termination of the intermediate (D1,2) family at a collision with the B-mode
rendering the latter unstable.
- The ‘Lidov–Kozai’ regime, in which the structure of the phase space is similar to
the one provided by the octupolar model. As well known in literature, the turning of
the orbit C2 from stable to unstable can be predicted analytically in the framework of
the (integrable) quadrupolar approximation. We adapt this prediction to a proposition
(Sect. 3.4) allowing to compute approximately the value of the transition energyEC,2 and
of the corresponding critical inclination for a systemwith fixedAMD.Actually, a careful
investigation of the same proposition shows that it can be applied also independently of
the choice of parameter, i.e., using the outer planet’s eccentricity (which is constant in
the context of the quadrupolar model) as well as altering the value of the systems AMD
(or angular momentum). At any rate, the result obtained by such an analysis is only
approximate, at least for non-hierarchical systems, since the octupolar terms introduce
a significant perturbation to the quadrupolar model. It is noteworthy that the effect of
the octupolar terms can be locally absorbed by a perturbation theory eliminating all
harmonics except for cos(2ω2) (attempts to provide such a theory in the framework
of the restricted three-body problem are nearly as old as the subject itself, see Ito and
Ohtsuka (2019) for a review). We are aware of no work attempting to provide the
thresholds for the onset of the Lidov–Kozai instability in the framework of the general
three-body problem at truncations NP ≥ 3 by analytical means (normal forms), thus,
this is proposed as a subject for further study.

(iv) We give an overview of how the picture of the phase-space structure and dynamics
depicted as above applies to systems in which we have either a mass hierarchy, or a
distance hierarchy. As regards models with mass hierarchy, we give numerical evidence
that a necessary condition to obtain the full chain of transitions from the ‘planar-like’
to the ‘Lidov–Kozai’ regime is that m2 be smaller than m3. This is justified by the fact
that the critical mutual inclination for obtaining the Lidov–Kozai instability is ≈ 39◦
in the limit m2 � m3, but it raises, instead, to ≈ 63◦ in the limit m3 << m2. Such a
high value of the mutual inclination is rather improbable in exoplanetary systems. On
the other hand, a quick comparison of Figs. 8 and 9 shows that the so-called planar-like
regime corresponds to a dynamical characterization (or, simply, the similarity of phase
portraits with the planar case) rather than a really small value of the mutual inclination.
For example, in our basic model the planar-like regime persists up to the energy EC of
birth of the C1, C2 families, which corresponds to trajectories whose mutual inclination
can be as high as 35◦. On the other hand, as can be deduced from Fig. 18, in models with
distance hierarchy we arrive rather quickly to forms of the phase portraits reminiscent
of those obtained in the Lidov–Kozai regime, i.e., with the C1 and C2 orbits rather,
than the mode A and B orbits, dominating the dynamics. Insight to this phenomenon
is provided by the fact that the octupolar model gives a far better approximation to the
full Hamiltonian in distance-hierarchical cases. In that model, however, the harmonics
cos(ω2 − ω3), which is the basis for the appearance of apsidal corotation orbits, has
smaller amplitude than the harmonics cos(2ω2) (already present at quadrupolar level).
This implies that the dominant periodic orbits areC1 andC2, as well as the frozen orbits
arising after the Lidov–Kozai instability. Note that the orbits C1 and C2 have aligned
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and anti-aligned apsides, while, by the position of the corresponding fixed points in the
phase portraits, we readily deduce that they have smaller eccentricities than the one of
the A mode (which remains stable at all values of the energy). Thus, once again, the
difference between these periodic orbits is dynamical rather than morphological, i.e.,
they play distinct roles in shaping the phase space locally around them.
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Appendix A Analytic calculation of Laplace coefficients

A computation of the Laplace coefficients (Eq. (42), Sect. 2.4.2) via a multipolar expansion,
is possible on the basis of the following.

