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Abstract
We provide stability estimates, obtained by implementing the Nekhoroshev theorem, in ref-
erence to the orbital motion of a small body (satellite or space debris) around the Earth.
We consider a Hamiltonian model, averaged over fast angles, including the J2 geopotential
term as well as third-body perturbations due to Sun and Moon. We discuss how to bring the
Hamiltonian into a form suitable for the implementation of the Nekhoroshev theorem in the
version given by Pöschel, (Math Z 213(1):187–216, 1993) for the ‘non-resonant’ regime.
The manipulation of the Hamiltonian includes (i) averaging over fast angles, (ii) a suitable
expansion around reference values for the orbit’s eccentricity and inclination, and (iii) a pre-
liminary normalization allowing to eliminate particular terms whose existence is due to the
nonzero inclination of the invariant plane of secular motions known as the ‘Laplace plane’.
After bringing the Hamiltonian to a suitable form, we examine the domain of applicability
of the theorem in the action space, translating the result in the space of physical elements.
We find that the necessary conditions for the theorem to hold are fulfilled in some nonzero
measure domains in the eccentricity and inclination plane (e, i) for a body’s orbital altitude
(semimajor axis) up to about 20000km. For altitudes around 11000km, we obtain stability
times of the order of several thousands of years in domains covering nearly all eccentricities
and inclinations of interest in applications of the satellite problem, except for narrow zones
around some so-called inclination-dependent resonances. On the other hand, the domains
of Nekhoroshev stability recovered by the present method shrink in size as the semimajor
axis a increases (and the corresponding Nekhoroshev times reduce to hundreds of years),
while the stability domains practically all vanish for a > 20 000 km. We finally examine the
effect on Nekhoroshev stability by adding more geopotential terms (J3 and J4) as well as the
second-order terms in J2 in the Hamiltonian. We find that these terms have only a minimal
effect on the domains of applicability of Nekhoroshev theorem and a moderate effect on the
stability times.
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1 Introduction

The study of the stability of the motion of celestial bodies is relevant from both the theo-
retical and practical points of view; such investigation can be approached using numerical
or analytical tools (see (Celletti 2010) for a review). In this work, we consider the problem
of the long-term (over 103–104 years) stability of a small body (satellite or space debris) in
orbit around the Earth and subject to third-body perturbations due to the Moon and the Sun.
By stability, we mean that the body undergoes no large variations of its orbital elements that
could produce a drastic change (e.g., escape) in the orbit.

In the orbital study of satellite motions, it is convenient to split the space environment
around the Earth into three distinct regions according to the distance from the Earth’s surface,
where different elements can affect the dynamics:

(i) LEO: Low-Earth-Orbit (from 90 to 2000 km of altitude), where the Earth’s atmo-
sphere generates dissipative effects;

(i i) –(i i i) MEO: Medium-Earth-Orbit (between 2000 and 30 000 km of altitude) and
GEO: Geostationary-Earth-Orbit (altitudes around the geosynchronous orbit at
about 35 786 km), where the dissipative effect of the atmosphere is negligible and
the dynamical system associated with the equations of motion is conservative. In
these regimes, the most important contributions are due to the geopotential and to
the lunar and solar third-body perturbations.

We will hereafter consider a Hamiltonian model for the motion of small bodies at MEO
(see, instead, Celletti and Galeş 2018; Lhotka et al. 2016 for the inclusion of dissipative
effects). The study of dynamics at MEO in the conservative regime has been subject of
many works, including the development of analytical models (e.g., Celletti and Gales 2014;
Celletti et al. 2017; Giacaglia 1974; Kaula 1962; Lane 1989), study of resonances (e.g.,
Breiter 2001a, b; Celletti et al. 2020, 2016, 2017; Chao and Gick 2004; Cook 1962; Ely and
Howell 1997; Hughes 1980; Lemaître et al. 2009), as well as the dynamical chartography
(stability maps, onset of chaos) of the MEO region (e.g., Alessi et al. 2016; Casanova et al.
2015; Daquin et al. 2016; Gkolias et al. 2016; Rosengren and Scheeres 2013; Rosengren
et al. 2015, 2016; Rossi 2008; Skoulidou et al. 2019; Valk and Lemaître 2008).

