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Abstract
The quasi-bicircular problem (QBCP) is a periodic time-dependent perturbation of the Earth–
Moon restricted three-body problem (RTBP) that accounts for the effect of the Sun. It is
based on using a periodic solution of the Earth–Moon–Sun three-body problem to write
the equations of motion of the infinitesimal particle. The paper focuses on the dynamics
near the L1 and L2 points of the Earth–Moon system in the QBCP. By means of a periodic
time-dependent reduction to the center manifold, we show the existence of two families of
quasi-periodic Lyapunov orbits around L1 (resp. L2) with two basic frequencies. The first
of these two families is contained in the Earth–Moon plane and undergoes an out-of-plane
(quasi-periodic) pitchfork bifurcation giving rise to a family of quasi-periodic Halo orbits.
This analysis is complemented with the continuation of families of 2D tori. In particular, the
planar and vertical Lyapunov families are continued, and their stability analyzed. Finally,
examples of invariant manifolds associated with invariant 2D tori around the L2 that pass
close to the Earth are shown. This phenomenon is not observed in the RTBP and opens the
room to direct transfers from the Earth to the Earth–Moon L2 region.
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1 Introduction

The comprehension of the natural dynamics of a spacecraft in the Earth–Moon system is
key to develop mission design. Researchers from different areas have contributed to push the
boundaries of common knowledge, and dynamical systems theory has been proved to be a
powerful tool to understand the relevant factors that determine the motion of a probe under
the gravitational attraction of Earth (E) and Moon (M). This is usually fulfilled by using
simplified models.

The restricted three-body problem (RTBP) is one of the simplest, well-known and vastly
used model to describe the motion of a test particle in the Earth–Moon system (see, for
instance, Szebehely 1967; Broucke 1968). In this model, the Earth and theMoon are assumed
to move along circular orbits about their common barycenter. By using suitable units and
frame, the motion of the particle is described by an autonomous three-degrees-of-freedom
Hamiltonian system. The RTBP, even though extremely useful, only takes into account the
gravitational pull of the Earth and the Moon. The next step to a more complete model (but
still simple) is to include the direct effect of the Sun on the spacecraft. This can be done in a
number of ways. Perhaps, the simplest one is the bicircular problem (BCP) [see also Scheeres
(1998) for an alternative approach and Lian (2013) for a discussion on high-fidelity models].
The BCP completes the RTBP by considering also the Sun (S), moving together with the E-M
barycenter in a circular orbit about the (E+M)-S center of masses. Written down with the
same units and coordinates as the RTBP, the model is a periodic time-dependent Hamiltonian
system. In fact, the effect of Sun’s gravity can be regarded as a periodic perturbation to the
RTBP. This perturbative effect is strong enough to produce relevant changes on several
dynamical aspects of the RTBP.

The BCP, though, only takes into account the direct effect of the Sun, i.e., the Earth and
the Moon do not feel the presence of the Sun. The model is, therefore, not coherent in the
sense that the motion of Earth, Moon and Sun does not verify Newton’s laws.

The quasi-bicircular problem (QBCP) is a coherent version of the BCP, meaning that it is
designed to remove the lack of coherence by considering the Earth, the Moon and the Sun
to move in a trajectory of the three-body problem.
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Both, theBCPand theQBCPcan be regarded as periodic perturbations of theRTBP (notice
that the period of the vectorfields of the BCP and the QBCP is the same one). To perturb
periodically a Hamiltonian system is to, informally speaking, periodically shake the phase
space. For instance, due to the non-autonomous character of the vectorfield, the Lagrangian
points are no longer equilibria. One can use the implicit function theorem to show that they
are replaced by periodic orbits with the same period as the perturbation. The same is true,
but much more complicated, for periodic orbits and invariant tori (see Jorba and Villanueva
1997). Those objects, generically, gain a frequency (the one of the perturbation). Therefore,
when the perturbing effect is included (for instance, considering the BCP or the QBCP), each
invariant object of the RTBP (equilibria, periodic orbits, invariant tori...) is replaced by a
higher dimension object. Usually, these replacements are called dynamical equivalents.

The goal of this paper is to complete previous studies on the effect of Sun’s gravity on the
dynamics of a test particle near the L1 and L2 Earth–Moon collinear points. Those previous
works use the BCP as a model. In Jorba et al. (2020), the dynamics near L1 is analyzed by
means of the reduction to the center manifold. In Rosales et al. (2021a), the dynamics near
L2 is analyzed by computing the dynamical equivalents of the Lyapunov and Halo orbits. In
Rosales et al. (2021b), it is demonstrated that taking into account Sun’s gravity allows for
direct transfer orbits from the Earth to the translunar point (this, as far as we know, is not
possible to be done ignoring Sun’s gravity). This paper carries out the same analysis as in
Jorba et al. (2020) and Rosales et al. (2021a, b) but for the case of the QBCP. Here, we also
use the center manifold approach to study L2 as the QBCP has a similar qualitative behavior
to the RTBP (while the BCP has not). Notice that this behavior is also observed in the high-
fidelity model used in Lian (2013). The center manifold of L2 in the QBCP has also been
analyzed in Le Bihan et al. (2017b) by means of the parameterization method. And in Andreu
(1998, 2002), using the same approach as in this work: A normal form approach based on
the Lie transformation method. However, the normal form constructed in the present paper is
slightly different, allowing a different representation and capturing the qualitative behavior
shown in Lian (2013). Moreover, by computing the families of dynamical equivalents of
the Lyapunov and Halo orbits, we have also provided numerical evidence of a conjecture
appearing in Andreu (1998).

This paper is structured as follows: The remaining subsections of this introduction describe
more precisely the models and discuss some known facts. In Sect. 2, we provide an insight on
the dynamics in the center manifolds related to the (dynamical equivalents of the) collinear
points L1 and L2. In Sect. 3, we describe the dynamical equivalents of the Lyapunov and
Halo orbits in the QBCP. In Sect. 4, we compute one-maneuver transfers from Halo invariant
tori related to the translunar point to the Earth. Finally, in Sect. 5 we provide the conclusions
of the work.

1.1 The restricted three-body problem

The restricted three-body problem is a model that describes the dynamics of a massless
particle under the influence of two massive bodies called the primaries. This model has
been extensively studied, although a lot of questions still remain unanswered. Besides its
simplicity, it has been used to plan space missions using as primaries the Sun and the Earth
(for example, the missions ISEE-C, SOHO, Gaia, DSCOVR, or JWST), or the Earth and the
Moon (for example, the missions Chang’e 5-T1 or Queqiao). Hence, it has both academic
and practical interest.
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Table 1 Some μ parameters from
different systems

System μ value

Sun–Earth 3.04042339E−6

Sun–Jupiter 9.54791915E−4

Earth–Moon 1.21505816E−2

This model assumes that the two primaries orbit in circular motion around their common
barycenter following the Newton’s law and that the third body does not influence the motion
of the other two bodies. It is convenient to use a rotating frame, with an angular rate equal to
the orbital angular rate of the primaries, and scale the time such that the period equals to 2π .
This way, the two primaries are fixed on the x-axis. Moreover, it is convenient to chose the
unit of distance equal to the constant distance between the two primaries. Finally, the unit
of mass is chosen such that the gravitational constant is 1, and then, in these units, the total
mass of the system is also 1. Let us denote by μ the mass of the smallest primary. Then, the
primary of mass 1 − μ (resp. μ) is at x = μ (resp. x = μ − 1). Hence, the model is fully
characterized by the value of μ. Some approximate typical parameters for different systems
are listed in Table 1. For the sake of simplicity, from now on we focus discussion in the
Earth–Moon system.

