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Abstract
We investigate the long-term dynamics of HD60532, an extrasolar system hosting two giant
planets orbiting in a 3:1 mean motion resonance. We consider an average approximation
at order one in the masses which results (after the reduction in the constants of motion) in
a resonant Hamiltonian with two libration angles. In this framework, the usual algorithms
constructing the Kolmogorov normal form approach do not easily apply and we need to
perform some untrivial preliminary operations, in order to adapt the method to this kind of
problems. First, we perform an average over the fast angle of libration which provides an
integrable approximation of the Hamiltonian. Then, we introduce action-angle variables that
are adapted to such an integrable approximation. This sequence of preliminary operations
brings the Hamiltonian in a suitable form to successfully start the Kolmogorov normalization
scheme. The convergence of the KAM algorithm is proved by applying a technique based
on a computer-assisted proof. This allows us to reconstruct the quasi-periodic motion of the
system, with initial conditions that are compatible with the observations.
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1 Introduction

The discovery of the first multiple-planet extrasolar system, υ Andromedæ (see Butler et al.
(1999)), immediately raised the question of its stability, notably from a dynamical system
point of view. Nowadays, more than 800 multiple-planet extrasolar systems have been dis-
covered, making the question even more relevant.

Typically, these systems have been numerically investigated as a sort of inverse problem,
prescribing their stability in order to determine ranges of possible values of a few orbital ele-
ments which are unknown or poorly known (e.g., inclinations and longitudes of the nodes).
The numerical investigations of the dynamical behavior of many interesting extrasolar plan-
etary systems have been done complementing long-term integrations (see, e.g., McArthur
et al. (2010) and Deitrick et al. (2015)) with refined numerical techniques, like for instance
the frequency analysis method or the MEGNO chaos indicator (see, e.g., Laskar and Correia
(2009) and Volpi et al. (2019), respectively).

Perturbation theory allows to complement the numerical investigations with rigorous ana-
lytic results. Normal form methods have a long-standing tradition, and their applications to
problems that are relevant in Celestial Mechanics have grown more and more with the devel-
opment of the algebraic manipulators (for an introduction to the main concepts of this kind
of software see, e.g., Giorgilli and Sansottera (2012)). Therefore, in such a framework the
study of extrasolar planetary systems (in particular, of their secular dynamics) started very
soon (see, e.g., Michtchenko and Malhotra (2004)). The analytic investigation via computer
algebra complements the knowledge provided by long-term numerical integrations. In par-
ticular, we think that the modern Hamiltonian perturbation theory gives a proper framework,
where it is possible to naturally explain why a planetary configuration is stable and answer
this question also with quantitative arguments. In this respect, such a goal of the normal
form approaches is somehow reminiscent of the aims of other recent works about the plan-
etary system dynamics, which are not limited just to detection of chaos, but they succeed in
explaining which is the source of instability in terms of superposition of a few resonances
that are properly determined (see Mogavero and Laskar (2022)).

According to the main results for quasi-integrable systems that have been obtained in the
last decades, effective stability1 is ensured in the vicinity of an invariant torus by applying
the KAM theorem jointly with the Birkhoff normal form and, eventually, the Nekhoroshev
theorem (see Morbidelli and Giorgilli (1995) for a complete discussion of this strategy,
while applications to planetary dynamical models are described in Giorgilli et al. (2009) and
Giorgilli et al. (2017)).

In turn, the construction of the invariant torus through Kolmogorov normal form is more
effective if the starting Hamiltonian is close to a suitable normal form designed to locate
another invariant object. For instance, a preliminar (partial) construction of the Birkhoff
normal form allows one to prove the existence of invariant tori which are in the neighborhood
of a stable equilibrium point and are well approximating the orbits of celestial objects for
both the secular dynamics of the Sun-Jupiter-Saturn system and the Trojan asteroids (see
Locatelli and Giorgilli (2000) and Gabern et al. (2005), respectively). In the former case,
the equilibrium solution corresponds to orbits which are both circular and coplanar in the
approximation provided by the average over the fast angles (up to order two in the masses) of
the planetary three-body model; such an approach has been used to study the inverse problem
concerning the stability of a few extrasolar systems in the framework we have sketched

1 A dynamical system is said to be effectively stable when the time needed to eventually escape from a small
region of the phase space is proved to largely exceed the expected life-time of such a system.
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above (see Volpi et al. (2018)). In the latter case, the stationary solution is represented by
one of the equilateral Lagrangian points that are commonly denoted with L4 , L5 ; moreover,
here, it has been necessary to preliminarily perform also the construction of an intermediate
invariant torus well approximating each sought torus, by using a variant of the Kolmogorov
normalization algorithm that avoids small translations on the actions at every step of such
a computational procedure (which is detailed in Sect. 6). In all these works, the rate of
convergence of the normalization algorithm is as faster as the final invariant torus is closer to
the equilibrium solution, this distance being proportional to the norm of the actions, which
are properly defined with respect to action-angle canonical coordinates that are preliminarily
introduced in a suitable way. Therefore, these examples highlight that there are regions of
the phase space which are dynamically stable because they are surrounding KAM tori that,
in turn, are persistent to perturbations due to their vicinity to an elliptic equilibrium point.

A strategy that is similar to the previous one (except for some further refinement) has
made possible to fully develop an application of the KAM theory to the secular dynamics of
a three-body model of the υ Andromedæ planetary system (see Caracciolo et al. (2022)). For
that problem, first the normal form for an elliptic torus has been constructed. Afterward, an
intermediate invariant torus is constructed by performing the already mentioned variant of
the Kolmogorov algorithm designed so as to skip the small translations at each normalization
step (as it is described in Sect. 6). Finally, the classical Kolmogorov algorithm is proved to
converge to the normal form corresponding to the desired torus. This result can be explained
as follows: the secular dynamics of the three main bodies of the υ Andromedæ planetary
system is stable because it is strictly winding around a linearly stable periodic orbit (i.e.,
a one-dimensional elliptic torus). The distance from the elliptic torus to the orbit under
consideration (which ismeasuredwith respect to the value of a suitable action coordinate) has
been translated in an easy-to-use numerical criterion evaluating the robustness of planetary
configurations. Such a numerical indicator has been successfully applied to the study of the
inverse problem concerning the stability of the υ Andromedæ planetary system (see Locatelli
et al. (2021)). This kind of numerical exploration looks to be very suitable for applications
to several (similar) exoplanetary systems, and it is subject of some works in progress.2

As far as we know, an application of KAM theory to realistic models of planetary systems
inMeanMotion Resonance (hereafter often replaced with its acronymMMR) is still lacking;
filling this gap is the main motivation of the present work. Let us recall that a non-negligible
fraction of the multiple-planet extrasolar systems which have been recently discovered is
expected to be in MMR (see “The Extrasolar Planet Encyclopedia”, http://exoplanet.eu).
A few of them are hosting exoplanets that move on rather eccentric orbits; usually, they
have been detected by using the Radial Velocity method. We focus our attention on the two
exoplanets orbiting around the HD60532 star. We consider their orbital dynamics in the
framework of the same planar model already considered in Laskar and Correia (2009) and
Sansottera and Libert (2019), where the existence of quasi-periodic stable motions is shown
by applying the methods of frequency analysis and a basic normal form approach jointly with
numerical integrations, respectively. In both the papers we have just mentioned, the model
is unambiguously shown to be locked in a 3 : 1 MMR, which is double in the sense that
there are two independent combinations of angles (including the mean anomalies) which
are in a libration regime. After having performed an average over a fast revolution angle
and the reduction in the angular momentum, the problem is described by a two degrees of
freedom Hamiltonian. Since the orbits of those exoplanets are rather far from being circular,
we think that it is not appropriate to limit us to an approach based on expansions up to the