The aim of this work is to study the stability of a model for objects inMEO from an analyt-
ical point of view, providing exponential stability estimates using the celebratedNekhoroshev
theorem (Nekhoroshev 1977). We stress that, while the Nekhoroshev theorem is particularly
relevant for systems with three or more degrees of freedom, which can be affected by the
phenomenon known as Arnold diffusion (Arnold 1964), the applicability of the theorem in
securing the long-term stability in open domains in the action space holds for systems of
any number of degrees of freedom larger than or equal to two. Furthermore, the Nekhoro-
shev theorem was originally developed under a suitable non-degeneracy condition, called
steepness, while later approaches (e.g. Benettin and Gallavotti 1986; Pöschel 1993) focus
on the important subcase of convex and quasi-convex Hamiltonians (see Pöschel 1993 for
definitions). As regards the applications, the theorem was proved useful in obtaining realistic
estimates of the domains or times of practical stability of the orbits in a number of interesting
problems in Celestial Mechanics. Among others, we mention the three-body problem (Cel-
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letti and Ferrara 1996) as well as the problem of the Trojan asteroids (Celletti and Giorgilli
1991; Giorgilli and Skokos 1997).

In this work, we apply the Nekhoroshev theorem to a model approximating the (averaged
over short period terms) dynamics of a small body around the Earth. As discussed below,
this allows to obtain long-time stability estimates for realistic sets of parameters, at least for
altitudes (values of the semimajor axis) below 20000km.

Our main model, explained in detail in Sect. 2, is ruled by a Hamiltonian function obtained
as the sum of different contributions, namely the geopotential J2 term as well as the third-
body perturbations on the small body by the Sun andMoon.We assume the spatial case of the
small body’s motion, while we approximate the Moon’s and Sun’s orbits as fixed Keplerian
ellipses lying in the ecliptic plane. We argue (Sect. 2) that the Moon’s precession of the
nodes introduces only minimal effects as regards the problem of determining Nekhoroshev
stability, due to the fact that the frequency of the precession is much smaller than any of the
frequencies in the small body’s motion. As a result, our point of departure is a Hamiltonian
model obtained by a 3 degrees of freedom and time-dependent Hamiltonian function, which
depends quasi-periodically on time, since the (fast) frequencies of motion of the Sun and
Moon are non-commensurable.

Now, as discussed in Sect. 2, this model is still not convenient for the discussion of
Nekhoroshev stability over secular timescales, because both short and long period effects
are included in it. Working, however, with closed-form perturbation theory (namely, without
series expansions in eccentricity and inclination, see Lara 2021; Brouwer 1959 for a review),
one can eliminate all short-period terms and arrive at an autonomous Hamiltonian with two
degrees of freedom which is convenient for the description of the secular motions of the
small body. As our basic model, we then adopt the one found after averaging (in closed-
form) over the Earth’s J2 term and the Sun’s and Moon’s quadrupolar (P2) terms. Several
studies (see Daquin et al. 2016; Gkolias et al. 2016; Aristoff et al. 2021; Nie and Gurfil
2021 and references therein) have demonstrated the relevance of this model in capturing all
important effects for the long-term dynamics at MEO. In Sect. 5, however, we consider also
a more complicated model including the Earth’s J3 and J4 terms to first order, as well as J 22
terms. The latter are computed by implementing a closed form averaging through Deprit’s
elimination of the parallax technique (Deprit 1982; Lara et al. 2020, 2014). One finds (see
the discussion in Sect. 5) that the relative importance of these terms over lunisolar terms
decreases with altitude; yet, these terms provide relevant contributions to the Hamiltonian
for the lowermost altitudes considered in the present work (namely, with semimajor axis
a ≈ 11 000 km).

After fixing the initial model, an important aspect of our present work concerns a number
of preliminary operations performed on the initial Hamiltonian, which turn to be crucial to
the purpose of bringing the Hamiltonian in a form allowing to explicitly demonstrate the
fulfillment of the conditions for the holding of the Nekhoroshev theorem in the form given
in Pöschel (1993). These preliminary steps are explained in detail in Sect. 2 below and can
be summarized as follows:

(i) Average over fast angles.We start by averaging the Hamiltonian over the problem’s fast
angles, i.e., the mean anomalies of the small body’s, Moon’s and Sun’s orbits. After this
operation, the semimajor axis a of any orbit becomes a constant which can be used to label
the altitude of each orbit.