Note that this reference frame, often referred to as a synodic reference frame, is not inertial.
Details on the construction of the model can be found in Szebehely (1967). In the synodic
frame, the dynamics of the RTBP can be expressed in the Hamiltonian formalism,

HRTBP = 1

2
(P2

X + P2
Y + P2

Z ) + Y PX − X PY − 1 − μ

RPE
− μ

RPM
. (1)

Here, R2
PE = (X − μ)2 + Y 2 + Z2 is the distance of the particle P to the Earth and

R2
PM = (X − μ + 1)2 + Y 2 + Z2 is the distance of P to the Moon. Defining the momenta

PX = Ẋ − Y , PY = Ẏ + X and PZ = Ż ,
In the synodic reference frame, it is well known that the RTBP has five equilibrium

points, three of them on the horizontal axis (usually called collinear or L1,2,3) and two of
them forming equilateral triangles with the primaries (usually called triangular, equilateral
or L4,5), see Fig. 1. In this paper, we focus on the neighborhood of L1,2. In this line, Jorba
and Masdemont (1999) studies the dynamics around the collinear Lagrange points in the
RTBP. One of the results of this paper is a qualitative description of the stable motions
around the Earth–Moon L2 Lagrange point. This is accomplished by means of a reduction
to the center manifold around the Earth–Moon L2 point and by generating Poincaré sections
for different energy levels. These results were expanded in Gómez and Mondelo (2001)
providing a comprehensive description of the dynamics around all the collinear points in
the Earth–Moon system. Note that these results do not account for other effects such as the
eccentricity of the Moon or the gravitational influence of the Sun. None of these effects are
negligible. The following sections describe models that account for the effect of the Sun’s
gravity.

1.2 The bicircular problem

The Earth–Moon BCP is a model that describes the motion of a massless particle (P) under
the influence of the Earth, the Moon, and the Sun. The Earth and the Moon are defined as
the primaries. The dynamics of the Earth, Moon and Sun is simplified considering that the
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Fig. 1 Sketch of the bicircular problem. The points L1,...,5 are the Lagrangian (equilibrium) points of the
Earth–Moon RTBP

Table 2 Parameters of the BCP

μ = 0.012150581623433 ms = 328900.5499999991

ωs = 0.925195985518289 as = 388.8111430233511

three bodies move in the same plane. Also, it is assumed that the Earth and the Moon follow
circular orbits around their barycenter (B) and that B is orbiting around the S-E/M barycenter.
Note that this model is not coherent, in the sense that the motion of the three massive bodies
is not described by the Newton’s equations.

As in the RTBP, it is standard to take synodic coordinates with respect to the Earth–Moon
center, with the origin centered at their respective center of mass. Units of mass, length and
time are taken such that the sum of the primaries masses (Earth and Moon), the gravitational
constant, and the period of motion of the primaries are 1, 1 and 2π , respectively. Again,
the parameter μ (resp. 1 − μ) is the normalized mass of the Moon (resp. Earth), and it is
located at (μ − 1, 0, 0) (resp. (μ, 0, 0)), the parameters mS , and aS are the mass of the
Sun and its distance to the Earth–Moon barycenter, respectively. The frequency of the Sun
around the Earth–Moon barycenter is ωs , and ϑ = ωs t , (XS, YS) = (aS cosϑ,−aS sin ϑ)

is the Sun position vector, R2
PE = (X − μ)2 + Y 2 + Z2 is the distance of the particle

P to the Earth, R2
PM = (X − μ + 1)2 + Y 2 + Z2 is the distance of P to the Moon, and

R2
PS = (X − XS)

2 + (Y − YS)2 + Z2 is the distance of P to the Sun. The values of the
parameters are shown in Table 2.

Note that in this reference system the Sun moves around the origin in a circular motion
(see Fig. 1). A derivation of these equations of motion can be found in Gómez et al. (2001).
Earlier formulations of the BCP can be found in Huang (1960) and Cronin et al. (1964).

Defining the momenta PX = Ẋ −Y , PY = Ẏ + X and PZ = Ż , the dynamics of the BCP
can be expressed in Hamiltonian form,

HBCP = 1

2
(P2

X + P2
Y + P2

Z ) + Y PX − X PY − 1 − μ

RPE
− μ

RPM

− mS

RPS
− mS

a2S
(Y sin ϑ − X cosϑ).
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This Hamiltonian can be expressed as a time-dependent perturbation of the RTBP,

HBCP = HRTBP + HS

where HRTBP is the Hamiltonian of the RTBP, see Eq. (1), and

HS = − mS

RPS
− mS

a2S
(Y sin ϑ − X cosϑ)

is the perturbation due to the Sun. Let us define

H ε = HRTBP + εHS (2)

Note that H ε=0 = HRTBP, and H ε=1 = HBCP. When ε = 0, the Lagrange points (Li ,
i = 1, ..., 5) are equilibrium points of the system (2). When ε > 0 and small enough, the
implicit function theorem (Lynn 1990) implies that, under generic non-resonant conditions,
these equilibrium points become periodic orbits with the same period as the perturbation (in
this case, Ts = 2π/ωs).

Remark 1 The frequency ωs is the mean angular velocity of the Sun written in the Earth–
Moon RTBP units. Notice from Table 2 that it is a little bit smaller than 1; therefore, the
period Ts of the vectorfield (for both the BCP and QBCP) is about 30 days.

1.2.1 Known facts on the BCP

The dynamics near the collinear points of the BCP has been analyzed in a number of papers;
the direct effect of Sun’s gravity has shown to have a remarkable dynamical impact on the
motion of a probe in the Earth–Moon system. Hereafter, we provide a review of results that
will help understand the rest of this work.

The motion around L1 in the BCP is analyzed in Jorba et al. (2020). There, the authors
provide a description of the centermanifold of L1. In particular, it is shown that the bifurcation
that leads to the creation of the Halo orbits in the RTBP has a counterpart in the BCP: the
horizontal family of Lyapunov of invariant tori undergoes a 1:1 resonance and bifurcate
producing a Halo family of invariant tori.

When it comes to L2, in Jorba-Cuscó et al. (2018) it is shown that there is no dynamical
equivalent of L2 in the BCP. Indeed, the dynamical equivalent of L2 merges with a 1:2
resonant horizontal Lyapunov orbit. However, at some distance of L2 the model displays
common features with the RTBP. In Rosales et al. (2021a), the counterparts of Lyapunov and
Halo families (in this case, families of 2-dimensional invariant tori) are described. Particularly,
it focus onHalo-like orbits: Two different families, labeled as Type I and Type II, are analyzed
in more detail. Type I is the family that plays the role of the classical Halo family. Type II is a
family of quasi-Halo orbits which is in 1:2 resonance with the Sun. Due to this resonance, this
quasi-Halo family persists as a family of two dimensional tori in the BCP, and it is connected
with some (Lyapunov type) horizontal families. In Rosales et al. (2021b), some invariant tori
of Type I and Type II Halo families are used to produce direct transfers from the Earth. This
kind of transfers has not been found in the RTBP.

The motion near L3 in the BCP is described in Jorba and Nicolás (2020). There, invariant
manifolds of invariant tori near L3 are shown to organize the transport of some meteorites
from the Moon (lunar ejecta) to the Earth. It is remarkable that these results are also valid
for a high-fidelity model. These manifolds also allow to enter/exit the Earth–Moon system
and can be used to capture some near-Earth asteroids (Jorba and Nicolás 2021).
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The motion around the triangular points (L4 and L5) in the BCP was firstly described in
Simó et al. (1995). There the authors show that the dynamical equivalents of the triangular
points are three periodic orbits: One of them mildly unstable and the remaining two, stable.
These periodic orbits are consequences of a broken pitchfork bifurcation. The lack of symme-
try that leads to the pitchfork breaking comes from higher-order terms of Sun’s gravitational
potential (see Jorba-Cuscó et al. 2018). In Jorba (2000) and Castellà and Jorba (2000), it
is shown that, despite the presence of an unstable periodic orbits, there exist out-of-plane
regions of effective stability near L4 and L5.

1.3 The quasi-bicircular problem

The quasi-bicircular problem (QBCP) is also time-periodic perturbation of the RTBP that
accounts for the effect of the Sun’s gravity. The difference with the BCP is how the motion
of the primaries is modeled. Contrary to the case of the BCP, in the QBCP the motion of
the primaries is coherent; this is, their motion follows Newton’s laws and it is a solution of
the three-body problem for the Sun–Earth–Moon case. To have a simple model, the chosen
solution is the simplest periodic solution close to the true motion of Earth, Moon and Sun.

This model was first introduced by C. Simó (see Andreu 1998), and the reader is referred
there for a detailed construction of the model (see also Gabern and Jorba 2001). In this
section, we provide an overview of the basic steps to construct the model. The first step is to
compute a quasi-bicircular solution thatmodels themotionof theSun, theEarth, and theMoon
under each other’s gravitational influence. This is accomplished by expressing the three-body
problem in the Jacobi formulation. Then, an approximation to the Jacobi decomposition of
the three-body problem is obtained as Fourier series, solving for the coefficients. The details
are in Andreu (1998).