2 M. Volpi, U. Locatelli, C.Caracciolo, M. Sansottera In preparation.
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second order in the eccentricities (as it has been successfully done, with different purposes, in
Batygin andMorbidelli (2013) and Pucacco (2021)). Therefore, in the present work we study
an Hamiltonian model which is defined by suitable expansions in the canonical coordinates
up to a larger order in the eccentricities (i.e., 6; see Sect. 2 for the proper definitions of
these rather standard expansions). At the end of this paper, in Sect. 6 we prove the existence
of an invariant KAM torus carrying quasi-periodic motions which are consistent with the
orbits generated by the numerical integrations starting with initial conditions compatible
with the observations. This result of ours is fully rigorous in the sense that it is completely
demonstrated by using a computer-assisted proof, based on a normal form approach (for an
introduction to this method see, e.g., the Appendixes of Caracciolo and Locatelli (2020)).
Let us recall that this is not the only viable technique in this context; in particular, a careful
application of the so-called a posteriori approach has been able to prove the existence of
KAM tori for values of the small parameter ε extremely close to the breakdown threshold in
the famous case of the standard map3 (see Figueras et al. (2017)). In the framework of the
computer-assisted approach wework with, we emphasize that the preliminary approximation
of the Kolmogorov normal form is fundamental for the eventual success of the application of
KAM theory. Indeed, the convergence to the final sought KAM torus strongly depends on the
accuracy given by the intermediate normal forms. We emphasize that none of the strategies
we have previously sketched (even if they are used in junction each other) is sufficient to
perform the preliminary operations in such a way to allow the final constructive algorithm to
be convergent. Therefore, in Sect. 3–5 we need to carefully describe that part of our approach
that is new and so crucial. We stress that the intermediate Hamiltonian acting as a keystone
for our approach is provided by a further average with respect to one of the librational angles;
this is done so as to produce an integrable approximation of the final Kolmogorov normal
form, after having performed some further (and suitable) canonical transformations. Let us
also recall that an integrable model for the dynamics of planetary systems in MMR has been
derived in another way in Hadden (2019), and it is used for a different analysis with respect
to ours.

We do believe that the whole computational procedure we describe in the present paper
can apply also to extrasolar planetary systems that are similar to the one orbiting around
HD60532. Nevertheless, the discussion of the generality of the approach goes beyond our
scope and it is deferred to future investigations.

2 Resonant Hamiltonianmodel at order one in themasses

We consider a planar planetary three-body problem, consisting of a central star having mass
m0 and twocoplanar planets havingmassesm1 andm2. Theproblemhas 6degrees of freedom,
which can be reduced to 4 due to the conservation of the linear momentum. Introducing
the canonical astrocentric variables (r̃1, r̃2, r1, r2), r j being the coordinates and r̃ j the
conjugate momenta, the Hamiltonian reads

H(r̃, r) = T (0)(r̃) +U (0)(r) + T (1)(r̃) +U (1)(r)

3 So remarkable performances are also due to the fact that the a posteriori method tries to determine just
the parameterization of the invariant torus, whose existence proof is aimed at. Therefore, this approach takes
profit of the fact that the dimension of the problem is reduced, because the equivalent of Taylor expansions
with respect to the actions in the phase space is not considered (see Haro et al. (2016) for a description of this
computer-assisted technique).
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Table 1 Orbital parameters for the HD60532 extra-solar system with i = 20◦ and m0 = 1.44 M�, where
M� and MJup stand for the masses of the Sun and Jupiter, respectively

Planet name Planet index j m j [MJup] a j [AU] e j ω j [deg] Mj [deg]

HD60532b 1 3.1548 0.7606 0.278 352.83 21.950

HD60532c 2 7.4634 1.5854 0.038 119.49 197.53

where

T (0)(r̃) = 1

2

2∑

j=1

∥∥r̃ j
∥∥2

(
1

m0
+ 1

m j

)
, U (0)(r) = −G

2∑

j=1

m0m j∥∥r j
∥∥ ,

T (1)(r̃) = r̃1 · r̃2
m0

, U (1)(r) = −G
m1m2

‖r1 − r2‖
and G is the gravitational constant (see, e.g., Laskar (1989)). It is convenient to introduce the
Poincaré canonical variables

� j = m0m j

m0 + m j

√
G(m0 + m j )a j , λ j = Mj + ω j ,

ξ j = √
2� j

√
1−

√
1−e2j cos(ω j ) , η j = −√

2� j

√
1−

√
1−e2j sin(ω j ) ,

where a j , e j , Mj and ω j are the semi-major axis, the eccentricity, the mean anomaly and the
argument of the pericenter of the j-th planet, respectively. In addition, we also introduce the
translations L j = � j −�∗

j where �∗
j is defined taking into account the corresponding value

a∗
j of the semi-axis which is compatible with the observations. Expanding the Hamiltonian

in Taylor–Fourier series around the origin of the variables (L, ξ , η), we get

H(L,λ, ξ , η) = K (L) + μP(L,λ, ξ , η)

= n∗ · L +
∞∑

j1=2

h(Kep)
j1,0

(L) + μ

∞∑

j1=0

∞∑

j2=0

h(P)
j1, j2

(L,λ, ξ , η)

where n∗
j =

√
G(m0 + m j )/(a∗

j )
3, for j = 1, 2, andμ = max{m1/m0,m2/m0}. The action-

angle variables (L,λ) are referred to as the fast variables and the Cartesian variables (ξ , η)

as the secular ones. In particular, the functions h(Kep)
j1,0

of the Keplerian part K (L) are homo-

geneous polynomials of degree j1 in the actions L, while the terms h(P)
j1, j2

of the perturbation
P(L,λ, ξ , η) are homogeneous polynomials of degree j1 in L, degree j2 in the secular
variables (ξ , η) and trigonometric polynomials in the angles λ.

Of course, in practical applications a finite truncation of the Hamiltonian above is in order.
The truncation rules adopted in the present work will be detailed in the following.

3 The case study of the HD60532 extra-solar system

Let us focus on the planar three-body problem for the HD60532 extra-solar system. The
orbital parameters and the initial conditions are fixed as in Table 1, according to the values
given in Laskar and Correia (2009); Alves et al. (2016); Sansottera and Libert (2019). This
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Fig. 1 Evolutions in time (whose adopted unit of measure is year) of the libration angles, which are measured
in degrees and their corresponding plots of λ1 − 3λ2 + 2ω1 , λ1 − 3λ2 + 2ω2 and ω2 − ω1 appear in the
panels above from top to bottom, respectively

systemconsists of twogiant planets in a 3 : 1MMR,orbiting around the star namedHD60532.
The motion is assumed to be co-planar with an inclination i (with respect to the plane that is
normal to the line of sight) which is fixed at 20◦. As a consequence, the initial masses of the
planets are increased by the factor 1/ sin(i) with respect to the minimum ones detected by
means of the radial velocitymethod. The presence of themeanmotion resonance is confirmed
by the evolution of the resonant angle λ1−3λ2+2ω1 , which librates around 180◦. Moreover,
the system also exhibits a second libration angle given by the difference of the arguments
of the pericenters ω2 − ω1 , as it has been remarked in Laskar and Correia (2009); Alves
et al. (2016); Sansottera and Libert (2019). Therefore, also the average of λ̇1 − 3λ̇2 + 2ω̇2

is equal to zero. The evolutions of the resonant angles are reported in Fig. 1; they have been
produced by running a symplectic integrator of type SBAB3 , which is described in Laskar
and Robutel (2001). The plots of the resonant angles highlight that the amplitudes of libration
are wide, in particular for the resonant angle λ1 − 3λ2 + 2ω1 , which has a width of about
280◦. This makes the study of the long-term dynamics muchmore tricky, making it necessary
to develop a suitable approach in order to reconstruct the quasi-periodic motion pointed out
by the numerical integrations of the system. This is the reason why it is natural to expect that
it is convenient to consider λ1 − 3λ2 + 2ω1 as resonant angle instead of λ1 − 3λ2 + 2ω2 ,
the libration amplitude of the latter being larger than 360◦.