(ii) Expansion around reference values in the eccentricity and inclination. The remaining
elements (eccentricity e and inclination i), which can be mapped into the action variables
of the problem, undergo ‘secular’ (slow) evolution under the averaged Hamiltonian. Our
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purpose is to characterize the stability of the orbits in the space (e, i) of the orbital elements.
To this end, fixing a grid of reference values (e∗, i∗) in the plane (e, i) for each (constant)
semimajor axis a = a∗, we perform a Taylor expansion of the averaged Hamiltonian around
the points in action space associated with the reference point (e∗, i∗). This step is important,
since the Taylor-expanded Hamiltonian can be easily manipulated in terms of normalizing
canonical transformations necessary to performwith the aid of a computer-algebraic program
(see below).

(iii) Preliminary normalization. We perform a preliminary normalization of the averaged
and Taylor-expanded Hamiltonian, aiming to eliminate some terms which, albeit reflecting
a trivial dynamics (see Sect. 3), may artificially affect the estimates found by implementing
Pöschel’s version of theNekhoroshev theorem.We argue below that this step is a consequence
of the nonzero value of the inclination of the Laplace plane with respect to the Earth’s
equatorial plane. The inclination can be expressed as

i (p) � − A

2B

1

(μEa)1/4
(1)

where

A = −3R2
Ea

7/4 sin (2i0)

8(μE )1/4

(
μM

a3M
+ μ�

a3�

)
,

B = 3

4

√
μE R2

E J2
a7/2

+ 3μM (2 − 3 sin2 i0)

16
√

μE
a3

a3M

+ 3μ�(2 − 3 sin2 i0)

16
√

μE
a3

a3S

(2)

with RE , μE being the Earth’s mean radius and mass parameter, aM , μM are the Moon’s
semimajor axis andmass parameter,a�, μ� are theSun’s semimajor axis andmass parameter,
and finally i0 is the inclination of the ecliptic plane. A key result in the present paper is the
use of normal form techniques to reduce the size, in the Hamiltonian, of all terms related
to the Laplace plane (see Sect. 3); whenever convergent, this procedure is crucial to put the
initial Hamiltonian in a form for which Nekhoroshev’s non-resonant stability estimates can
be produced, since it allows us to control the norm of the perturbing function under a suitable
choice of the domain in the actions.

Now, following steps (i) to (iii) above, the procedure leads to a normalized 2 degrees of
freedom Hamiltonian expressed in suitably defined action-angle variables (I,u) ∈ R

2 ×T
2,

of the form:

H(I,u) = h0(I) + h1(I,u). (3)

Using the Hamiltonian (3), we can derive stability results on the eccentricity and the incli-
nation by implementing the estimates provided in Proposition 1 of Pöschel (1993). This
proposition refers to the so-called non-resonant regime, i.e., when the fundamental frequen-
cies deduced by the integrable part of the Hamiltonian, h0, are subject to no resonance
conditions. Under particular assumptions on the non-resonance condition for h0, as well as
on the smallness of the norm of h1 in a suitable functional space and domain in the action
variables (see Sect. 3.1), one can prove that the actions remain in a small neighborhood
of their initial values for a period of time which is exponentially long with respect to the
norm of h1. We remark that Proposition 1 in Pöschel (1993) does not require any convex-
ity assumption on the Hamiltonian. This assumption is relevant when analyzing resonant
regimes (for a thorough analysis of different non-degeneracy conditions such as convexity,
quasi-convexity, 3-jet, etc., see De Blasi et al. 2021). However, we also stress that, despite
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Table 1 Inclination-dependent resonances of order ≤ 4 in the lunisolar model. The coefficients are such that
αω̇ + β�̇ = 0, where ω is the argument of the perigee and � is the longitude of the ascending node (Hughes
1980)

α β i(deg) α β i(deg) α β i(deg) α β i(deg)

1 0 63.43 0 1 90 1 1 46.37 1 −1 73.1

2 1 56 1 2 0 2 −1 69 −1 12 78

3 1 58.75 3 −1 67.33 1 −3 81.47

our use of Pöschel’s proposition in the non-resonant regime, the presence of resonances at
MEO plays an important role also in our results, as becomes evident in the discussion of our
results in Sect. 4. In fact, we find that our obtained stability domains typically exclude some
zones around the so-called inclination-dependent resonances (Hughes 1980), i.e., resonances
appearing for particular values of the inclination of the orbit, independently of the value of the
semimajor axis or the eccentricity. This is because the series constructed in our preliminary
normalization of the Hamiltonian are affected by small divisors related to the most important
of these resonances, given in Table 1. Also, the frequencies associated with these divisors
influence the determination of the so-called Fourier cut-off (Sect. 3) which appears in the
implementation of the Proposition 1 of Pöschel (1993).