With this solution, the origin of the (inertial) reference frame is translated from the center
of masses of the Sun, Earth, and Moon to the Earth–Moon barycenter. Then, the reference
frame is rotated such that the x-axis contains both the Earth and the Moon. A third change is
a time-dependent transformation that keeps the Earth and the Moon fixed on the x-axis. This
defines a pulsating reference frame with period equal to one revolution of the Earth and the
Moon around their common barycenter.

Also, the unit of distance is scaled such that the distance between the Earth and the Moon
is equal to one, the time is scaled such that one revolution of the pulsating reference frame
is equal to 2π , and the unit of mass is scaled such that mE + mM = 1, where mE (resp.
mM ) is the mass of the Earth (resp. Moon). With these transformations, the Earth is located
at (μ, 0, 0) and the Moon at (1 − μ, 0, 0). These are the same scalings and transformations
done in the RTBP and the BCP.

With this, the Hamiltonian of the system is:

HQBCP = 1

2
α1(P

2
X + P2

Y + P2
Z ) + α2(PX X + PYY + PZ Z) + α3(PXY − PY X)

+ α4X + α5Y − α6

(1 − μ

RPE
− μ

RPM
− mS

RPS

) (3)

where

• R2
PE = (X − μ)2 + Y 2 + Z2 is the distance of the particle P to the Earth

• R2
PM = (X − μ + 1)2 + Y 2 + Z2 is the distance of P to the Moon

• R2
PS = (X − α7)

2 + (Y − α8)
2 + Z2 is the distance of P to the Sun
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Table 3 This table shows the specific values of the parameters used in this work

μ = 0.012150581600000 ms = 328900.5423094043

ωs = 0.925195985520347 as = 388.8111430233511

The values of the Fourier coefficients for the functions αi can be found in Andreu (1998) and are available
upon request to the corresponding author, J.J.R

The coefficients αi , i = 1, ..., 8 are 2π -periodic real functions of the form:

αi (ϑ) = ai0 +
∑
k≥0

aik cos(kϑ) +
∑
k≥0

bik sin(kϑ) (4)

The values for the coefficients aik, b
i
k can be found in Andreu (1998). A property of the

coefficients αi , i = 1, ..., 8, is that they are odd functions for i = 1, 3, 4, 7 and even for the
rest. These properties imply that the following symmetry holds:

HQBCP(ϑ, X , Y , Z , PX , PY , PZ ) = HQBCP(−ϑ, X ,−Y , Z ,−PX , PY ,−PZ )

Also, the physical interpretation of these coefficients is:

• α1(ϑ), α2(ϑ), α3(ϑ), and α6(ϑ) capture instantaneous distance between the Earth and
the Moon

• α4(ϑ) and α5(ϑ) are the instantaneous Coriolis effect due to the rotating reference frame
• α7(ϑ) and α8(ϑ) capture the instantaneous position of the Sun within its plane of motion.

The values used in this work are in Table 3.
Section 1.3.1 reviews the connection between the collinear libration points in the RTBP,

and their dynamical equivalents in the QBCP. These results are known (see, for example,
Andreu 1998; Jorba-Cuscó et al. 2018), but due to their relevance it was considered that they
deserve their own section in this paper.

1.3.1 Dynamical substitutes of the collinear points

In the QBCP, the collinear points in the RTBP are replaced by small periodic orbits with the
same period as the perturbation, Ts = 2π/ωs . These orbits are computed by continuation
from the RTBP to the QBCP. The formulation of the problem is defined in Andreu (1998)
and reproduced here for completeness. We consider the family of Hamiltonians H ε, where
ε ∈ [0, 1] is a parameter:

H ε = HRTBP + ε(HQBCP − HRTBP), ε ∈ [0, 1] (5)

Note that in Eq. (5), H0 = HRTBP, and H1 = HQBCP. The process is the following: we
start the continuation scheme from a collinear equilibrium point (Li , i = 1, 2) and ε = 0,
then the value of ε is increased until it reaches ε = 1 (this is, theQBCPmodel). For each value
of ε ∈ [0, 1], there is a Ts-periodic orbit. The result of this continuation process is illustrated
in the first column of Fig. 2 for the collinear libration points, and the second column shows
their dynamic substitutes in the QBCP. The first row corresponds to L1 and the second row
to L2.

In all two cases, there is a direct connection between the starting point and the final periodic
orbit. We recall that, in the BCP, where L2 is connected with a 1:2 resonant planar Lyapunov
orbit (see Jorba-Cuscó et al. 2018). We remark that this does not happen for the QBCP.
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Fig. 2 Dynamical substitutes of the RTBP collinear points in the QBCP (L1, top row and L2, bottom row).
The first column represents in the x-axis the first component of the periodic orbit’s position at t = 0, and the
y-axis its associated value of ε ∈ [0, 1]. The second column contains the dynamic substitutes in the QBCP
(this is, the periodic orbits obtained for ε = 1)

Table 4 Initial conditions at t = 0 of the dynamical substitutes for Li , i = 1, 2. (L1, top and L2, bottom)

j x py

1 −0.8369141677649317 −0.8391311559808445

2 −1.1556836078332600 −1.1587306159501061

Note that y = z = px = pz = 0

Also, in the QBCP there are no changes of stability, and throughout the continuation
process the stability type of the periodic orbits is saddle×center×center for all values of
ε ∈ [0, 1]. For completeness, the initial conditions at t = 0 and the eigenvalues of the
monodromy matrices associated with the dynamical substitutes for the collinear points are
listed in Tables 4 and 5, respectively.

2 Center manifold around the collinear points L1 and L2

In this section, the dynamics in a vicinity of the collinear Earth–Moon Li , i = 1, 2 points
in the QBCP model are studied by means of a reduction to the center manifold. The center
manifold has been computed for the dynamic equivalents of the L1 and L2 collinear points.
Recall that, these are the Ts-periodic orbits presented in Fig. 2. From now on, we will refer
to the dynamic equivalent of L1 as POL1 and L2 as POL2.
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Table 5 Monodromy matrix
eigenvalues
λi, j , i = 1, 2, j = 1, 2, 3 of the
dynamical substitutes for
Li , i = 1, 2. (L1, top and L2,
bottom)

j abs(λ1, j ) arg(λ1, j )

1 460182151.5759 0.000000000000

2 1.000000000000 2.871101174766

3 1.000000000000 2.981120162511

j abs(λ2, j ) arg(λ2, j )

1 2397196.843443 0.000000000000

2 1.000000000000 0.408977840813

3 1.000000000000 0.091483781904

The implementationof the reduction to the centermanifold follows the algorithmdescribed
in Gómez et al. (2001), Andreu (2002) and Jorba et al. (2020), see also Gabern and Jorba
(2001). In this algorithm, the Hamiltonian expansion is arranged, order by order, up to a
certain degree N . As a summary, this process consists in the following steps:

N = 1: An affine time-dependent change of coordinates such that in the new variables
the periodic orbit becomes an equilibrium point centered at the origin, plus a
scaling to make the unit of distance equal to the distance between the libration
point studied and the closest primary. We call this distance γi , i = 1, 2, and the
values used are listed below:

i γi

1 0.1509342729900642
2 0.1678327317370704

Notice that the scaling is not a canonical transformation. Therefore, it has to be performed on
the vectorfield. This results in a (non-autonomous) Hamiltonian with no linear components.

N = 2: A symplectic time-dependent (Floquet) change of coordinates such that in the
new variables the second-order components of the (non-autonomous) Hamiltonian
obtained in the previous step are in normal form and time-independent. There is a
certain freedom in choosing the frequencies corresponding to the elliptic eigenspace
of the periodic orbit. See Jorba et al. (2020) for more details. The normal frequencies
chosen in each case are:

Case κ1 ω1 ω2

POL1 2.93720564115629 2.27316022488810 2.33661946019073
POL2 2.16306748237037 1.79017018257069 1.86386291350378

where in both cases κ1 corresponds to the hyperbolic part, and ω1 and ω2 to the elliptical
parts. Note that, for each case, these normal frequencies are very similar to their associated
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equilibrium points counterparts in the RTBP. We define for convenience the following vector
ω = (κ1, iω1, iω2).

N > 2: An expansion of the Hamiltonian with second-order terms in an autonomous normal
form, and other nonlinear terms expanded as a series of homogeneous polynomials.
(see Gabern et al. 2004; Jorba et al. 2020 for details on this expansion). A sym-
plectic and time-dependent change of variables to transform the non-autonomous
Hamiltonian in an autonomous one up to certain degree N with the hyperbolic and
the central part decoupled. The Lie transformation method is used to compute this
change.