For what concerns the eccentricities, looking at Fig. 2 one can easily remark that the one
of the inner planet can also exceed the value 0.3, during its dynamical evolution. This makes
evident that the orbital configuration of these exoplanets is quite different with respect to that
of the biggest planets of our Solar System, whose orbits are nearly circular. Therefore, it is
natural to expect that a remarkable effort will be needed to adapt normal forms algorithms
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Fig. 2 Evolutions in time (measured in years) of the semi-major axes [AU] and eccentricities of the exoplanets
hosted in the HD60532 extra-solar system

which worked efficiently to construct quasi-periodic approximations of the orbital motions
of the major planets in our Solar System (see Locatelli and Giorgilli (2005) and Locatelli and
Giorgilli (2007)). In order to efficiently implement a normal form approach to the HD60532
extra-solar system, we will need to design a few modifications to that basic scheme. This has
to be done in such a way to make it more similar to the approach that successfully worked
in the case of the υ Andromedæ planetary system (see Caracciolo et al. (2022)), which also
shows the phenomenon of the librations of the difference of the pericenters arguments (i.e.,
the so-called apsidal locking) as in the case under study of HD60532.

3.1 The resonant model

Being interested in the long-term dynamics of a system that is in MMR, we consider a
resonant approximation of the Hamiltonian that allows to reduce the number of degrees of
freedom to 2. Hence, we now consider a set of coordinates which allows to better highlight
this point. First of all, let us introduce the action-angle variables (I,ω) which replace the
secular variables (ξ , η) by means of the following canonical transformation:

ξ j = √
2I j cos(ω j ) η j = −√

2I j sin(ω j ) for j = 1, 2.
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Now, we also introduce the resonant variables related to the two libration angles,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pδ = I1 + 2L1

pσ = L1

pφ = I1 + I2 + 2L1

pθ = L2 + 3L1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ = ω2 − ω1

σ = λ1 − 3λ2 + 2ω1

φ = −ω2

θ = λ2

.

In this new set of action-angle coordinates, we consider the average of the Hamiltonian over
the (unique) non-resonant revolution angle θ , i.e.,

H̄ = 1

2π

∫ 2π

0
H

(
pδ, pσ , pφ, pθ , δ, σ, φ, θ

)
dθ.

Therefore, the angles φ and θ turn out to be cyclic variables for the Hamiltonian H̄ . Indeed,
the action pφ is exactly the total angular momentum, which is a constant of motion for
the whole three-body planetary system. Since we perform an average of the Hamiltonian
with respect to a fast angle of orbital revolution, then it is usual to refer to H̄ as a resonant
approximation at order one in the masses. Such an averaged model shows two first integrals
and can be reduced to two degrees of freedom. The accuracy of the approximation at order
one in the masses is discussed in Libert and Sansottera (2013) and Sansottera and Libert
(2019), for general 2D three-body models of exoplanetary systems and for particular cases in
mean-motion resonance, respectively. This is made by means of comparisons with the results
provided by both the approximation at order two in the masses and the numerical integrations
of the non-averaged system.

The center of the librations of the resonant angles δ and σ corresponds to an equilibrium
point of the angle variables of the resonant Hamiltonian H̄ . With the aim of expanding the
Hamiltonian H̄ around its equilibrium point, we also look for the values, say (p∗

δ , p
∗
σ ), of the

conjugate momenta pδ and pσ such that the Jacobian of the Hamiltonian H̄ is equal zero.
Once we have determined the equilibrium point4 (p∗

δ , p
∗
σ , π, π), we can translate the origin

of the canonical variables, by defining

y1 = pδ − p∗
δ y2 = pσ − p∗

σ x1 = δ − π x2 = σ − π

and expand the Hamiltonian in Taylor series around the origin. We also proceed with a
diagonalization of the quadratic part of the Hamiltonian. Indeed, there is a linear canonical
transformation5 (y1, y2, x1, x2) = C(Y1, Y2, X1, X2) conjugating the quadratic approxima-
tion to a couple of harmonic oscillators. As a result, the Hamiltonian in the new polynomial
variables (Y , X) reads

H(Y , X) = ω1

2
(Y 2

1 + X2
1) + ω2

2
(Y 2

2 + X2
2) +

∑

�≥1

h�(Y , X) (1)

where the functions h� are homogeneous polynomials of degree �+2 in the variables (Y , X).
Let us remark that, according to a standard notation in the context of the KAM theory,
hereafter, ω1 and ω2 are used to denote the frequencies (while they have been used before to
refer to the arguments of the pericenters).

4 For the problem we are considering, we have found the following values: p∗
δ = 0.0227533, p∗

σ =
−0.00128589.
5 A procedure which allows to determine such a canonical transformation C can be found in Sect. 7 of
Giorgilli et al. (1989). In order to avoid ambiguities, here the linear transformation C is chosen in such a way
that |ω1| < |ω2|.

123



Existence proof of librational invariant... Page 9 of 25 24

Themain goal of this work is to investigate the stability of the Hamiltonianmodel given by
(1) and to reconstruct its quasi-periodicmotion, starting from initial conditions corresponding
to the data reported in Table 1. First of all, let us stress that the Hamiltonian (1) has an elliptic
equilibrium point at the origin and, in addition, in the case of the extra-solar systemHD60532,
the two frequencies ω1 and ω2 also have the same sign. Hence, it would be quite natural to
try to deal with the problem using a Lyapunov confinement argument about the values of
the actions after having performed a few steps of the Birkhoff normalization algorithm.
However, this approach fails because the initial conditions (expressed in the polynomial
variables (Y , X)) are too far from the equilibrium point situated at the origin. Hence, we
need a less naif method in order to tackle the problem under study. Therefore, one could try
another constructive procedure that has shown to be successful in a similar context, i.e., for
models of the secular planetary dynamics (see Locatelli and Giorgilli (2000), Giorgilli et al.
(2017) and Volpi et al. (2018)). Indeed, it could be convenient to first introduce action-angle
variables, with the aim of performing a translation of the actions and then, applying the
standard Kolmogorov normalization algorithm. Nevertheless, also this attempt fails, because
it is not enough to achieve the convergence of the final procedure, even if preceded by a finite
number of steps of the Birkhoff normalization algorithm.

We are then led to develop a different approach which is adapted to the special kind
of problem we are considering. Let us remark that in this model a slow dynamics can be
distinguished from a faster one, as we can see from the plots of the two libration angles that
are reported in the first panel of Fig. 1 and the third one. In particular, the difference of the
argument of the pericenters points out the slow period, that isO(1/μ), while themeanmotion
resonant angle σ also highlights the presence of a faster period. Therefore, the key strategy
to face the problem is to preliminarily average the Hamiltonian with respect to the faster
libration angle, namely over an angle related to the MMR. Let us recall that, by applying the
procedure mentioned in footnote5, it can be easily shown that the period of such a (so called)
fast libration angle is O(1/

√
μ). Therefore, it is somehow intermediate between the secular

angles and the orbital revolution ones. This justifies the name we have decided to adopt, in
order to refer to it.

4 Average over the fast libration angle

In this section, we describe the algorithm which allows to perform the average of the Hamil-
tonian with respect to the fast libration angle.