Lemma 1 The Laplace coefficients b( j)
s+ 1

2
in the expression

1
(
a2
2 + a2

3 − 2 a2 a3 cos(λ2 − λ3)
) 2 s+1

2

= a−(2 s+1)
3

∑
j≥0

b( j)
s+ 1

2
(α) cos( j(λ2 − λ3)),

can be computed as
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2 + k)( h
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)! ( h
2

)!(k − h)! α2k−h,

b( j)
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h∈A j
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2 ) . . . (s − 1
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α2k−h, j ≥ 1,

(A1)

where α = a2/a3 and A j =
{
h ∈ N : h =

{
2i if j is even

2i + 1 if j is odd
, i ∈ N , i ≥ � j

2 �
}

,

j ≥ 1 .
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Proof We will expand

1
(
a2
2 + a2

3 − 2 a2 a3 cos(λ2 − λ3)
) 2 s+1

2

= a−(2s+1)
3

1
(
1+ α2 − 2α cos(λ2 − λ3)

) 2 s+1
2

,

(A2)

in powers of α = a2/a3 . Defining l = 2s + 1 and σ = λ2 − λ3 Taylor-expanding the r.h.s.
in (A2), we find

1
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Moreover, we can expand the quantity
(
2α cos(σ )− α2

)k
, obtaining:
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After having explicitly written the sum corresponding to h = 0 , it is possible to reverse the
order of the sums (over k and h), arriving to
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(A5)

where Dh (with h ≥ 0) is defined as:
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In order to compute the Laplace coefficients, we need to expand also the cos(σ )h in (A5).
We set (Eq. (41))
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Using again the binomial formula, we have
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Inserting th expression (A7) in Eq. (A5), we obtain
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(A8)

where we define j = h − 2k and the set

Bh =
{

j ∈ Z : j =
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2n if h is even, n ∈ Z, − h

2 ≤ n ≤ h
2

2n + 1 if h is odd, n ∈ Z, �− h
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2 �
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On the other hand, the previous set of indexes can be thought also as

Bh =
{
Bh− ∪ Bh+ ∪ { j = 0} if h is even

Bh− ∪ Bh+ if h is odd
,

where Bh− = Bh ∩ Z<0 and Bh+ = Bh ∩ Z>0 . With the above notation, the sum appearing
in Eq. (A8) can be decomposed as follows:
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Thus, observing that
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we can write Eq. (A8) as:
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Finally, reversing the order of the sums (over j and h ), we arrive at
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where

A j =
{

h ∈ N : h =
{
2i if j is even, i ∈ N, i ≥ j

2

2i + 1 if j isodd, i ∈ N, i ≥ � j
2 �

}
, j ≥ 1.

Now we can finally put Eq. (A9) in the expression (A2) and compare the obtained quantity
with (41), yielding

b(0)
s+ 1
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(α)=D0+
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h∈A2
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)! , b( j)
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!
(

h+ j
2

)
!
, (A10)

with A2 = {h ∈ N : h = 2i , i ∈ N , i ≥ 1} . Finally, substituting in the previous expres-
sion (A10) the definition of Dh (given by (A6)) and remembering that l = 2s + 1 and
σ = λ2 − λ3 , we obtain (A1). This concludes the proof. ��

Appendix B Normal form around the periodic orbits A or B

The normal form function Z (r) and the normalizing transformation �(r) of Eqs. (61) and
(62) are computed by the following steps:

(i) Development of the Hamiltonian around the apsidal solution of the integrable part Hint:
Let (ψ∗, �∗, J∗) be one of the two fixed points (apsidal corotation solutions) of the
integrable Hamiltonian Hint(ψ, �; J ) . We consider the translations

ψ = ψ∗ + ε∗δψ, � = �∗ + ε∗ δ�, J = J∗ + εJ∗ δ J , (B1)

where ε∗, εJ∗ are both book-keeping symbols with numerical value equal to one. We
then perform the following algebraic operations:

• Substitute (B1) into the Hamiltonian Hsec(ψ, ϕ, �, J ) and expand the Hamiltonian
in powers of the symbols ε∗, εJ∗ ;
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• in the resulting expression, replace cos(ϕ) and sin(ϕ) with ε∗ cos(ϕ) and ε∗ sin(ϕ),
respectively;

• assign a unique book-keeping symbol to the expandedHamiltonianHsec(δψ, ϕ, δ�,

δ J ), by setting εa
J∗ � λa−1 a ≥ 1 , ε∗ � λ ;

• truncate the resulting expression at a maximum order Nt in the book-keeping symbol
λ.

After performing the above algebraic steps, the Hamiltonian resumes the form

H(0) = Hsec = c1 + Z0 +
Nt∑

s=1
λsh(0)

s (δψ, ϕ, δ�, δ J )

= c1 + ν(0)∗ δ J +
Nt∑

s=1
λs

⎛
⎝ ∑

m, k, n, l

θ
(0)
m,k,n,l δψmδ�nδ J l ei k ϕ

⎞
⎠

(B2)

where c1 is a constant term, θ
(0)
m,k,n,l are constant coefficients, and ν

(0)∗ < 0 is the
(also constant) unperturbed frequency of the apsidal periodic orbit in the integrable
approximation.