The last step is done such that the resulting expansion of the Hamiltonian has the elliptic
and hyperbolic dynamics decoupled. In other words, that we have a description of the neutral
dynamics (this is, the center manifold) around the periodic orbit of choice. Note that for
dynamical equivalents of Li , i = 1, 2, the centermanifold has dimension four.Aconsequence
of removing time dependence of the Hamiltonian is the presence of small divisors during the
process. Small divisors do not appear in the center manifold reduction of the RTBP. See Jorba
et al. (2020) for a comparison between the radius of convergence of the center manifold with
small divisors (removing time dependence) and without small divisors (not removing time
dependence).

The coefficients of the Hamiltonian restricted to the central manifold around POL1, and
POL2have been computed up to degree N = 16.During this process, the following indicators
have been calculated:

• The presence of small divisors
• Estimated radius of convergence of the series for different values of N ≤ 16

A proxy to measure the presence of small divisors are the denominators of the form

δD( j, K 0, K 1) = jωs
√−1 − 〈ω, K 1 − K 0〉,

that appear in the generating functions as defined in the Lie transformation. For the center
manifold reduction computation around L1, the smallest value for δD was δD ≈ 0.011, and
for the L2 case, δD ≈ 0.013.

Let H = H2 +· · ·+ HN be a Hamiltonian approximating the center manifold. The radius
of convergence is computed as:

rn = 1
n
√‖Hn‖1

where ‖Hn‖1 = ∑
|k|=n |ak |, 3 ≤ n ≤ N . The radius of convergence for different values of

n for POL1 and POL2 is shown in Table 6. Notice that due to the scaling applied at order 1,
the distance from the origin of the center manifold to the closest primary is one. The radius of
convergence is a fraction of this this distance. For instance, for the case of POL2, r16 ≈ 0.5
means that the center manifold radius of convergence is (more or less) half the distance from
L2 to the Moon.

2.1 Testing the software

Besides the transformed Hamiltonian, we store the symplectic change as it is useful to com-
pute good approximations of invariant objects in the original system. Moreover, the change
can be used to test the accuracy of the center manifold (see Jorba 1999). Let us explain briefly
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Table 6 Radius of convergence
for some values of n for the
center manifold around POL1
(left) and POL2 (right)

POL1 POL2
n rn n rn

6 9.813101e−01 6 8.199574e−01

8 9.913491e−01 8 8.108276e−01

10 9.909848e−01 10 7.983601e−01

12 9.838444e−01 12 7.106946e−01

14 9.708615e−01 14 5.779491e−01

16 9.609837e−01 16 5.137823e−01

how this can be done: We select a point u0 in the center manifold close to the origin (which
is a fixed point and corresponds to POL1 or POL2 in the original system). Then, we integrate
(in the center manifold) u0 from t = 0 to t = t f . We call the resulting point u1. We use the
change to send the points u0 and u1 back to the coordinates of the QBCP. Let us call the
transformed points v0 and v1, respectively. Now we integrate v0 the same time (in QBCP
units), and let v10 be the result of this computation. If the change of variables were exact,
then v10 would be equal to v1. In practice, this is not the case due to several sources of error
(floating point representation, numerical integration and the truncation order of the center
manifold). Therefore, a metric to estimate the error is e1 = ‖v1 − v10‖. This error is expected
to be smaller as v0 is selected to be close to the origin and to grow as it gets far away from
it. Let us name ‖u0‖2 = λ0, and N is the truncation order. If we neglect the accumulation
of errors due to the arithmetic and the numerical integration, the error is expected to behave
like cλN

0 where c is some constant. Repeating this experiment for several initial conditions
ui , i = 0, . . . ,m at increasing distances to the origin λ0 < · · · < λm the order of the error
can be approximated by

N j = ln(e j ) − ln(e j+1)

ln(λ j ) − ln(λ j+1)
, j = 0, . . . ,m − 1. (6)

Then, it is expected that N j ≈ N .

2.2 Center manifold around L1

The expansion of the center manifold is a Hamiltonin HCM = H2 + · · · + HN where
Hk, k = 2, ..., N are homogeneous polynomials of degree k. Each Hk is an expression of the
form

Hk =
∑

k1+k2+k3+k4=k

a(k1,k2,k3,k4)Q
k1
1 Pk2

1 Qk3
2 Pk4

2 , ki ∈ N, i = 1, ..., 4 (7)

where (Q1, Q2) are the positions, and (P1, P2) the conjugated momenta. The coefficients,
up to degree 6, of the Hamiltonian of the center manifold corresponding to the periodic orbit
POL1 are captured in “Appendix A”, Table 14.

After the computation of the center manifold, the test described in Sect. 2.1 (see also
Jorba 1999) was executed to check the software implementation and that, numerically, the
computed center manifold behaves as expected. The initial condition integrated was of the
form x0 = (λ0, λ0, λ0, λ0)/2, where λ0 ∈ R

+. Note that x0 is divided by 2. This is done so
the value λ0 is equal to the distance of the initial condition from the origin (i.e., ‖x0‖2 = λ0).
The integration timespan was from t = 0 to t f = 1.
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Table 7 Differences between the
POL1 center manifold
predictions and a numerical
integration for N = 16

λ0 ‖v0 − v10‖2 λ0 ‖v0 − v10‖2
0.125 2.532617e−10 0.250 3.989719e−08

0.150 3.631822e−10 0.275 1.817547e−07

0.175 5.019000e−10 0.300 7.241818e−07

0.200 1.267081e−09 0.325 2.579780e−06

0.225 7.452637e−09 0.350 8.355658e−06

See Sect. 2.1 for more details

Table 8 Estimations of the
truncation order for the reduction
to the center manifold around
POL1 for N = 16

j λ j λ j+1 N j

0 0.125 0.150 1.97717

1 0.150 0.175 2.09857

2 0.175 0.200 6.93523

3 0.200 0.225 15.04336

4 0.225 0.250 15.92378

5 0.250 0.275 15.90966

6 0.275 0.300 15.88740

7 0.300 0.325 15.87174

8 0.325 0.350 15.85841

See Sect. 2.1 for more details

For the L1 case (orbit POL1), the results of the test for N = 16 are in Tables 7 and 8.
The data in Table 7 illustrate how as the distance of the initial condition x0 from the origin
increases, the error also increases. Table 8 shows good agreement between the degree of the
center manifold approximation and the order of the truncation of the ODE. Hence, it is safe
to conclude that the center manifold has been properly computed.

For the sake of completeness, the same test has been applied to several truncation orders.
This process to estimate the accuracy is the same as in Andreu (2002), and similar to the one
applied in Le Bihan et al. (2017b)

The results of this new test are plotted in Fig. 3a and b. In Fig. 3a, the logarithm of the
error is plotted against the distance to the origin, and in Fig.3b with respect to the energy
for different degrees. As before, these results have been obtained by integrating an initial
condition x0 of the form x0 = (λ0, λ0, λ0, λ0)/2. The data show that increasing the degree
of the expansion does not necessarily translate in a better accuracy around a distance of
the origin. This behavior is expected, since the series is not in general convergent in any
open set. Finally, the relationship between the distance from the origin and the energy is
depicted in Fig. 3c for different values of N . It can be seen that for different degrees there
is good agreement. Note that the analysis described is limited to the subspace defined by
Q1 = Q2 = P1 = P2, but is still a good indicator.

One of the main takeaways of the accuracy analysis is that, if we pick an orbit on the
center manifold and apply the change of coordinates to transform it to the synodic frame, the
resulting object may not be (quantitatively) representative. In some cases, it may be a good
initial condition for a refinement algorithm.However, the benefit of the centermanifold is that
qualitatively it provides a good picture of the dynamics. For the validity of the qualitatively
analysis, the radius of convergence (see Table 6, left column, for POL1) is the right metric
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Fig. 3 Accuracy of the center manifold around POL1. See text for details

to use. Finally, quantitative description on how some families of objects are organized in a
vicinity of L1 will be discussed in Sect. 3.1.