We introduce the action-angle variables (J,ϑ) via the canonical transformation (Y , X) =
A(J,ϑ), namely

Y j = √
2J j cos(ϑ j ) X j = √

2J j sin(ϑ j ) for j = 1, 2. (2)

After this canonical change of coordinates, the Hamiltonian (1) reads

H(0)(J,ϑ) = ω · J +
∑

�≥1

h(0)
� (J,ϑ) with (J,ϑ) ∈ R

2 × T
2 (3)

where the functions h(0)
� are homogeneous polynomials of degree � + 2 in the square root of

the actions J and trigonometric polynomials in the angles ϑ . The superscript refers to the
normalization step of the averaging algorithm we are going to describe in detail.
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4.1 Formal algorithm for the construction of a resonant Birkhoff normal form

As usual, this normal form is constructed by using the Lie series formalism, with the Lie
series operator exp

(
Lχ

)
defined as follows:

exp
(
Lχ

) =
∑

s≥0

1

s!L
s
χ and Lχ · = {·, χ} .

Moreover, we denote by Ps the class of functions depending on the action-angle variables
(J,ϑ) in such a way that, ∀ g ∈ Ps , g ◦ A−1 is an homogeneous polynomial of degree s in
the Cartesian canonical variables (Y , X). In more detail, the Taylor–Fourier expansion of a
generic function g ∈ Ps can be written as

g(J,ϑ) =
∑

�∈N2

�1+�2=s

∑

k1=−�1, −�1+2,..., �1
k2=−�2, −�2+2,..., �2

c�,k
(√

J1
)�1

(√
J2

)�2 exp
[
i(k1ϑ1 + k2ϑ2)

]
, (4)

where the complex coefficients are such that c�,−k = c̄�,k. For the sake of brevity, in the
following we will adopt the usual multi-index notation for the powers in the square roots of
the actions, i.e., the product (

√
J1)�1 (

√
J2)�2 will be denoted as (

√
J)�; moreover, they will

be subject to the restriction |�| = s for every term appearing in the expansion of a function
g ∈ Ps , being |�| := �1 + �2 . In the following Lemma,6 we are going to describe the
behavior of such a class of functions with respect to the Poisson brackets.

Lemma 4.1 Let f ∈ Ps1+2 and g ∈ Ps2+2 , then { f , g} ∈ Ps1+s2+2 ∀ s1 ∈ N \ {0} ,
s2 ∈ N \ {0}.

Proceeding in a perturbative way, we want to remove step by step the dependence on the
fast angle ϑ2 (which is related to the fast libration angle σ ) from the perturbative part of the
Hamiltonian. Hence, after having performed r − 1 canonical changes of coordinates defined
by the Lie series operator, the Hamiltonian (3) is brought to the following form:

H(r−1)(J,ϑ) = ω · J +
r−1∑

�=1

Z�(J, ϑ1) +
∑

�≥r

h(r−1)
� (J,ϑ)

where Z� ∈ P�+2 and h(r−1)
� ∈ P�+2 .

Let us remark that, with abuse of notation, we are denoting the new action-angle variables
(that are introduced by the canonical transformation defined by any normalization step) with
the same pair of symbols (J,ϑ), which has been used to denote the arguments ofH(0). As it
is usual for the Lie series formalism, this is done in order to contain the proliferation of the
symbols.

The Hamiltonian in normal form up to order r is obtained as H(r) = exp
(
Lχr

)
H(r−1),

where the generating function χr is determined by solving the homological equation

Lχr (ω · J) + h(r−1)
r (J,ϑ) = Zr (J, ϑ1)

with Zr (J, ϑ1) := 〈h(r−1)
r 〉ϑ2 where as usual 〈·〉ψ denotes the angular average with respect

to ψ . In order to solve such an equation, let us first write the Taylor–Fourier expansion of
the perturbative term as

h(r−1)
r (J,ϑ) =

∑

�∈N2

|�|=r+2

∑

k1=−�1, −�1+2,..., �1
k2=−�2, −�2+2,..., �2

c(r)
�,k

(√
J
)� exp

(
ik · ϑ

)
.

6 Its easy proof is sketched (for a wider type of classes of functions) in Subsect. 3.1 of Locatelli et al. (2022).
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Therefore, the r -th generating function writes as

χr (J,ϑ) =
∑

�∈N2

|�|=r+2

∑

k1=−�1,−�1+2,..., �1
k2=−�2, −�2+2,..., �2; k2 =0

c(r)
�,k

ik · ω

(√
J
)� exp

(
ik · ϑ

)
.

Clearly, the generating function can be properly defined if and only if the frequency vector
ω is non-resonant up to the order r + 2. This means that k · ω = 0 ∀ 0 < |k| ≤ r + 2.
Such a property is certainly satisfied if we assume that ω satisfies the Diophantine condition,
namely

|k · ω| ≥ γ

|k|τ ∀ k ∈ R
2 \ {0}

for some fixed values of γ > 0 and τ ≥ 1. Let us also recall that almost all the vectors in R2

are Diophantine with respect to the Lebesgue measure.
The transformed functions h(r)

� appearing in the expansion of the new Hamiltonian

H(r)(J,ϑ) = Z(r)(J, ϑ1) + R(r+1)(J,ϑ)

= ω · J +
r∑

�=1

Z�(J, ϑ1) +
∑

�≥r+1

h(r)
� (J,ϑ)

(5)

are defined as follows

h(r)
� =

��/r�∑

j=0

1

j !L
j
χr
h(r−1)

�− jr for � ≥ r + 1.

A simple induction argument, which is based on the application of Lemma 4.1, allows us
to verify that h(r)

� ∈ P�+2 ∀ �. Hence, after a finite number r of normalization steps, we
get the Hamiltonian H(r), which is the sum of a normal form part Z(r)(J, ϑ1) = ω · J +∑r

�=1 Z�(J, ϑ1), which is integrable, and a remainderR(r+1)(J,ϑ) = ∑
�≥r+1 h

(r)
� (J,ϑ).

Indeed, the averaged part Z(r)(J, ϑ1) is independent of the fast angle ϑ2. Therefore, the
action J2 is constant along the flow induced by Z(r), because

{
J2, Z(r)

} = 0 . Moreover,
the averaged part Z(r) results in an integrable approximation, because it can be reduced to
an Hamiltonian having just one degree of freedom.

For later convenience, it is also worth to recall that the canonical transformation C(r)

defining the resonant Birkhoff normal form up to the r -th step of the constructive algorithm
is explicitly given by

C(r)(J,ϑ) = expLχr ◦ expLχr−1 ◦ . . . expLχ1 (J,ϑ). (6)

In fact, the exchange theorem for Lie series ensures us that H(r)(J,ϑ) = H(0)
(
C(r)(J,ϑ)

)

∀ (J,ϑ) ∈ B(0) ×T
2, being B(0) a suitable open ball centered around the origin of R2 (see

Gröbner (1973) and Giorgilli (2022)).