(ii) Normal form to eliminate ϕ: The Hamiltonian (B2) is normalized by iterative steps
using the method of composition of Lie series. The normalization algorithm is defined
recursively, for r = 1, 2, . . . by the relations:

H(r−1) = c1 + Z0 +
r−1∑
s=1

λs Zs(δψ, δ�, δ J )

+
Nt∑

s=r

λs

⎛
⎝ ∑

m, k, n, l

θ
(r−1)
m,k,n,l δψmδ�nδ J l ei k ϕ

⎞
⎠ , (B3)

χ(r) = λr
∑

m, k, n, l
k 	=0

θ
(r−1)
m,k,n,l

i ν
(0)∗ k

δψmδ�nδ J l ei k ϕ, (B4)

H(r) =
[
exp(Lχ(r) )H(r−1)

]≤Nt

, (B5)

where Lχ(r) denotes the Poisson bracket operator Lχ(r) · = {·, χ(r)}, and [·]≤Nt means
truncation at the order Nt in the book-keeping parameter λ.

(iii) Final Hamiltonian and normalizing transformation: The normalizing transformation
�(r) is defined by:

(δψ, ϕ, δ�, δ J ) = �(r)(δψ̃, ϕ̃, δ�̃, δ J̃ )

=
[ (

exp
(
Lχ(r)

)
exp

(
Lχ(r−1)

)
. . . exp

(
Lχ(1)

)
(δψ, ϕ, δ�, δ J )

) ∣∣∣∣δψ=δψ̃
ϕ=ϕ̃

δ�=δ�̃
δ J=δ J̃

]≤Nt

(B6)
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and the final Hamiltonian

H(r) =
[ (

exp
(
Lχ(r)

)
exp

(
Lχ(r−1)

)
. . . exp

(
Lχ(1)

)H(0)
) ∣∣∣∣δψ=δψ̃

ϕ=ϕ̃

δ�=δ�̃
δ J=δ J̃

]≤Nt

= Z (r)(δψ̃, δ�̃, δ J̃ )+ R(r)(δψ̃, ϕ̃, δ�̃, δ J̃ ),

(B7)

where 1 ≤ r ≤ Nt is chosen so that the normal form term Z (r)(δψ̃, δ�̃, δ J̃ ) yields the
best possible approximation to the dynamics.
Note that the constant term c1 produced at step 1 above has to be carried along all the
successive HamiltoniansH(r) produced through the normalization process, being even-
tually included in the normal form Z (r). This is necessary, since this constant appears
in the third of the algebraic equations (65) by which the fixed point corresponding to
the apsidal periodic orbit is computed in the new canonical variables.

Appendix C Proof of Proposition 3.1

Proof The eigenvalues of the matrix M (75) are λ1,2 = ±√ab ; then if ab > 0 , then the
eigenvalues are real and opposite, instead if ab < 0 , then the eigenvalues are complex and
conjugate. We have to analyze all the possible cases. We can have

{
a > 0

b > 0
,

{
a < 0

b < 0
�⇒ λ1,2 real (C1a)

{
a > 0

b < 0
,

{
a < 0

b > 0
�⇒ λ1,2 imaginary . (C1b)

Let us start to understand the change of sign of b ; remembering the definition (74)

b = 3G2L3
2 (3G2

3 − L2
2 + L2

z ) m0 m7
3

8G5
3 L3

3 m3
2

> 0 ⇐⇒ b̃ := L2
z + 3L2

3(1− e23)− L2
2 > 0,

being (3G2L3
2m0m7

3)/(8(1− e23)
5/2L8

3m3
2) > 0 . Now, let us observe that if

C := L2
2 − 3L2

3(1− e23) < 0 �⇒ e23 < 1− L2
2

3L2
3

, (C2)

then b̃ > 0 automatically; in order to have that, it is necessary that 1− L2
2

3L2
3

> 0 , i.e., to have

0 < L2 <
√
3L3 . Thus, we can conclude that b > 0 ( or equivalently b̃ > 0 ) if one of the

two is fulfilled

(i) 0 < L2 <
√
3L3 ∧ 0 ≤ e3 ≤

√
1− L2

2
3L2

3
, with L2

z > 0 or

(ii)