To obtain a qualitative description of the dynamics, the (truncated up to degree N = 16)
Hamiltonian reduced to the center manifold has been integrated. Note that the Hamiltonian
integrated has two degrees of freedom. This means that the phase space has dimension four.
To visualize the center manifold, one can fix an energy level and take a Poincaré section so
the dynamics is restricted to a plane. This is the same approach used in Jorba andMasdemont
(1999). Let (Q1, P1, Q2, P2) be the coordinates of the Hamiltonian reduced to the center
manifold. The starting point is the selection of the 3D Poincaré section Q2 = 0. Then, an
energy level h0 is fixed to obtain a 2D section. Note that the Hamiltonian is autonomous up to
order N . Hence, the energy h0 is conserved for the truncatedHamiltonian. Using this fact, and
that Q2 = 0, if values (Q1, P1) are picked, the component P2 is constrained by the energy
level and can be computed numerically. (There are two solutions for P2, one negative and
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Fig. 4 Poincaré section Q1 = 0 of the center manifold around POL1 for different energy levels with N = 16

one positive; we used the positive one.) This gives an algorithm to compute initial conditions.
These initial conditions are integrated numerically, storing the points that have Q2 = 0 and
P2 > 0. To have a wider perspective, it is useful to consider also the Poincaré section Q1 = 0
and P1 > 0 (the process to obtain this second section is the same one as in the first).

The Poincaré sections for different energy levels using Q1 = 0 are shown in Fig. 4.
Similarly, the Poincaré sections for different energy levels for Q2 = 0 are shown in Fig. 5.
In Fig. 4, it is observed that for low energy levels (h = 0.2), there is a fixed point that
corresponds to a periodic orbit. It is observed that this orbit is surrounded by invariant
curves that correspond to 2D invariant tori for the reduced Hamiltonian. Note that for the
original QBCP Hamiltonian in synodical coordinates, these objects are 3D invariant tori.
If the energy level is increased (h = 0.4, 0.7, 0.9 in Figs. 4, 5), the space phase undergoes
a pitchfork bifurcation. This is more clear from Fig. 5. The interpretation in the synodic
reference is the following: the fixed point close to the origin corresponds to a quasi-periodic
vertical Lyapunov in the synodic reference frame. These are invariant tori with two basic
frequencies. The quasi-periodic orbit surrounding the origin correspond to quasi-periodic
Lissajous orbits with three basic frequencies. The fixed points that appear after the bifurcation
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Fig. 5 Poincaré section Q2 = 0 of the center manifold around POL1 for different energy levels with N = 16

takes place correspond to the northern and southern families of quasi-periodic Halo orbits
with two basic frequencies. The quasi-periodic orbits around them correspond to quasi-Halo
orbits with three basic frequencies.

This is qualitatively similar to the dynamics in around the L1 region in the BCP (see Jorba
et al. 2020), and to the results obtained by Le Bihan et al. (2017b) in the QBCP using the
parametrization method to compute the center manifold.

2.3 Center manifold around L2

The same process described in Sect. 2.2 is repeated for the L2 case. Table 15 in “Appendix A”
contains the coefficients, up to degree 6, of the reduced Hamiltonian of the center manifold.
Also, the same tests described in Sect. 2.2 are done for the present case. Again, the initial
condition is of the form x0 = (λ0, λ0, λ0, λ0)/2, with λ0 ∈ R

+, and the integration timespan
is from t = 0 to t = 1. The results are captured in Table 9 and in Table 10. In this case, because
the radius of convergence is not as good as in the L1 case, the degree of the expansion used
is N = 12. The results in Table 7 show that as the distance of the initial condition x0 from
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Table 9 Differences between the
POL2 center manifold
predictions and a numerical
integration for N = 12

λ0 ‖v0 − v10‖2 λ0 ‖v0 − v10‖2
0.100 2.226642e−12 0.225 3.051407e−09

0.125 3.706322e−12 0.250 1.095514e−08

0.150 2.248650e−11 0.275 3.497710e−08

0.175 1.457249e−10 0.300 1.014818e−07

0.200 7.336179e−10 0.325 2.719555e−07

See Sect. 2.1 for more details

Table 10 Estimations of the
truncation order for the reduction
to the center manifold around
POL2 for N = 12

j λ j λ j+1 N j

0 0.100 0.125 2.28349

1 0.125 0.150 9.88844

2 0.150 0.175 12.12324

3 0.175 0.200 12.10403

4 0.200 0.225 12.10166

5 0.225 0.250 12.13174

6 0.250 0.275 12.18007

7 0.275 0.300 12.24192

9 0.300 0.325 12.31541

See Sect. 2.1 for more details

the origin increases, the error increases, too. This behavior is expected. Table 8 shows that
the error increases consistently with the degree of the expansion, as explained in Sect. 2.2.

The same analysis of accuracy has been done in this scenario, and themain takeaway is the
same as for the L1 case. The results are captured in Fig. 6a for the evolution of the logarithm
of the error with respect to the distance of the initial condition from the origin, and in Fig.6a
its evolution with respect to the energy for different degrees of the expansion of the center
manifold. The main difference is that initially, for low energies, the error is approximately
two orders of magnitude smaller that in the L1 case. This is consistent with what is observed
in Le Bihan et al. (2017b). Finally, the distance with respect to the energy is in Fig. 6c, and
again it is shown good agreement for different degrees.

Finally, following the same procedure as for the L1 case, the Poincaré sections Q1 = 0
and Q2 = 0 at different energy levels have been plotted. These are represented in Fig. 7 for
the section Q1 = 0, and in Fig. 8 for the section Q2 = 0. The qualitative behavior and its
interpretation are equivalent to the L1 described in Sect. 2.2, and it will not be repeated here.
As for the L1 case, in this scenario the results are also qualitatively consistent with Le Bihan
et al. (2017a). We remind that in Le Bihan et al. (2017a) the center manifold was constructed
using the parametrization method, and not the Lie transform.

Asmentioned inSect. 1.3, the centermanifold around L2 in theQBCPwas also studied (see
Andreu 2002). It is important to note that in Andreu (2002) the construction of the center
manifold is different from the one presented here. The reason is that it follows different
criteria. First, the choice of the normal frequencies used in the Floquet transformation for the
terms of degree two is different from the ones used here. In Andreu (2002), the author uses
the following values:
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Fig. 6 Accuracy of the center manifold around POL2. See text for details

ω̃1 = 1.34709425E-02

ω̃2 = 2.16306748E+00

ω̃3 = −6.02217885E-02

where, in this case, ω̃1 and ω̃3 correspond to the elliptical parts, and the ω̃2 to the hyperbolic
part. The differences in the normal frequencies of the elliptical part are due to the multiple
determination of the complex logarithm as explained in Jorba et al. (2020). The relationship
between the values used here and the ones used in Andreu (2002) is:

ω̃1 = ω1 − 2ωs

ω̃3 = ω2 − 2ωs
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Fig. 7 Poincaré section Q1 = 0 of the center manifold around POL2 for different energy levels with N = 12

The rationale behind using the values ω̃i , i = 1, 2, 3 for the Floquet transformation as
opposed to those close to the natural frequencies of L2 is, as argued in Andreu (2002), to
improve the radius of convergence.

Second, the criteria to kill monomials is also slightly different in Andreu (2002). In that
case, the center manifold is computed removing the time dependency (up to certain order),
killing all the monomials associated with the hyperbolic part, and those monomials where
K 0 = K 1 (K 0 = (k1, . . . , k3) and K 1 = (k4, . . . , k6)) as long as the denominators in the
creation of the generating function are not smaller than the threshold ε = 0.05.

However, the penalty of constructing the center manifold as in Andreu (2002) is that it
only provides information for low energy levels. With the criteria used to compute the center
manifold in this work, the expression obtained is good enough to provide a good qualitatively
description of the dynamics around the L2 point. Overall, both approaches are valid and offer
a different perspective on how the dynamics is organized.