4.2 Comparison between numerical integrations and semi-analytic solutions

In this subsection, we are going to check the validity of the averaged Hamiltonian up to a
finite order r̃ (namely the integrable approximation Z(r̃)) in describing the orbital motions
induced by the Hamiltonian (1) which describes the slow dynamics of a planetary system in
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Fig. 3 Evolutions in time [yr] of the slow variables (left panels) and the fast ones (right panels), given by the
numerical integrations of the Hamiltonian (1) (blue curves) and the semi-analytic solution of the averaged
Hamiltonian Z(6) (red curves)

MMR. For what concerns our extra-solar model, this latter Hamiltonian, expressed in action-
angle variables as in (3), has been expanded up to order 6 in the square root of the actions.
We perform 6 normalization steps, and our goal is to compare numerical integrations.7 of
the Hamiltonian in MMR (1) with the semi-analytic solution of the averaged Hamiltonian
up to order 6, both described in the Cartesian variables Y j = √

2J j cos(ϑ j ) and X j =√
2J j sin(ϑ j ), for j = 1, 2. The choice r̃ = 6 allows to obtain a reasonable balance between

the accuracy and the needed computational time.
Let us recall that the averaged Hamiltonian Z(6) is integrable according to the Liouville–

Arnold–Jost theorem (for a complete proof, see, e.g., Giorgilli (2022)). Therefore, there exists
an analytic expression (eventually involving also the computation of integrals and the inver-
sion of some functions) which defines a canonical transformation (J,ϑ) = �(P,ϕ), such
that the averaged approximation Z(6) depends on the actions P only, when it is transformed
according to the change of variables �, i.e.,

∂ Z(6)
(
�(P,ϕ)

)

∂ϕ j
= 0 ∀ j = 1, 2.

Thus, in the new set of action-angle variables (P,ϕ) the equations of motion related to the
averaged Hamiltonian Z(6) ◦ � can be solved very easily. Moreover, we can also evaluate
the composition C(6) of canonical transformations introduced in the previous Subsection in
order to define the action-angle variables (P,ϕ) and to obtain the Hamiltonian in normal
form up to order 6. The normal form algorithm can be finally translated in a so-called semi-
analytic procedurewhich allows to determine themotion law t �→ (Y(t), X(t)) that is defined
by the flow induced by the averaged Hamiltonian Z(6). Such a computational procedure is

7 All the computations discussed in the present Section and in the following one, which are both of symbolic
type and of purely numerical kind, have been performed by using Mathematica.
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summarized (∀ t ∈ R) by the following scheme:

(
Y(0), X(0)

) (
P(0),ϕ(0)

)

(
Y(t), X(t)

) (
P(t) = P(0),ϕ(t) = βt + ϕ(0)

)

(
A ◦ C(6) ◦ �

)−1

�t
Z(6)◦�

A ◦ C(6) ◦ �

(7)

where �t
Z(6)◦�

is nothing but the flow at time t induced by the Hamiltonian Z(6) ◦ � and

the angular velocity is given by β j = ∂
∂Pj

(
Z(6) ◦ �

)
, while A and C(6) are defined in (2)

and (6), respectively. Let us stress that the initial conditions (P(0),ϕ(0)) can be obtained by
inverting the composition of the canonical transformations previously described, while the
initial conditions (Y(0), X(0)) are the ones derived from the observations. This semi-analytic
solution could be compared with the one obtained by a direct integration of the Hamiltonian
(1). For the sake of simplicity, we do not perform the last canonical transformation �,
which is essential to properly define the semi-analytic scheme (7), but it would require to
perform some operations (e.g., the aforementioned integrals and the inversions of functions)
that can be hard to implement in a fully explicit way. We just exploit the uniqueness of
the solution of the corresponding Cauchy problem, and we approximate it numerically, by
directly integrating the equations of motion of the averaged Hamiltonian Z(6). Afterward,
we use the canonical transformations (2) and (6) to express the solution in the variables
(Y(t), X(t)) and we compare it with the numerical integration of the Hamiltonian (1).

As we can see from the plots in Fig. 3, for the relatively faster pair of variables (Y2, X2)

we have a good agreement between the two solutions, both in terms of amplitude and in
terms of frequency. Instead, as regards the slow variables (Y1, X1), there is a remarkable
error concerning the frequency. In principle, this discrepancy might be amended with an
approximation at order two in the masses (which can be adapted to planetary systems in
MMR, as explained in Sansottera and Libert (2019)), but this goes beyond the scope of the
present paper.

5 Action-angle variables adapted to the integrable approximation

Before showing that KAM theorem applies in the present context, we need another pre-
liminary essential step in order to make the algorithm convergent. Specifically, we have to
introduce a set of action-angle variables, that are more suitable to describe the integrable
approximation of the Hamiltonian (5) than the pair (J,ϑ) as it is defined after having per-
formed the canonical transformation C(6). Indeed, the ideal action-angle coordinates would
be (P,ϕ), the ones we avoided to compute, because of the technical difficulties due to an
eventual application of the Liouville–Arnold–Jost theorem. Let us recall that P1 and P2 would
be constant of motion for the integrable approximation Z(6) and the same holds true also for
the action J2 .

Hence, if we consider the orbit of the fast motion of the integrable approximation Z(6) in
the Cartesian variables8 (Y2, X2) = (

√
2J2 cos(ϑ2),

√
2J2 sin(ϑ2)), we get a circular orbit,

8 Let us remark that, once again, with a little abuse of notation, we are denoting the variables used before and
after the averaging normalization algorithm with the same name.
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Fig. 4 Orbits of the slow dynamics (left panel) and the faster one (right panel) for what concerns the integrable
approximation Z(6). Both the plots refer to the phase space (Y , X)

as it is shown in the right panel of Fig. 4. Instead, looking at the orbit of the slowmotion in the
Cartesian variables (Y1, X1) = (

√
2J1 cos(ϑ1),

√
2J1 sin(ϑ1)), that are related to the secular

dynamics, we can observe that such an orbit is far from being circular. Therefore, at this stage
we aim at introducing a second action which is closer than J1 to be a constant of motion. In
otherwords, our approach consists in the constructionof action-angle variableswith the aimof
trying to circularize (at least partially) the orbit describing the slow dynamics in the integrable
approximation. Thus, trying to introduce an action which depends only on the distance from
the origin in the Cartesian plane endowed with coordinates (Y1, X1), we are dealing with
a quasi-constant of motion and we approach better the sought (final) KAM torus. From a
practical point of view, our approach is translated in an explicit computational procedure,
by suitably applying the frequency analysis method to the flow induced by the integrable
approximation Z(6) (see Laskar (2003) for an introduction to such a numerical technique).
This can be done by studying the Fourier decomposition of the signal Y1(t) + iX1(t) �∑Nc

j=1 A1, j ei(k j ν1t+ϕ1, j ), where Nc is the number of components considered, A1, j > 0,
k j ∈ Z, ϕ1, j ∈ (−π, π] and 2π/ν1 is the period of such a motion law. By taking into
consideration only the Nc = 3 components of the signal which correspond to k j = 0,±1
for j = 1, 2, 3, it is easy to show that the corresponding approximation of the orbit which
describes the secular dynamics is an ellipse. Therefore, in order to give a circular shape to such
an approximation of the orbit it is necessary to perform two changes of coordinates: a shift
on the variable X1 of a translation value X∗

1 and a dilatation/contraction with coefficient α.
The value X∗

1 of the translation is determined by exploiting the constant component (because
for j = 1 we have k1 = 0 and ϕ1,1 = −π/2, then A1, j eiϕ1,1 is purely imaginary and so is
aligned with the X1 axis), while the coefficient α is defined as follows

α =
√
c− − c+
c− + c+

where c− and c+ are the absolute values of the complex coefficients of the components with
k2 = −1 and k3 = 1, respectively. In more detail, we define c− = A1,2 and c+ = A1,3 for
j = 2, 3; indeed, the easy computation of the suitable coefficient α of dilatation/contraction
takes profit of the values of the corresponding angles, which are such that ϕ1,2 = −ϕ1,3 .
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Fig. 5 The orbit representing the
slow dynamics of the integrable
approximation Z(6) in the phase
plane endowed with coordinates
(v1, u1)

Fig. 6 On the left, variation in time of the action J1 = (
Y 2
1 + X2

1
)
/2 (with respect to its mid value) along the

flow induced by the integrable approximationZ(6). On the right, the same plot is made for what concerns the
action