(
0 < L2 <

√
3L3 ∧ e3 >

√
1− L2

2
3L2

3

)
∨ L2 ≥

√
3L3 , with L2

z > C .
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Now, let us study the sign of a ; as before, from definition (74)

a = −3G2L2(5G4
3 − 4G2

3L2
2 + 3L4

2 − 10G2
3L2

z − 8L2
2L2

z + 5L4
z )m0m7

3

16G5
3L3

3m3
2

> 0 ⇐⇒

ã := L4
3(1− e23)

2 − 4

5
L2
3L2

2(1− e23)+
3

5
L4
2 − 2L2

3(1− e23)L2
z −

8

5
L2
2L2

z + L4
z < 0,

(C3)

being −(3G2L2 m0 m7
3)/(16 L8

3(1− e3)5/2m3
2) < 0 . Then a > 0 (or equivalently ã < 0 ) iff

A < L2
z < B , where A and B are defined as in (76), i.e.,

A = 1

5

(
4L2

2 + 5L2
3(1− e23)− L2

√
L2
2 + 60L2

3(1− e23)

)
,

B = 1

5

(
4L2

2 + 5L2
3(1− e23)+ L2

√
L2
2 + 60L2

3(1− e23)

)
.

Let us observe that A and B are both greater than zero. In fact, being 0 ≤ e3 < 1 , it is
obvious that B > 0 ; on the other hand A > 0 iff

√
L2
2 + 60L2

3(1− e23) < 4L2 + 5L2
3

L2
(1− e23) ⇐⇒

L2
2 + 60L2

3(1− e23) < 16L2
2 + 25

L4
3

L2
2

(1− e23)
2 + 40L2

3(1− e23) ⇐⇒

3L4
2 − 4L2

3(1− e23)L2
2 + 5(1− e23)

2L4
3 > 0

that holds ∀ L2, L3, 0 ≤ e3 < 1 , being � = −44L4
3(1− e23)

2 < 0 . Then, we can conclude

that if we are in the case i), (i.e., 0 < L2 <
√
3L3 ∧ 0 ≤ e3 ≤

√
1− L2

2

3L2
3

) and A < L2
z <

B , then b > 0 and a > 0 , then we have real eigenvalues; instead if, in the same case i),
0 < L2

z < A or L2
z > B , then b > 0 , a < 0 , having complex imaginary eigenvalues. This

proves the Case i) of the Proposition.

In the case ii), i.e.,

(
0 < L2 <

√
3L3 ∧ e3 >

√
1− L2

2
3L2

3

)
∨ L2 ≥

√
3L3 , we have to

solve (C1a) and (C1b), that become, respectively
{
a > 0

b > 0
=

{
A < L2

z < B

L2
z > C

,

{
a < 0

b < 0
=

{
0 < L2

z < A ∨ L2
z > B

0 < L2
z < C

, (C4a)

{
a > 0

b < 0
=

{
A < L2

z < B

0 < L2
z < C

,

{
a < 0

b > 0
=

{
0 < L2

z < A ∨ L2
z > B

L2
z > C

; (C4b)

then, we have to understand the position of the value C with respect to A and B .

Case 1: C < A

C < A ⇐⇒
√

L2
2 + 60L2

3(1− e23) < −L2 + 20L2
3

L2
(1− e23)
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i.e.,
⎧
⎪⎪⎨
⎪⎪⎩

−L2 + 20L2
3

L2
(1− e23) ≥ 0

L2
2 + 100L2

3(1− e23) < L2
2 +

400L4
3

L2
2

(1− e23)
2

⇐⇒

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

e23 ≤ 1− L2
2

20L2
3

e23 < 1− L2
2

4L2
3

,

then if e23 < 1− L2
2

4L2
3
. The last inequality makes sense if 1− L2

2
4L2

3
> 0 , that is 0 ≤ L2 < 2L3 .

Remembering that we are in the case ii), it follows that

C < A ⇐⇒
(
0 < L2 <

√
3L3 ∧

√
1− L2

2

3L2
3

< e3 <

√
1− L2

2

4L2
3

)
∨

(√
3L3 ≤ L2 < 2L3 ∧ 0 ≤ e3 <

√
1− L2

2

4L2
3

)
.

Therefore, studying (C4a) and (C4b), we can conclude that if
(
0 < L2 <

√
3L3 ∧√

1− L2
2

3L2
3

< e3 <

√
1− L2

2
4L2

3

)
∨
(√

3L3 ≤ L2 < 2L3 ∧ 0 ≤ e3 <

√
1− L2

2
4L2

3

)
, then the

eigenvalues are real and opposite if 0 < L2
z < C (see the second of (C4a)), purely imaginary

and conjugates if C < L2
z < A (see the second of (C4b)), real and opposite if A < L2

z < B
(see the first of (C4a)) and again purely imaginary and conjugates if L2

z > B (see the second
of (C4b)), proving the Case ii) of the Proposition.