123



15 Page 20 of 47 J. J. Rosales et al.

Fig. 8 Poincaré section Q2 = 0 of the center manifold around POL2 for different energy levels with N = 12

3 Families of 2D invariant tori

In this section, we compute some of the families of 2D invariant tori that exist in a vicinity of
the L1 and L2 collinear points. We show by using numerical continuation that, in the QBCP,
there exist horizontal and vertical families parametrized by its frequency of invariant tori
near L1 and L2. These families are the dynamical equivalents of the well-known Lyapunov
families of periodic orbits in the RTBP. In addition to that, in the continuation of the planar
Lyapunov family for each L1 and L2 we identify bifurcation points.At those bifurcation point,
we find and continue families that have an out-of-plane component. Finally, we show that a
big set of Halo orbits in the RTBP survive when continued to the QBCP. The computation
and continuation of tori and their stability in this section are computed with the algorithms
described in Jorba (2001) and Rosales et al. (2021a).
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Fig. 9 Left panel: Quasi-periodic vertical Lyapunov family in the QBCP around L1. Right panel: Stability of
the quasi-periodic vertical Lyapunov family in the QBCP around L1. See text for details

3.1 Families around L1

This section starts with the analysis of the vertical family of quasi-periodic orbits around
L1. This is the family born from the dynamic equivalent of the L1 (see Fig. 2), following
the vertical component. This family would be the quasi-periodic counterpart in the QBCP of
the vertical Lyapunov family that appear in the RTBP. The result of continuing this family
is shown in Fig. 9. The x-axis is the third component of the position vector (the vertical
component) when the invariant curve is evaluated at θ = 0. The y-axis is the rotation number
of the invariant curve on the Poincaré section. We note that the lower-right part of Fig. 9,
between x = 0.13 and x = 0.14 there is sharp turn. This reminds to the branch a pitchfork
bifurcation obtained by symmetry breaking. We attempted to verify this hypothesis, but we
were not successful. This is left as future work.

The stability of this family has been computed for a selected subset of tori. Because of
the Hamiltonian character of the system (and the consequent fact that tori lie in families),
1 is always an eigenvalue with multiplicity two. Hence, there are two pairs of non-trivial
eigenvalues. The analysis showed that there is always a real eigenvalue (and its inverse).
The largest eigenvalue starts with a value of the order of 108 and decreases with the rotation
number until a value of the order of 106. The other pair is formed by a complex value of norm
1 and its conjugate. This is represented in Fig. 9 (right panel). Thus, this family is formed by
partially elliptic tori. As a final remark, note that no bifurcations were identified. However,
based on the results from Sect. 2.2 and specifically shown in Fig. 4, at least one bifurcation
exists. One hypothesis is that the step size used to generate this family probably jumped over
the bifurcation. Another explanation may be that the family was not continued long enough.

The following figures are representative tori of this family, and provided here just to
illustrate how their shape and size evolve with the rotation number. The first example, in
Fig. 10, is a torus with rotation number ρ = 2.8710835247657562. This torus is very
small, and close to the periodic orbit that replaces L1. The second example is in Fig. 11, and
it is a representative of the family with rotation number ρ = 1.7158771247657665.
This is similar to the vertical Lyapunov orbit found in the RTBP around L1 but “shaken”
due to the effect of the periodic time-dependent perturbation. Finally, an example of a large
invariant tori with rotation number ρ = 1.0158771247657681 is illustrated in Fig. 12.
It can be seen that all three tori are very different in size and shape.

Next, the family of horizontal quasi-periodic orbits around L1 born from the planar fre-
quency was computed. This family is the quasi-periodic equivalent to the planar Lyapunov
periodic orbits that appear in the RTBP. In addition to the quasi-periodic planar Lyapunov
orbits, others families were found during the process. These are captured in Fig. 13. The
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x-axis is the first component of the position vector when the invariant curve is evaluated at
θ = 0. The y-axis is the rotation number of the invariant curve. The quasi-periodic planar
Lyapunov family is colored in green and labeled as L1-HLy. It can be seen that a new family,
colored in red and labeled as L1-QV, is born from it. The L1-QV family is born from a
bifurcation of the L1-HLy. This bifurcation was identified during the stability analysis of
the family L1-HLy. As for the quasi-periodic vertical Lyapunov family, two eigenvalues are
real, and the largest one has an order of magnitude between 106 and 108. Then, there is the
eigenvalue equal to one with multiplicity two. The last pair of eigenvalues is shown in Fig. 14,
where the x-axis is the rotation number, and the y-axis is the absolute value of the eigenvalue.
At the beginning of the family, this pair of eigenvalue is complex with norm equal to one.
Then, a bifurcation occurred, and the pair of eigenvalues becomes real. From this bifurcation,
the family L1-QV is born. Recall that this bifurcation was observed in the center manifold
analysis done in Sect. 2.2, where Fig. 5 captures the present case.

The first tempting (and natural) thought is to claim that this family corresponds to the Halo
orbits in the RTBP. To test this hypothesis, a few Halo orbits in the RTBP were continued
from the RTBP to the QBCP. Then, this initial orbit was continued in the QBCP. This is the
family colored in purple and labeled as L1-Halo seen in Fig. 13. Numerical evidences suggest
that these two families are not connected.We stress that the fact that the purple and red curves
in Fig. 13 are projections so that their crossings do not mean that they are connected. It is
important to stress the representation of the these families in the figures has its limitations:
from one point of a 6-dimensional object, we are picking one component and plotting it
against the rotation number. A lot of information is missed during this process, but it is still
useful to for a first analysis.

One check done to seewhether the families L1-Halo and L1-QV are the same is to pick two
representatives with similar rotation number and plot them. Amember of the family L1-Halo
with rotation number ρ = 3.4622727594120977 and a member of L1-QV with rotation
number ρ = 3.4623791625106679 are shown in Fig. 15. Both orbits are different in size
and position. It is interesting to see that the representative of the L1-Q1 family is a Halo-like
orbit so, from a practical standpoint it is useful and could be a candidate for a mission. The
main difference comes when the stability of these families is analyzed. Leaving aside the
big real eigenvalue and its inverse and the unit eigenvalue with multiplicity two, it can be
seen that they have differnt stability types. For example, Fig. 16 shows the stability of the
Halo family. The x-axis shows the rotation number, and the y-axis, the absolute value of the
eigenvalues. The majority of the eigenvalues are complex and have norm equal to one, with
very few exceptions. On the other hand, following the same convention for the axes, Fig. 17
characterizes the stability of the QV family, and it can be seen that it undergoes a bifurcation
that changes its stability from elliptic to hyperbolic. Hence, the numerical evidence and data
gathered in this study do not indicate that these two families are connected, but it is important
to remark that this is a local analysis, and hence, the results are not conclusive.

3.2 Families around L2

For the L2 case,we start analyzing thevertical family.The startingpoint is again the dynamical
equivalent of the L2 point in the QBCP. This is, the periodic orbit that replaces the L2

equilibrium point shown in Fig. 2. By continuing along the vertical direction, the family of
quasi-periodic orbits illustrated in Fig. 18 (left panel) is obtained. Like in the L1 case, this
family is the quasi-periodic counterpart of the vertical Lyapunov periodic orbits that appear
in the RTBP.
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Fig. 10 Example of small vertical torus around L1. Note that the axes have been scaled to appreciate the
details

The stability of these tori was also computed, and the results for the pair of eigenvalues
that are not real or equal to one are shown in Fig. 18 (right panel). The x-axis is the rotation
number, and the vertical axis is the argument of the eigenvalue. This pair of eigenvalues
are complex with norm one, and Fig. 18 (right panel) shows how the argument evolves with
respect to the rotation number. In this case, it is observed that at the end of the family
(rotation number ρ ≈ −1.0179) it seems that the two eigenvalues become real, leading to
a change in the stability type. This may be the bifurcation observed in Fig. 7 from Sect. 2.3.
For completeness, we mention that the large real eigenvalue starts at value on the order of
106 and decreases with the rotation number to a value on the order of 105.

As is the L1 case in Sect. 3.1, we plotted some representatives of the family with different
rotation numbers. Starting from the beginning of the family, Fig. 19 shows a torus with
rotation number ρ = −0.4089841068128386. This torus is very close to the reference
periodic orbit, and its shape and size are influenced by it. Another example is illustrated in
Fig. 20. This example has as a rotation number ρ = −0.8717553068128412. This case,
as in the L1 scenario, portrays an orbit that resembles those found in the RTBP, but under
the influence of the periodic perturbation. Finally, the last example is a torus with rotation
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Fig. 11 Example of medium vertical torus around L1

number ρ = −1.0173803068128409. The same comments made for the L1 case apply
here (Fig. 21).