(
v21 + u21

)
/2

Therefore, we introduce the new variables

v1 = α · Y1 u1 = X1 − X∗
1

α
. (8)

The new orbit of the slow motion in the variables (v1, u1) is represented in Fig. 5. Let us
remark that this plot does not represent exactly a circular orbit; this was somehow expected
since we have considered only a limited number of Fourier components in the computational
method we have introduced in the present Section with the aim of trying to circularize the
orbit itself. However, by looking at the scales reported on the vertical axes of the two panels
included in Fig. 6, one can appreciate that the canonical change of coordinates (8) allows us
to reduce the oscillations of the value of the action involved in the description of the slow
dynamics. In fact, when the plot of the motion law t �→ (

Y 2
1 (t) + X2

1(t)
)
/2 is compared

to the one of t �→ (
v21(t) + u21(t)

)
/2, the gain of about 30% in the circularization of the

orbit is highlighted. This is enough for the purpose of obtaining a Kolmogorov normalization
algorithm which is convergent to the normal form related to the desired final invariant torus.
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We can now introduce the action-angle variables that are more suitably adapted to the
integrable approximation, i.e.,

v1 =
√
2(p1 + p∗

1) cos(q1) Y2 = √
2J2 cos(ϑ2)

u1 =
√
2(p1 + p∗

1) sin(q1) X2 = √
2J2 sin(ϑ2)

(9)

where p∗
1 is the value of the area enclosed by the orbit that describes the secular dynamics in

the phase plane (v1, u1) (or in the one endowed with coordinates (Y1, X1), since canonical
transformations preserve the areas) multiplied by the factor 1/(2π). Therefore, we are impos-
ing that the value p∗

1 , which corresponds to the closed curve
{
(p1, q1) : p1 = 0 , q1 ∈ T

}
,

is equal to the usual definition of the action for Hamiltonian systems with one degree of
freedom (see, e.g., Chap. 3 of Giorgilli (2022)).

6 Construction of the KAM torus

We can now start the construction of the KAM torus for the averaged dynamics of HD60532.
First, we perform a translation of the fast action and we rename the fast angle, i.e.,

p2 = J2 − J ∗
2 q2 = ϑ2 (10)

where J ∗
2 is the mean value of the action J2. In the new action-angle variables ( p, q), the

Hamiltonian (5) can be expanded as follows

H (0)( p, q) = E (0) + ω(0) · p +
∑

s≥0

∑

�≥2

f (0,s)
� ( p, q)

+
∑

s≥1

(
f (0,s)
0 (q) + f (0,s)

1 ( p, q)
)

(11)

where f (0,s)
� is a homogeneous polynomial of degree � in p and a trigonometric polynomial

of degree9 2s in q. The first superscript of the functions f (0,s)
� denotes the normalization

step. Furthermore, E (0) is the constant of the energy level of p = 0 when f (0,s)
� = 0 ∀ � and

s = 0, 1. The goal is to construct the Kolmogorov normal form

H (∞)( p, q) = ω∗ · p + O(‖ p‖2) (12)

whereω∗ is the angular velocity vector characterizing the quasi-periodicmotion on the invari-
ant (KAM) torus corresponding to p = 0. In other words, the Kolmogorov normalization
algorithm is designed in such a way to remove the terms appearing in the second row of
formula (11) by a sequence of canonical transformations. Here, it is convenient to adopt
a different version of the classical Kolmogorov normalization algorithm, which is slightly
modified in such a way to not keep fixed the angular velocity vectorω(r), that is defined at the
r -th step of the procedure and corresponds to the quasi-periodic approximation of the motion
on the final sought KAM torus. We basically follow the approach described in Locatelli et al.
(2022), where the normalization procedure introduced by Kolmogorov is adapted in such a
way to skip the small translation of the actions performed at every step of that algorithm.

9 More generically, the functions f (0,s)
�

are usually defined as trigonometric polynomials of degree sK (for
some positive fixed value of the parameter K ∈ N) in q. We choose to set K = 2, accordingly to what is
usually done for quasi-integrable Hamiltonian system that are in the vicinity of an elliptic equilibrium point
as it is in the model we are studying (see, e.g., Giorgilli et al. (2017) and recall the discussion in Sect. 3).
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This modification allows tomake the computational proceduremore stable; such an improve-
ment can play a crucial role when the action–frequency map is (close to be) degenerate (see
Gabern et al. (2005)). Moreover, in order to improve its efficiency, this small adaptation of
the Kolmogorov normalization algorithm has to be formulated so as to suitably determine
the preliminary translation in (9). All this computational procedure is summarized in the
following in order to make our discussion rather self-consistent.

As in Sect. 4, it is convenient to introduce suitable classes of functions; here, we are going
to say that g ∈ P�,sK if its Taylor–Fourier expansion writes as

g( p, q) =
∑

j∈Nn

| j |=�

∑

k∈Zn

|k|≤sK

c j ,k p j exp(ik · q) (13)

for some fixed values of the non-negative integer parameters �, s and K . The following
statement allows us to describe the behavior of such a class of functions with respect to the
Poisson brackets.

Lemma 6.1 Let us consider two generic functions g ∈ P�,sK and h ∈ Pm,r K , where K is a
fixed positive integer number. Then, the following inclusion property holds true:

{
g, h

} = Lh g ∈ P�+m−1,(r+s)K ∀ �, m, r , s ∈ N with � + m ≥ 1

while
{
g, h

} = 0 when � = m = 0.

Let us imagine to have already performed r − 1 normalization steps by using, once again,
the Lie series formalism; then, we have to deal with an Hamiltonian of the following type:

H (r−1)( p, q) = E (r−1) + ω(r−1) · p +
∑

s≥0

∑

�≥2

f (r−1,s)
� ( p, q)

+
∑

s≥r

(
f (r−1,s)
0 (q) + f (r−1,s)

1 ( p, q)
)

(14)

where f (r−1,s)
� ∈ P�,2 s ∀ �, s ∈ N, while E (r−1) ∈ R. Let us remark that the expansion of

H (0), which is reported in (11), agrees with the more general one, that is written just above
in (14), in the case with r = 1. The Kolmogorov normalization algorithm at step r is aimed
to remove the main perturbing terms (that are the functions f (r−1,r)

0 and f (r−1,r)
1 ), which are

independent of and linear in the actions, respectively.
In order to perform the r -th normalization step, first we need to determine the generating

function χ
(r)
0 in such a way to solve the following homological equation:

L
χ

(r)
0

(
ω(r−1) · p

)
+ f (r−1,r)

0 = 〈 f (r−1,r)
0 〉q .

As a matter of fact, 〈 f (r−1,r)
0 〉q ∈ P0,0 is nothing but a constant term. Therefore, it can be

added to E (r−1), in order to update the energy level, whose new value is denoted with E (r).
By considering the Taylor–Fourier expansion of the perturbing term, we aim to remove, i.e.,

f (r−1,r)
0 (q) =

∑

0<|k|≤2r

c(r−1,r)
0,k exp(ik · q)

we obtain the following expression for the generating function:

χ
(r)
0 (q) =

∑

0<|k|≤2r

c(r−1,r)
0,k

ik · ω(r−1)
exp(ik · q).
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Let us remark that the homological equation can be solved provided that the following non-
resonance condition holds true

k · ω(r−1) = 0 ∀ k ∈ Z
2 \ {0} with |k| ≤ 2r . (15)

We then introduce the transformed Hamiltonian Ĥ (r) = exp
(
L

χ
(r)
0

)
H (r−1), whose

expansion

Ĥ (r)( p, q) = Ê (r) + ω(r−1) · p +
∑

s≥0

∑

�≥2

f̂ (r ,s)
� ( p, q)

+
∑

s≥r

(
f̂ (r ,s)
0 (q) + f̂ (r ,s)

1 ( p, q)
)

(16)

is such that the new Hamiltonian terms f̂ (r ,s)
� are defined so that

f̂ (r ,r)
0 = 0 ,

f̂ (r ,s)
� =

�s/r�∑

j=0

1

j !L
j

χ
(r)
0

f (r−1,s− jr)
�+ j , for � = 0, s = r ,

or � = 0 s ≥ 0 .