As described in Sect. 4, the stability estimates obtained in this work strongly depend on
the distance of the small body from the Earth’s center: our results show that the domain of
Nekhoroshev stability in the plane (e, i) has a large volume (limited only by narrow strips
around resonances) at the distance of 10000km,while it shrinks to a near-zero volumebeyond
the distance of 20000km.We should stress that this result is partly due to the dynamics itself
(the secular—averaged over the fast angles - J2 dynamics alone is integrable, but the third-
body perturbations increase in relative size as the distance from the Earth increases), but also
probably due, in part, to our particular technique used to apply the Nekhoroshev theorem, i.e.
including the processing of theHamiltonian as described in steps (i)–(iii) above.We thus leave
open the possibility that this latter constraint be relaxed with the use of a better technique.
Also, our present treatment is simplified in that we ignore the periodic oscillation of the
Moon’s line of nodes (by an amplitude of 11.5◦ over a period of 18.6 y) and inclination (by
±5◦) around the ecliptic of theMoon’s orbit with respect to the Earth’s equatorial plane. This
oscillation introduces one more secular frequency to the problem; however, it substantially
affects the orbits only for semimajor axes a > 20 000 km, which is, anyway, beyond the
domain of stability presently found even while ignoring this effect.

As a final remark, in De Blasi et al. (2021) we studied the satellite’s stability in two
different models: the J2 approximation of the geopotential and a model that includes J2, Sun
and Moon. We computed suitable normal forms and obtained stability results by estimating
the size of the remainder function after the normalizing transformation. In De Blasi et al.
(2021), we only considered values of the eccentricity and inclination close to zero and to the
inclination of the Laplace plane, respectively. In terms of Table 1 above, this corresponds to
the case of the g + 2h resonance. Correspondingly, our stability estimates in De Blasi et al.
(2021) were not obtained separately for eccentricity and inclination, but only as regards their
combination

√
1 − e2 cos i through the Lidov-Kozai integral, which is the second integral

associated with the g + 2h resonance. This is a main difference with respect to the present
paper, in which we consider generic values for the eccentricity and inclination far from any
lunisolar resonance.
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This article is organized as follows: Sect. 2 provides the construction of the secular Hamil-
tonian function which describes the model, as well as its normalization; in Sect. 3, the
theoretical framework is described, along with the algorithm used to produce the normalized
Hamiltonian and the stability estimates. Sect. 4 describes the results based on the Hamilto-
nian including the geopotential J2 term and the third-body perturbations due to the Sun and
Moon; Sect. 5 discusses the influence on Nekhoroshev stability by extending the model and
including the J 22 , J3 and J4 terms in the secular Hamiltonian. Finally, Sect. 6 summarizes the
conclusions from the present work.

2 Hamiltonian preparation

In this Section, we provide details on the model (Sect. 2.1), on the corresponding secular
Hamiltonian function averaged over fast angles (Sect. 2.2), the expansion around some refer-
ence values for the eccentricity and inclination (Sect. 2.3), and the preliminary normalization
to remove specific terms (Sect. 2.4).

2.1 Model

We consider a small body (satellite or debris) S of infinitesimal mass, under the action of the
Earth’s gravitational field and the third-body perturbations due to the Moon and Sun. Geo-
centric inertial Cartesian coordinates are denoted by (x, y, z), where the xy-plane coincides
with the Earth’s equatorial plane, z points to the north pole, and x points to a fixed direction
(ascending node of the Sun’s geocentric orbit). We denote by r(t) = (x(t), y(t), z(t)) the
time-evolving radius vector of the body S, and by (a, e, i, M, ω,�) the osculating orbital
elements of S, where a is the semimajor axis, e is the eccentricity, i is the inclination with
respect to the Earth’s equatorial plane, M is the mean anomaly, ω is the argument of the
perigee and � is the longitude of the ascending node.

In the sequel, we consider the following approximation to the body’s equations of motion:

r̈ = −∇VE (r) − μ�
(

r − r�
|r − r�|3 + r�

|r�|3
)

− μM

(
r − rM

|r − rM |3 + rM
|rM |3

)
, (4)

where VE (r) approximates the geopotential via the relation

VE (r) = Vkep(|r|) + VJ2(r), (5)

where Vkep(r) = −μE
r and VJ2 in spherical coordinates (r , ϕ, φ) is given by1

VJ2(r , ϕ, φ) = μE J2
r

{(
RE

r

)2 (
3

2
sin2 φ − 1

2

)}
. (6)

In the above formulas:

• G is the gravitational constant, μE = GmE , μM = GmM , μ� = Gm� with mE , mM ,
m� the masses of the Earth, Moon and Sun, respectively.