The next step is to continue the family of planar invariant 2D tori. As in the L1 case,
other families were found and are plotted together in Fig. 22 (left panel. Starting from the
dynamical substitute of L2, we start continuing the family along the horizontal frequency to
find a family of planar quasi-periodic orbits. This family is quasi-periodic counterpart of the
planar Lyapunov that appear in the RTBP. Is it shown in red in Fig. 22 and labeled as L2-HLy.
Proceeding as in Sect. 3.1, we computed the stability of this family and found a bifurcation.
This is shown in Fig. 23, where a change of stability can be seen. From this bifurcation, a
new family is born. This family was computed, and it is illustrated in Fig. 23 as the purple
curve labeled as L2-QV. This is the bifurcation obtained in the analysis of the center manifold
from Sect. 2.3 and shown in Fig. 8. Note that this bifurcation was also identified in Andreu
(1998). However, in Andreu (1998) three other small bifurcations were found. These were
not noticed here, probably because the step size used to continue the family was not small
enough.
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Fig. 12 Example of a big vertical torus around L1

Fig. 13 Families of 2D invariant tori in the QBCP around L1. See text for details
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Fig. 14 Stability of the horizontal Lyapunov family in the QBCP around L1. See text for details

Fig. 15 Example of representative of the Halo and QV families with similar rotation numbers. See text for
details
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Fig. 16 Stability of the Halo family in the QBCP around L1. See text for details

Fig. 17 Stability of the QV family in the QBCP around L1. See text for details

Fig. 18 Left panel: Quasi-periodic vertical Lyapunov family in the QBCP around L2. Right panel: Stability
of the quasi-periodic vertical Lyapunov family in the QBCP around L2. See text for details

123



15 Page 28 of 47 J. J. Rosales et al.

Fig. 19 Example of small vertical torus around L2. Note that the axes have been scaled to appreciate the
details

Again, it is tempting to claim that the family L1-QV is the equivalent to the Halo family
coming from the RTBP. Following the previous argument made in Sect. 3.1, we continued a
Halo orbit from the RTBP to the QBCP. Once in the QBCP, we continued the resulting torus
to see how its evolves and to check for any connection with other families. The result of this
continuation is the family plotted in Fig. 22 in color green and labeled as L2-Halo.

Figure 22 (right panel) is an amplification of the area around the bifurcation of the planar
quasi-periodic Lyapunov orbits. There are two observations to be made: the first one is that
the family L2-QV and L2-Halo are not connected. The second comment is that the L2-
Halo family connects to another family of 2D tori resonant with the frequency of the Sun.
This is seen around the point (−1.12,−0.05) in Fig. 22 (right panel). This connection was
conjectured in Andreu (1998), and the numerical evidence provided here seems to prove it.

Now, let us show some examples of the different tori computed. Figure24 shows three
examples of orbits from the L2-Halo family. The rotation numbers are listed in Table 11.

It can be seen that, as expected, the orbits in Fig. 24 resemble the Halo orbits from the
RTBP. An orbit from the Halo-L2 family with a rotation number close to the point where the
family L2-Halomeets the family of 2D resonant tori was intentionally chosen for comparison
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Fig. 20 Example of medium vertical torus around L2

purposes. A representative of the family of 2D resonant tori with rotation number ρ =
−0.0774976152458405 is shown in Fig. 25. It can be seen that the L2-Halo is “thinner”
than the 2D resonant torus from Fig. 25. To end this short catalog of orbits, examples of two
representatives of the L2-QV family are plotted in Figs. 26 and 26. The rotation numbers
are ρ = −0.0721362180958642 for Fig. 26 and ρ = −0.2449362180958645 for
Fig. 27. It can be seen that this family is not Halo-like.

Finally, the stability of the L2-Halo family and the 2D resonant tori family that continues
from it, and L2-QV family has been computed. The results are plotted in Figs. 28 and 29.
The x-axis is the rotation number, and the y-axis is the absolute value of the eigenvalues.
It can be seen in Fig. 28 that the tori from the L2-Halo family have an elliptical direction,
with some small pockets of real eigenvalues. On the other hand, the stability for the L2-QV
tori computed have all real eigenvalues, as shown in Fig. 29. For both families, the other two
eigenvalues are real, with a range between 102 and 106 for the L2-Halo family, and between
105 and 106 for the L2-QV family and the family of 2D resonant tori that meet the L2-Halo
family.
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Fig. 21 Example of big vertical torus around L2

Fig. 22 Families of 2D invariant tori in the QBCP around L2. Left panel: General plot. Right panel: zoom
about the bifurcation giving rise to the Halo family. See the text for more details
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Fig. 23 Stability of the quasi-periodic horizontal Lyapunov family in the QBCP around L2. See text for details

4 Transfers in the QBCP

In this section, we take advantage of the invariant manifolds of three Halo quasi-periodic
orbits in the QBCP to design direct transfers from the translunar point (the Earth–Moon L2

equilibriumpoint) to a 200-kmEarth parking orbit. This kind of transferswhere already found
in the BCP in Rosales et al. (2021b). Here, we repeat a similar analysis for the case of the
QBCP. The main idea to construct the transfers is to take initial conditions for a test particle
on the unstable manifold of the tori and propagate them until some event takes place. The
integration time is set to 6Ts , which corresponds approximately to 180 days (see Remark 1).
This limit is set motivated by looking for transfers that operationally could be interesting. The
authors acknowledge that this limit is arbitrary, but provide a valid insight potential transfer
candidates.

Those possible events are:

1. The particle’s distance to the center of the Earth is less than RE + 200 km, where
RE = 6400 km is the radius of the Earth. (The sphere centered at the center of the Earth
and radius equal to the radius of the Earth plus 200 km is referred as the LEO sphere
from now on.)

2. The particle collides with the Moon.
3. The particle leaves the Earth–Moon system. We set as a criterion for this case that the

distance of the particle to the Earth–Moon barycenter is larger than 6 times the distance
between the Earth and the Moon.

4. None of the above happens after integrating 6Ts units of time in the normalized frame
(the orbits with this behavior will be referred as wandering trajectories).

Also, and as in Rosales et al. (2021b), for transfers, for each transfer, we evaluate three
different cost functions. These three cost functions are:

• Minimum v: J1(θ, h) = v(θ, h)

• Minimum transfer time t : J2(θ, h) = t(θ, h)
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Fig. 24 The representatives of the family L2-Halo. Rotation numbers are in Table 11. See text for details

Table 11 Rotation numbers of
the orbits plotted in Fig. 24

Orbit Rotation Number ρ

Blue −0.0480876152458433

Red 3.6403791158911880

Green 1.0224171606049586

• Minimum norm of (v,t): J3(θ, h) =
√

v(θ, h)2 + t(θ, h)2

Finally, the observations in Rosales et al. (2021b) about how the v and the transfer time
are computed apply to this analysis.

To produce initial conditions on the unstable manifold of the tori, it is suitable to regard
them as invariant curves of the stroboscopic map. Then, if x, ψu : [0, 2π) 
→ R

6 are the
invariant curve of rotation number ρ for the stroboscopic map and ψu the eigenfunction
related to the unstable eigenvalue λu , a linear approximation of the invariant manifold is
given by:

�u
0(θ, h) = x(θ) + hψu(θ).
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Fig. 25 Representative of the family of 2D resonant tori that meets the L2-Halo family. See text for details

Here, h is a small displacement. Take into account that the error of this linear approximation
behaves as O(h2). Notice that h can be negative. The initial conditions (θ, h) are taken in
the so-called fundamental cylinder given by [0, 2π) × [h0, h0λu] where h0 is to be chosen
so the following quantity

‖PTs (�u
0(θ, h0)) − �u

0(θ + ρ, λuh0)‖,
is small enough. (Notice that h0 depends on the invariant curve.) These initial conditions are of
the form (θ j , hk), j = 0, ..., N −1, k = 0, ...., M−1, where θ j = 2π j/N , j = 0, ..., N −1
and hk = h0((M − k) + λuk)/M, k = 1, ..., M − 1. The values for N and M used in this
paper are N = M = 1000.

We have selected three (Halo like) invariant curves: ICQ1, ICQ2, and ICQ3 to preform
the experiment. Their characteristics are given in Table 12. The unstable eigenvalues are also
of the same order of magnitude. Different projections of the three invariant curves associated
with the orbits used in this analysis are plotted in Fig. 30.

Figure 31 shows the results of the analysis for the selected QBCPHalo orbits. The first row
corresponds to the invariant curve ICQ1, the second to curve ICQ2, and the third one to ICQ3.
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Fig. 26 Representative of the QV family at the beginning of the family. See text for details

The first column corresponds to the negative side of the unstablemanifold, and the second one
to the positive side. In the ICQ1 case, the distance to the invariant curve has been chosen equal
to 2.5×10−7 units of distance in the normalized frame (or approximately 100m), 7.5×10−7

(or approximately 290m) for the ICQ2 case, and 7 × 10−7 (or approximately 270m) in the
ICQ3 case. The color code is as follows: successful transfers are colored in red (this is, at
some point the distance of the particle is less than RE + 200 km), collisions with the Moon
are shown green, yellow shows trajectories where a particle leaves the Earth/Moon system,
and none of the previous cases in black. As mentioned before, the maximum integration time
is set to 6Ts units of time in the normalized frame.