By applying repeatedly Lemma 6.1, one can easily verify that f̂ (r ,s)
� ∈ P�,2s ∀ �, s.

The second-generating function χ
(r)
1 is determined by solving the following homological

equation:

L
χ

(r)
1

(
ω(r−1) · p

)
+ f̂ (r ,r)

1 = 〈 f̂ (r ,r)
1 〉q . (17)

The term 〈 f̂ (r ,r)
1 〉q ∈ P1,0. This means that it is not dependent on the angles q and is linear

in the actions p; thus, it gives a contribution to the definition of the value of the angular
velocity vector ω(r), which in principle should converge to its limit ω∗ (if the normalization
algorithm is convergent) and is defined so that

ω(r) · p = ω(r−1) · p + 〈 f̂ (r ,r)
1 〉q .

By considering the following Taylor–Fourier expansion of the new perturbing term, we
aim to remove, i.e.,

f̂ (r ,r)
1 (q) − 〈 f̂ (r ,r)

1 〉q =
∑

|�|=1

∑

0<|k|≤2r

ĉ(r ,r)
�,k p� exp(ik · q)

then we easily determine the new generating function as

χ
(r)
1 (q) =

∑

|�|=1

∑

0<|k|≤2r

ĉ(r ,r)
�,k

ik · ω(r−1)
p� exp(ik · q).

Once again, the homological equation can be solved provided that the frequencies sat-
isfy the non-resonance condition (15). The new Hamiltonian is defined as H (r) =
exp

(
L

χ
(r)
1

)
Ĥ (r−1). Its expansion is completely analogous to the one reported in (14). More-

over, the terms f (r ,s)
� ∈ P�,2s appearing in the expansion of H (r) are defined in the following
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way:
f (r ,r)
1 = 0 ,

f (r ,ir)
1 = i − 1

i ! Li−1
χ

(r)
1

f̂ (r ,r)
1 +

i−2∑

j=0

1

j !L
j

χ
(r)
1

f̂ (r ,(i− j)r)
1 , for i ≥ 2 ,

f (r ,s)
� =

�s/r�∑

j=0

1

j !L
j

χ
(r)
1

f̂ (r ,s− jr)
� , for � = 1, s = ir ,

or � = 1, s ≥ 0 ,

where we have exploited the second homological equation (17).
From a practical point of view, we can iterate the algorithm only up to a finite number of

steps, say, r . This allows us to determine

H (r)(p,q) =E (r) + ω(r) · p +
∑

s≥0

∑

�≥2

f (r ,s)
� (p,q)

+
∑

s≥r+1

(
f (r ,s)
0 (q) + f (r ,s)

1 (p,q)
)

.
(18)

Hence, we obtain an approximation of the final invariant torus which is characterized by
an angular velocity vector ω(r). If the value (say) I ∗

1 of the initial shift on the first action,
which has been preliminarily fixed equal to p∗

1 in formula (9), is accurate enough, then the

slow frequency ω
(r)
1 is close to the one we are aiming at, which is numerically determined

by applying the frequency analysis method, namely ω
(r)
1 � ω∗

1. We then calibrate the initial
translation of the first action I ∗

1 = p∗
1 by means of a Newton method. The goal is to solve the

implicit equation ω1( Ĩ1) = ω∗
1 with respect to the initial shift Ĩ1. The value Ĩ1 is iteratively

computed using the formula

Ĩ (n)
1 = Ĩ (n−1)

1 +
ω∗
1 − ω

(r)
1

(
Ĩ (n−1)
1

)

ω′
1

(
Ĩ (n−1)
1

)

where Ĩ (0)
1 = I ∗

1 and the value of the derivative ω′
1

(
Ĩ (n−1)
1

)
is numerically approximated

by using the finite difference method. Let us recall that, after having performed the average
with respect to the fast angle of libration as it has been described in the previous section, we
are mainly focusing on the study of the secular dynamics. In addition, for what concerns the
(relatively) faster frequency ω

(r)
2 /(2π) we automatically have a good enough approximation

of both the frequencies of the averaged Hamiltonian, as it can be appreciated looking at
the comparison between the semi-analytic solutions showed in Fig. 8, which will be widely
commented in the next subsection.

By supposing to iterate the normalization algorithm ad infinitum, onewould get theHamil-
tonian (12), which admits the invariant torus p = 0 with frequency ω∗.

From a practical point of view, we are able to explicitly iterate the algorithm only up to a
finite normalization step r and we can numerically check the convergence of the procedure
by controlling the decrease in the norms of the generating functions. Hereafter, we define the
norm of any generic function g ∈ P�,sK as

‖g( p, q)‖ =
∑

j∈Nn

| j |=�

∑

k∈Zn

|k|≤sK

∣∣c j ,k
∣∣
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Fig. 7 Norms of the generating functions χ
(r)
0 and χ

(r)
1 as they are determined by the Kolmogorov algorithm

up to the 9-th normalization step

∀ �, s, K ∈ N, where the Taylor–Fourier expansion of g is written in (13). The behavior of
‖χ(r)

0 ‖ and ‖χ(r)
1 ‖ for values of the normalization step r up to 9 is reported in Fig. 7.

6.1 Comparison between two different kinds of semi-analytic solutions

In this subsection, we check the accuracy of the Hamiltonian (18) in Kolmogorov normal
form up to a finite order r in describing the motion of the averaged integrable Hamiltonian
Z(r̃) up to order r̃ . For what concerns our model of the librational dynamics of the extrasolar
system HD60532, we consider the Hamiltonian H (5), expanded as in (18) and truncated
up to degree 2 in the actions and to trigonometrical degree 12 in the angles. The aim is to
make a comparison with the solution associated with the averaged integrable Hamiltonian
Z(6), computed in Subsect. 4.2. The semi-analytic solution of the equations of motion which
is related to the Hamiltonian H (5) can be obtained with a procedure similar to the one
previously described and represented in (7). Moreover, as we can see in Fig. 8, we compare
the motion laws induced by two different Hamiltonians by considering in both cases the
Cartesian variables Y j = √

2J j cos(ϑ j ) and X j = √
2J j sin(ϑ j ), for j = 1, 2, that were

adopted as canonical coordinates before starting the averaging procedure which constructs
the resonant Birkhoff normal form. In more detail, we can determine the expansions of all
the canonical transformations introduced in Sect. 4, 5 and 6 with the aim of constructing a
Hamiltonian in Kolmogorov normal form up to order 5. Let us denote with the symbol K(5)

the composition of the canonical transformations introduced by the Kolmogorov algorithm
(described in the previous Subsection) up to the 5-th normalization step, i.e.,

K(5)( p, q) = expL
χ

(5)
1

◦ expL
χ

(5)
0

◦ . . . ◦ expL
χ

(1)
1

◦ expL
χ

(1)
0

( p, q). (19)