1 In the present section, as well as in Sects. 3 and 4, we limit our analysis to the J2-term, which is the dominant
term of the Earth’s potential at all altitudes; however, in Sect. 5, we will discuss the influence on our results
by the terms J3, J4, and J22 (obtained through a canonical transformation), which become relevant for the
lowermost limit in altitude of the MEO domain.
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• We adopt the value J2 = 1.082 × 10−3 for the J2 coefficient, and RE = 6 400 km for
the Earth’s equatorial radius.

• r, r� and rM are, respectively, the geocentric position vectors of S, Sun and Moon.

The expressions of r� and rM depend on the assumptions on the orbits of Sun and Moon. In
this work, the geocentric orbit of the Sun is taken as a fixed ellipse with a� = 1.496 × 108

km, e� = 0.0167 and i� = 23.44◦, while the geocentric orbit of the Moon is taken as a
fixed ellipse with orbital parameters aM = 384 748 km, eM = 0.0554 and iM = i�2. The
last assumption has an important effect on the dynamics: it implies that the only lunisolar
resonances which affect the dynamics of the body are those whose location in the element
space (a, e, i) depends only on the inclination (see Hughes 1980). More resonances, instead,
appear when the effect of nodal precession (by a period of 18.6 years) of the Moon’s orbit is
taken into account. However, these resonances affect the dynamics only at altitudes exceeding
the ones where we presently establish Nekhoroshev stability (see Gkolias et al. 2016 and
Sect. 4 below); thus, they can be ignored in the framework of our present study.

The Hamiltonian function which describes the motion of S can be expressed as the sum
of three contributions:

H = HE + H� + HM , (7)

where HE = p2/2 + VE (r) with p = ṙ, and H� and HM are the solar and lunar third-body
perturbation terms. Considering the quadrupolar expansion of the third-body perturbation
terms in the equations of motion (4), we find

H� = V�(r) = − μ�
|r − r�| + μ�

r3�
r · r�

= −μ�
r�

− μ�
2r3�

r2 + 3

2

μ�(r · r�)2

r5�
+ O

((
r

r�

)3
)

,

(8)

HM = VM (r) = − μM

|r − rM| + μM

r3M
r · rM

= −μM

rM
− μM

2r3M
r2 + 3

2

μM (r · rM )2

r5M
+ O

((
r

rM

)3
)

.

(9)

2.2 Average over fast angles: secular Hamiltonian

The secular motion of the body S can be modeled by computing the average of (7) over all
canonical angles associated with the fast motions of S, the Sun and the Moon. Note that the
period of the Sun is only ‘semi-fast’ (one year, compared to secular periods of ∼ 10 yrs
for the small body), and more detailed models can consider also the case of ‘semi-secular’
resonances, i.e., resonances in the case in which the equations of motion (and Hamiltonian)
are not averaged with respect to the Sun’s mean anomaly (see, for example, Celletti et al.
2017).

Averaging with respect to all fast angles leads to the following, called hereafter, secular
Hamiltonian, given by the sum of the averaged contributions of the Earth, Sun and Moon:

H(sec) = H(av)
E + H(av)

� + H(av)
M . (10)

2 In this approximation, with the Moon’s and the Sun’s elements taken on the ecliptic frame, the Sun’s and
Moon’s longitudes of the nodes do not appear in the Hamiltonian.
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The function H(sec) = H(sec)(G,�, ω,�) is a two degrees of freedom Hamiltonian, which
can be explicitly computed in terms of Delaunay canonical action-angle variablesG,� (with
conjugated angles ω, �), related to the orbital elements by the expressions (see, e.g., Celletti
2010):

G =
√

μEa(1 − e2), � =
√

μEa(1 − e2) cos i . (11)

Since the averagedHamiltonian does not depend on themean anomalyM of S, the conjugated
Delaunay action L = √

μEa, and hence the semimajor axis a, is a constant of motion of the
Hamiltonian H(sec). We set L = L∗, or, equivalently, a = a∗ when referring to trajectories
whose semimajor axis has the reference value a∗.