In all three cases, we observe regions were direct transfers exists, although they are not
prominent. It is also observed that the collisions with the Moon are mainly concentrated in
the cases ICQ2 and ICQ3, positive sides (these are the sides between the Halo orbit and the
Moon). On the other hand, and also for the cases ICQ2 and ICQ3, the negative sides show
that a significant number of trajectories leave the influence of the Earth–Moon gravity.

Looking at specific transfers that minimize the cost functions Ji , i = 1, 2, 3, we see that
the total costs in terms of v and transfer time are consistent with the results described
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Fig. 27 Representative of the QV family away from the bifurcation point. See text for details

in Rosales et al. (2021b). These results are captured in Table 13. We see that the cheapest
transfer in terms of total v is the case {ICQ2, –, J1} with a cost of 3.1517km/s. This case,
however, spends a total of approximately 125.4 days to complete. In terms of total travel
time, the shortest transfer is the case {ICQ3, –, J2}, with a total of approximately 104 days.
In this case, the v is approximately 3.3km/s, which is comparable to the cheapest transfer.
It is worth noting that there are other interesting trade-offs between total v and travel time,
like {ICQ2, –, J3}.

Figure 32 shows the trajectory followed by the transfer {ICQ3, –, J2}. This trajectory
corresponds to the stable manifold of the target orbit ICQ3; this is the trajectory that a
spacecraft would follow from the Earth to the target orbit. Note that the trajectory circles
two times the Earth and the Moon before converging to the target Halo orbit. This “bending”
of the invariant manifold is due to the direct gravitational effect of the Sun and it was also
observed in the BCP (see Rosales et al. 2021b). Figure 33 shows different projections of the
transfer when arriving to the target orbit. Again, the black circle corresponds to the radius of
the Moon, and blue circle to the LEO sphere. It can be seen that for the ICQ3 orbit there is
no Moon occultation.
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Fig. 28 Stability of the Halo family in the QBCP around L2. See text for details

Fig. 29 Stability of the QV family in the QBCP around L2. See text for details

Finally, it is worth looking at how the total transfer time changes with the v, and how
the v changes as a function of the latitude of the intersection with the LEO sphere. These
are shown in Fig. 34a and b, respectively.

It can be observed in Fig. 34a that the total maneuver cost is between 3.1517km/s (the
minimum computed in this case) and slightly more than 13km/s. The total v as function of
the latitude LEO sphere latitude is shown in Fig. 34b. The same qualitatively behavior as for
the BCP case analyzed is seen here, where the majority of the transfers less than 4km/s are
concentrated between a latitude of −20 deg and 40 deg. Overall, the behavior of the cases
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Table 12 Characteristics QBCP Halo orbits invariant curves

Invariant Curve Rotation number λu

ICQ1 3.239814740891185 1269.060394604636

ICQ2 1.022417160604956 58362.76296971765

ICQ3 0.517157160604977 206452.6867125494

Fig. 30 Invariant curves ICQ1, ICQ2 and ICQ3 of the QBCP

studied in the QBCP are pretty similar to their counterparts in the BCP (see Rosales et al.
2021b).

5 Conclusions and further work

In this paper, we explored some aspects of the dynamics around the Earth–Moon L1 and L2

regions in the context of the QBCP. TheQBCP is dynamical system that models themotion of
a massless particle under the influence of the Sun, the Earth, and the Moon. One of the main
features of the QBCP is that the motion of the Sun, the Earth, and the Moon is coherent. This
model can be written in the Hamiltonian formalism as periodic time-dependent perturbation
of the RTBP. To study this Hamiltonian, we used numerical tools to get an insight on the phase
space. The two techniques usedwere the reduction to the centermanifold and the computation
and continuation of 2D tori, their stability, and their associated invariant manifolds.

We first revisited the dynamical substitutes of the RTBP Earth–Moon L1 and L2 points
in the QBCP. These dynamical substitutes are periodic orbits with the same period as the
perturbation, and it is around these objected where we focused our analyses.

We showed that the reduction to the center manifold around the dynamical substitutes
provides relevant qualitative information about the dynamics around L1 and L2. The main
takeaway was that L1 and L2 had a similar qualitative behavior. In both cases, there were
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Fig. 31 Fundamental cylinders, (θ, h), for QBCP orbits. Valid transfers are colored in red, trajectories where
a particle leaves the Earth/Moon system are colored in yellow, collisions with the Moon are green, and none
of the previous cases in black. First row corresponds ICQ1, second row to ICQ2, and third row to ICQ3. The
first column corresponds to the negative side of the unstable manifold, and the second one to the positive side.
See text for details

two families of quasi-periodic Lyapunov orbits, one planar and one vertical. It was also
shown that the quasi-periodic planar Lyapunov family underwent a (quasi-periodic) pitch-
fork bifurcation, giving rise to two families of quasi-periodic orbits with an out-of-plane
component. Between them, there was a family of Lissajous quasi-periodic orbits, with three
basic frequencies.

In addition to the reduction to the center manifold, we also computed families of invariant
2D tori around L1 and L2. In these cases, the quasi-periodic planar and vertical families
were continued. The bifurcations of the quasi-periodic planar Lyapunov were identified.
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Table 13 Transfer cost to QBCP Halo orbits

Invariant curve Manifold side Cost function v (km/s) t (days) Latitude (◦)

ICQ1 + J1 3.2386 134.2429 10.710279

ICQ1 – J1 3.2003 137.4482 6.415619

ICQ1 + J2 3.8470 131.3539 −18.440223

ICQ1 – J2 3.3394 118.9735 −2.317154

ICQ1 + J3 3.8470 131.3539 −18.440223

ICQ1 – J3 3.3394 118.9735 −2.317154

ICQ2 + J1 3.2271 159.5806 18.505784

ICQ2 – J1 3.1517 125.3764 −13.777695

ICQ2 + J2 6.3825 121.0911 −54.610093

ICQ2 – J2 3.2460 107.9764 −4.959981

ICQ2 + J3 3.7862 121.6507 −21.937209

ICQ2 – J3 3.2460 107.9764 −4.959981

ICQ3 + J1 3.1581 127.7909 −5.262186

ICQ3 – J1 3.1587 132.4915 5.678865

ICQ3 + J2 3.7272 115.9231 −19.960734

ICQ3 – J2 3.2713 104.0634 −6.622813

ICQ3 + J3 3.7272 115.9231 −19.960734

ICQ3 – J3 3.1586 132.4914 5.678865

Fig. 32 Trajectory followed by the transfer {ICQ3, –, J2}
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Fig. 33 Zoom around the target orbit showing the trajectory followed by the transfer {ICQ3, –, J2}

Fig. 34 Plots of transfer time against total V (left) and V against latitude in the LEO Sphere (right)

A conclusion from this exercise was that the family of out-of-plane orbits born from the
bifurcation seemed not to be the RTBP Halo counterparts in the QBCP. The RTBP Halo
orbits do survive in the QBCP, but do not seem to be connected to the quasi-periodic planar
Lyapunov family. Another conclusion for the L2 case is about a conjecture enunciated in
Andreu (1998). This conjecture stated that the family of Halo orbits in the QBCP obtained
from direct continuation of the RTBP Halo orbits is connected to another family of 2D tori
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resonant with the frequency of the Sun is true. The numerical evidence seemed to indicate
that this conjecture is true.

Finally, and also in the context of the QBCP, numerical simulations to study transfers
from a parking orbit around the Earth to a Halo orbit around the Earth–Moon L2 point were
studied. The main conclusion is that, contrary to the RTBP, the invariant manifolds of the
target orbits studied intersect with potential parking orbits around the Earth. This opens the
room to potentially planning one-maneuver transfers from a vicinity of the Earth to Earth–
Moon L2 Halo orbits. In terms of v cost and total transfer time, the results are comparable
to other techniques requiring two or more maneuvers.

Future research focuses on showing whether or not the objects computed in the context
of the QBCP survive in a full ephemeris model. This is especially relevant in the case of
invariant manifold used for transfers. If these transfers persist in a full ephemeris model, this
could pave the way for efficient ways to reach Halo orbits around the Earth–Moon L2 point.
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