Therefore, ∀ t ∈ R, we can compute the values of the canonical variables (Y(t), X(t)) corre-
sponding to the ( p(t), q(t)) = (0,ω(5)t + q(0)), which describe the quasi-periodic motion
of the final KAM torus as it is approximately reproduced by the Kolmogorov normalization
algorithm, when it is iterated up to the 5-th step. This computation is performed according
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Fig. 8 Evolutions with respect to time [yr] of the secular variables (reported in the panels on the left) and
the relatively faster ones (in the right panels) in our model of the MMR librational dynamics of HD60532.
They are given by the semi-analytic solutions of the averaged Hamiltonian up to order 6 (red curves) and the
Hamiltonian that is produced after 5 steps of the Kolmogorov normalization algorithm (purple curves)

to the following scheme:

(
Y(0), X(0)

) (
0, q(0)

)

(
Y(t), X(t)

) (
p(t) = 0, q(t) = ω(5)t + q(0)

)

(
A ◦ C(5) ◦ T Ĩ1 ◦ K(5)

)−1

�t
ω(5)· p

A ◦ C(5) ◦ T Ĩ1 ◦ K(5)

(20)

Here, a few further explanations are in order. We denote with (J,ϑ) = T Ĩ1( p, q) the
canonical transformation that is obtained by making the composition of all the canonical
transformations described in Sect. 5 and in formula (10); moreover, one has to take care of
slightly modifying (9) in such a way to replace p∗

1 with the value of Ĩ1 (i.e., the solution of
equation ω1( Ĩ1) = ω∗

1 numerically obtained by applying the Newton method). In the scheme
(20), we have also decided to consider C(5) instead of C(6), because otherwisewith the adopted
rules of truncation the Hamiltonian would be integrable already before the Kolmogorov
normalization; this would make trivial the application of such an algorithm. Finally, let us
recall that H (5)( p, q) � ω(5) · p + O(‖ p‖2) and ω(5) � ω∗; this allows us to put the flow
of ω(5) · p in order to approximate (in the semi-analytical scheme above) the solution of the
equations of motion related to H (5) and with initial conditions p(0) = 0.

The plots in Fig. 8 show an excellent superimposition between the two solutions, with
respect to both the amplitudes and the frequencies. This makes evident the effectiveness of
our computational algorithm. Let us also recall that the initial conditions (Y(0), X(0)) are
the ones compatible with the observations.
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6.2 Computer-assisted proof

By looking at the plots in Fig. 7, it can be noticed that the decrease in the norms of the gener-
ating functions, in particular for what concerns the finite sequence of the second-generating
function χ

(r)
1 , is not so regular and the convergence of the algorithm looks doubtful. In order

to rigorously prove that the KAM algorithm is convergent, we adopt a rigorous approach
based on a computer-assisted proof. For this purpose, we follow the method which has been
described in Celletti et al. (2000) and further developed in Valvo and Locatelli (2022), where
a publicly available software package10 is provided as supplementary material. Such a pack-
age is designed for doing just this kind of computer-assisted proof for Hamiltonian systems
having two degrees of freedom. In order to use this software so as to apply it to the problem
under consideration, it is just matter to prepare some input files, which basically describe the
starting Hamiltonian; in principle, this can allow us to prove the existence of the KAM torus
we are aiming at, if the corresponding Kolmogorov normal form is close enough to such an
initial Hamiltonian. More precisely, we consider H (5) as the starting Hamiltonian. It is fully
determined at the end of the application of the Newton method, which has been described in
the previous Section; in terms of a single mathematical formula, it can be written as

H ◦ A ◦ C(5) ◦ T Ĩ1 ◦ K(5)

where H , A, C(5), T Ĩ1 and K(5) are defined in (1), (2), (6), just below formula (20) and (19),

respectively. Moreover, the expansion of H (5) can be written as in (18) and is truncated up
to degree 2 in the actions and to trigonometrical degree 12 in the angles, while the expansion
(5) of the intermediate Hamiltonian H(5) = H ◦ A ◦ C(5) has been preliminarily truncated
so as to exclude the sum of terms

∑
�>6 h

(r)
� (J,ϑ) = O

(‖J‖7/2). Therefore, H (5) is not
in Kolmogorov normal form because of a few (small) Hamiltonian terms that are either
dependent on the angles q only or linearly dependent on the actions p.

During the initial stage of the computer-assisted proof, a first code explicitly performs
a (possibly large) number RI of normalization steps of a classical formulation of the Kol-
mogorov algorithm, which includes also small translations of the actions that aim at keeping
fixed the desired angular velocity vector of the quasi-periodic motion on the final torus, i.e.,
ω∗. Afterward, the size of the perturbation is further reduced (although in a less efficient way)
by another code which just iterates the estimates of the norms of the terms of order r with
RI < r ≤ RII. In the case of the model we are studying, in order to achieve the convergence
of the algorithm, we have found convenient to set RI = 200 and RII = 20 000. The whole
computer-assisted proof11 required a total computational time of about 52.5 hours on a work-
station equipped with CPUs of type Intel XEON-GOLD 5220 (2.2 GHz) and 384 GB of
RAM. Nearly all the time (i.e., more than 50h) has been requested by the first explicit com-
putation of the (truncated) expansions of the Hamiltonians H (r) for r = 1, . . . , RI = 200.

The plot of the norms of the generating functions χ
(r)
1 (in semi-log scale) is reported

in Fig. 9, where the occurrence of a regular decrease is clearly highlighted. In particular,
looking at the panel on the right, we can appreciate that the decrease is sharper for the

10 That software package can be freely downloaded from the web address https://doi.org/10.17632/
jdx22ysh2s.1.
11 The software package allowing to perform the computer-assisted proof of theorem 6.2 is available at https://
www.mat.uniroma2.it/~locatell/CAPs/CAP4KAM-HD60532.zip As a matter of fact, the codes included in
this software package are exactly the same as the ones which can be downloaded from the website mentioned
in footnote10. The differences between the two packages just concern the files defining the expansions of the
initial Hamiltonians to which the computer-assisted proofs are applied.
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Fig. 9 Estimates of the norms of the generating functions χ
(r)
1 , as they are evaluated during the computer-

assisted proof, up to order RII = 20 000 (left panel). In the right panel, the zoom of the estimates of
∥∥χ

(r)
1 ‖

produced by the first 2 000 normalization steps

first RI normalization steps, where the expansions of the generating functions are computed
explicitly. Afterward, there is a transition to the regime of the iteration of the norms and, after
some initially periodic jumps, the decrease becomes more regular.

At the end of the running of the codes which make part of the software package designed
to perform this kind of computer-assisted proofs, upper bounds for all the terms appearing in
the expansion of H (RII), which is written as in (18), are available. Therefore, one can check
in an automatic way the applicability of the KAM theorem (e.g., in the version proved in
Stefanelli and Locatelli (2012), which fits perfectly in this framework). The application of
all this computational procedure allows us to prove our final result, that is summarized in the
following statement.

Theorem 6.2 (Computer-assisted) Let us consider the Hamiltonian H (5), expanded as in
(18) and truncated up to degree 2 in the actions and to trigonometrical degree 12 in the
angles. Let ω∗ ∈ R

2 be such that

ω∗
1 ∈ (−2.72805620345077182 × 10−2,−2.72805620345057182 × 10−2)

ω∗
2 ∈ (−3.0574227066998818 × 10−1,−3.0574227066978818 × 10−1)

and it satisfies the Diophantine condition

|k · ω∗| ≥ γ

|k|τ ∀ k ∈ R
2 \ {0}

with γ = 2.7280562034505684 × 10−2 and τ = 1. Therefore, there exists an analytic
canonical transformation which transforms the Hamiltonian H (5) in the Kolmogorov normal
form (12). In the new action-angle coordinates, the torus { p = 0, q ∈ T

2} is invariant and
carries quasi-periodic orbits whose corresponding angular velocity vector is ω∗.
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