Case 2: C = A

Following the same calculations done for the previous case (C < A ), it easily follows that

C = A ⇐⇒
(
0 < L2 ≤ 2L3 ∧ e3 =

√
1− L2

2

4L2
3

)
;

in this case, studying (C4a) and (C4b), we can conclude that the eigenvalues are real and
opposite if 0 < L2

z < C = A (see the second of (C4a)), again real and opposite if C = A <

L2
z < B (see the first of (C4a)) (i.e., are real and opposite if 0 < L2

z < B , passing from 0 if
L2

z = A = C ) and purely imaginary and conjugates if L2
z > B (see the second of (C4b)).

This proves the Case iii) of the Proposition.

Case 3: A < C < B

C > A ⇐⇒
√

L2
2 + 60L2

3(1− e23) > −L2 + 20L2
3

L2
(1− e23) (C5)

C < B ⇐⇒
√

L2
2 + 60L2

3(1− e23) > L2 − 20L2
3

L2
(1− e23) . (C6)

Let us start from (C5); we have to solve the following
⎧
⎪⎪⎨
⎪⎪⎩

−L2 + 20L2
3

L2
(1− e23) ≥ 0

L2
2 + 100L2

3(1− e23) > L2
2 +

400L4
3

L2
2

(1− e23)
2

∧
{
−L2 + 20L2

3

L2
(1− e23) < 0
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that gives
⎛
⎜⎜⎜⎝

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

e23 ≤ 1− L2
2

20L2
3

e23 > 1− L2
2

4L2
3

∧
{

e23 > 1− L2
2

20L2
3

⎞
⎟⎟⎟⎠ �⇒ e23 > 1− L2

2

4L2
3

. (C7)

Similarly, we can solve (C6), having the following
⎧
⎪⎪⎨
⎪⎪⎩

L2 − 20L2
3

L2
(1− e23) ≥ 0

L2
2 + 100L2

3(1− e23) > L2
2 +

400L4
3

L2
2

(1− e23)
2

∧
{

L2 − 20L2
3

L2
(1− e23) < 0

that gives
⎛
⎜⎜⎜⎝

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

e23 ≥ 1− L2
2

20L2
3

e23 > 1− L2
2

4L2
3

∧
{

e23 < 1− L2
2

20L2
3

⎞
⎟⎟⎟⎠ �⇒ ∀ e3. (C8)

Finally, putting together (C7) and (C8), we get e23 > 1− L2
2

4L2
3
. Let us observe that if 1− L2

2
4L2

3
<

0 , i.e., L2 > 2L3 , then the last inequality for e3 is automatically satisfy. Then, remembering
that we are in the case ii) and putting together the results, it follows that

A < C < B ⇐⇒
(
0 < L2 ≤ 2L3 ∧ e3 >

√
1− L2

2

4L2
3

)
∨ (L2 > 2L3) .

Again, studying (C4a) and (C4b), we can conclude that if (0 < L2 ≤ 2L3 ∧ e3 >√
1− L2

2

4L2
3

)
∨ L2 > 2L3 , then the eigenvalues are real and opposite if 0 < L2

z < A

(see the second of (C4a)), purely imaginary and conjugates if A < L2
z < C (see the first

of (C4b)), real and opposite if C < L2
z < B (see the first of (C4a)) and again purely imag-

inary and conjugates if L2
z > B (see the second of (C4b)). This proves the last Case iv) of

the Proposition.
Actually, there is a last case to be analyzed, that will not give any contribution, i.e.,

Case 4: C ≥ B

C ≥ B ⇐⇒
√

L2
2 + 60L2

3(1− e23) ≤ L2 − 20L2
3

L2
(1− e23)

i.e.,
⎧
⎪⎪⎨
⎪⎪⎩

L2 − 20L2
3

L2
(1− e23) ≥ 0

L2
2 + 100L2

3(1− e23) ≤ L2
2 +

400L4
3

L2
2

(1− e23)
2

⇐⇒

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

e23 ≥ 1− L2
2

20L2
3

e23 ≤ 1− L2
2

4L2
3

that has no solutions. This concludes the proof of the Proposition. ��
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