Following a well-known procedure (e.g., Kaula 1962), the various terms in the secular
Hamiltonian can be computed as follows: for the geopotential term we have

H(av)
E = 1

2π

∫ 2π

0
(Hkep + HJ2)dM = H(av)

kep + H(av)
J2

, (12)

where Hkep = p2/2 + Vkep , HJ2 = VJ2 , which leads to

H(av)
E = − μ2

E

2L2 − J2
μE R2

E

a3∗(1 − e2)3/2

(
1

2
− 3

4
sin2 i

)
. (13)

We note that this procedure of scissor averaging yields a formula forH(av)
E , which is identical

to the formula obtained at first order through a Lie canonical transformation, a procedure
known as the Delaunay normalization (see Palacián 2002 or Lara 2021). However, from a
physical point of view, this implies that in all results described below, any reference to the
values of the elements refers to the ones found after the near-identity transformation, which
eliminates from the Hamiltonian all the short-period terms (see discussion in Sect. 5). The
same property holds for the averaging of the termsH(av)

� ,H(av)
M , which can be performed by

a canonical transformation. Again, to first order this leads formally to the same formula as
the one of the scissor averaging integral

H(av)
� = 1

4π2

∫ 2π

0

∫ 2π

0

(
−μ�

r�
− μ�

2r3�
r2 + 3

2

μ�(r · r�)2

r5�

)
dMdM�

(and analogously forH(av)
M ). However, here too this formula refers to the new elements found

after the canonical transformation. In this case, it turns convenient to change the integration
variables fromM to u (eccentric anomaly of S) and fromM� to f� (true anomaly of the Sun).
We note that, up to quadrupolar terms, this yields the same result as considering theMoon and
Sun in circular, instead of elliptic, orbits (in which case M�, MM would be equal to f�, fM ),
but replacing each third-body’s semimajor axis ab with the expression ab → ab(1 − e2b)

1/2

(index b standing for Sun or Moon). This replacement accomplishes the first step in the
Hamiltonian preparation.

2.3 Expansion around reference values (e∗, i∗)

After performing the above operations, the Hamiltonian H(sec) becomes a function of the
body’s action-angle variables (G, ω), (�,�), while it depends also on the Delaunay action
L , which however, does not affect the secular dynamics and can be carried on all subsequent
expressions as a parameter (equal to L∗). We use, alternatively, a∗ as the parameter appearing
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in the coefficients of all trigonometric terms in H(sec). Furthermore, it turns convenient to
express H(sec) in terms of modified Delaunay variables instead of the original Delaunay
variables. Let δL = L−L∗ with L∗ = √

μEa∗. We employ the modified Delaunay variables
(δL, �, �̃, λ, p, q), related to the original Delaunay variables (L,G,�, M, ω,�) via the
latters’ dependence on the Keplerian elements (a, e, i, M, ω,�). We have⎧⎪⎨

⎪⎩
δL = L − L∗ = √

μEa − √
μEa∗

� = L − G = √
μEa(1 − √

1 − e2)

�̃ = G − � = √
μEa

√
1 − e2(1 − cos i)

⎧⎪⎨
⎪⎩

λ = M + ω + �

p = −ω − �

q = −�.

(14)

Starting now from the Hamiltonian H(sec)(�, �̃, p, q), our goal will be to examine
Nekhoroshev stability in a covering of the action space in terms of local neighborhoods
around a grid of reference values corresponding to a grid of element values (a∗, e∗, i∗) (see
Sect. 3.2). This motivates to introduce the variables P ′ and Q′ defined by{

P = �∗ − �,

Q = �̃∗ − �̃,
(15)

where�∗ and �̃∗ are the values corresponding to the orbital elements (e∗, i∗), and compute the
Taylor expansion ofH(sec) in powers of the small quantities (Q, P), truncated at a maximum
order N (we set N = 12). We then arrive at the following truncated secular Hamiltonian
model

H(sec,N )(P, Q, p, q) =
N∑
j=1

g( j)(P, Q, p, q) . (16)

In the model (16) we have

g(1)(P, Q) = ω1P + ω2Q . (17)

For reasons that will become clear later, for j ≥ 2 we split each of the functions
g( j)(P, Q, p, q) as a sum depending only on the actions and a sum depending also on
the angles:

g( j)(P, Q, p, q) =
∑
l∈Z2

|l|= j

a( j)
l Pl1Ql2 +

∑
l,k∈Z2

|l|= j−2

b( j)
l,k P

l1Ql2ei(k1 p+k2q) . (18)

This last splitting completes the second step in the Hamiltonian preparation. The explicit
expressions of the quantities ω1, ω2, al, bl,k for j = 2 are given in Appendix 1, in terms of
the orbital elements of the satellite, Moon and Sun.

2.4 Preliminary normalization

It was already mentioned in Sect. 1 that the presence of the averaged lunisolar terms in (16)
implies the existence of a secular equilibrium solution of Hamilton’s equation’s of motion
under theHamiltonianH(sec), corresponding to the values e = 0, i = i (p) [see Eq. (1)], where
i (p) is called the inclination of the Laplace plane. It is easy to see that the nonzero value of the
inclination of the Laplace plane is reflected into the HamiltonianH(sec,N ) by the presence of
purely trigonometric terms, i.e., terms with |l| = 0. Such terms yield coefficients which are
dominant with respect to the remaining terms in the Hamiltonian expansion. Furthermore,
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in the splitting of the Hamiltonian as H = h0(I) + h1(I,u), where (I,u) are action-angle
variables, as required for the implementation of the Nekhoroshev theorem (see next section),
the above terms generate terms with a dominant coefficient largely affecting the size of the
perturbation h1(I,u). In the present subsection, we implement a procedure for controlling
the size of the terms (16) of the expansion, so that we obtain a Hamiltonian satisfying the
norm bounds required for the implementation of the Nekhoroshev theorem.

More specifically, the aim of the normalization algorithm described below is to remove,
up a certain order Nnorm with respect to the expansion (16), the angle-dependent terms which
are constant or linear in the actions: this leads to a HamiltonianH(Nnorm ), in which the norm
of the angle-dependent part decreases at least quadratically with the size of the domain Ar0
in which local action variables are defined.

The normalization procedure relies on the use of Lie series. In every normalization step,
the transformed Hamiltonian is given by

H(new) = exp(N )(Lχ )H(old), (19)

where Lχ f = { f , χ} ({·, ·} denotes the Poisson bracket) and exp(N )(Lχ ) is defined by

exp(N )(Lχ ) f =
N∑

s=0

1

s!L
s
χ f . (20)

To illustrate the procedure, rename the initial Hamiltonian (16) asH(0) (where superscripts
denote how many normalization steps were performed). Then:

H(0)(P, Q, p, q) =
N∑
j=1

g( j,0)(P, Q, p, q), (21)

where

g(1,0)(P, Q) = ω1P + ω2Q

g( j,0)(P, Q, p, q) =
∑
l∈Z2

|l|= j

a( j,0)
l Pl1Ql2 +

∑
l,k∈Z2

|l|= j−2

b( j,0)
l,k Pl1Ql2ei(k1 p+k2q), j ≥ 2. (22)

The second term of the sum (21) takes the form

g(2,0)(P, Q, p, q) =
∑
l∈Z2

|l|=2

a(2,0)
l Pl1Ql2 +

∑
k∈Z2

b(2,0)
0,k ei(k1 p+k2q) . (23)

The generating function χ(1) eliminating the above terms has the form

χ(1)(P, Q, p, q) =
∑

l,k∈Z2

x (1)
l,k P

l1Ql2ei(k1 p+k2q), (24)

where the coefficients x (1)
l,k are obtained as the solution of the homological equation

{ω1P + ω2Q, χ(1)} = −
∑
k∈Z2

b(2,0)
0,k ei(k1 p+k2q), (25)

namely

χ(1)(p, q) = −
∑
k∈Z2

b(2,0)
0,k

i(ω1k1 + ω2k2)
ei(k1 p+k2q). (26)
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The normalized Hamiltonian after the first step can be written as

H(1)(P, Q, p, q) = ω1P + ω2Q + Z (2,1)(P, Q, p, q) +
N∑
j=3

g( j,1)(P, Q, p, q), (27)

where

Z (2,1) = g(2,0) + Lχ(1) (ω1P + ω2Q) =
∑
l∈Z2

|l|=2

a(2,0)
l Pl1Ql2 (28)

and

g( j,1) =
j−1∑
s=0

1

s!L
s
χ(1)g

( j−s,1). (29)

In general, since the generating function χ(1) is constant in the actions, one can see that,
if f (P, Q, p, q) has polynomial order � in the actions, then the order in the actions of the
transformed function Lχ(1) f is � − 1. This means that all terms in H(1) can be labeled
through their polynomial orders in the actions: choosing the expansion order N to be odd and
distinguishing the indices j with respect to their parity, we have, for n = 1, . . . , (N − 1)/2:

g(2n,1)(P, Q, p, q) =
∑
l∈Z2

|l|=2n

a(2n,1)
l Pl1Ql2 +

n−1∑
s=0

∑
l,k∈Z2

|l|=2s

b(2n,1)
l,k Pl1Ql2ei(k1 p+k2q) (n ≥ 2),

g(2n+1,1)(P, Q, p, q)=
∑
l∈Z2

|l|=2n+1

a(2n+1,1)
l Pl1Ql2 +

n−1∑
s=0

∑
l,k∈Z2

|l|=2s+1

b(2n+1,1)
l,k Pl1Ql2ei(k1 p+k2q).

(30)

After the classical normalization step, the function Z (2,1)(P, Q, p, q) does not contain angle-
dependent terms which are constant or linear in the actions.

The second step focusses on the manipulation of the term

g(3,1)(P, Q, p, q) =
∑
l∈Z2

|l|=3

a(3,1)
l,k Pl1Ql2 +

∑
l,k∈Z2

|l|=1

b(3,1)
l,k Pl1Ql2ei(k1 p+k2q). (31)

Precisely, the second normalization step aims to remove the second sum in g(3,1) which is
angle-dependent and linear in the actions. The generating function χ(2), given by (24) with
a suitable change in the upper indexes, must satisfy the normal form equations

{ω1P + ω2Q, χ(2)} = −
∑

l,k∈Z2

|l|=1

b(3,1)
l,k Pl1Ql2ei(k1 p+k2q), (32)

which gives

χ(2)(P, Q, p, q) = −
∑

l,k∈Z2

|l|=1

b(3,1)
l,k

i(ω1k1 + ω2k2)
Pl1Ql2ei(k2 p+k2q).

As a result, the generating function χ(2) is linear in the actions, so that the operator Lχ(2) f
preserves the polynomial degree in the actions of any generic function f (P, Q, p, q).
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The second-order transformed Hamiltonian H(2) can be written as

H(2)(P, Q, p, q) = ω1P + ω2Q +
3∑
j=2

Z ( j,2)(P, Q) +
N∑
j=4

g( j,2)(P, Q, p, q), (33)

where, noticing that g(0,2) ≡ 0, one obtains

Z (2,2) =
∑
l∈Z2

|l|=2

a(2,2)
l Pl1Ql2 , Z (3,2) =

∑
l∈Z2

|l|=3

a(3,2)
l Pl1Ql2 , g( j,2) =

� j
2 �∑

s=0

1

s!L
s g( j−2s,2).

(34)

Taking into account the parities of the indexes j , one can obtain also for g( j,2) the analogous
of (30).

We can now give the explicit formulas for the normalization steps for r > 2.

• The r−th normalization step allows one to transform the Hamiltonian

H(r−1)(P, Q, p, q) = ω1P + ω2Q +
r−1∑
j=2

Z ( j,r−1)(P, Q, p, q)

+
N∑
j=r

g( j,r−1)(P, Q, p, q) (35)

into

H(r)(P, Q, p, q) = ω1P + ω2Q +
r∑
j=2

Z ( j,r)(P, Q, p, q)

+
N∑

j=r+1

g( j,r)(P, Q, p, q), (36)

with

Z (2,r) =
∑
l∈Z2

|l|=2

a(2,r)
l Pl1Ql2 , Z (3,r) =

∑
l∈Z2

|l|=3

a(3,r)
l Pl1Ql2 ,

Z ( j>3,r) =
∑
l∈Z2

|l|= j

a( j,r)
l Pl1Ql2 +

j−2∑
s=2

∑
l,k∈Z2

|l|=s

b( j,r)
l,k Pl1Ql2ei(k1 p+k2q),

g( j,r) =
∑
l∈Z2

|l|= j

a( j,r)
l Pl1Ql2 +

j−2∑
s=0

∑
l,k∈Z2

|l|=s

b( j,r)
l,k Pl1Ql2ei(k1 p+k2q) . (37)

By the above parity rules, which apply also for r > 3, both Z ( j,i) and g( j,i) contain only
the terms with s even if j is even and s odd if j is odd. Notice that, for j > 3, Z ( j,i) can
contain also angle-dependent terms, which are at least quadratic in the actions.
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• The r -th order generating function can be expressed as

χ(r)(P, Q, p, q) = −
∑

l,k∈Z2

|l|=0,1

b(r+1,r−1)
l,k

i(ω1k1 + ω2k2)
Pl1Ql2ei(k1 p+k2q), (38)

which contains only purely trigonometric terms (independent on the actions) if r is odd
and only terms linear in the actions if r is even.

• After Nnorm normalization steps, the final Hamiltonian is given by

H(Nnorm )(P, Q, p, q) = ω1P + ω2Q +
Nnorm∑
j=2

Z ( j,Nnorm )(P, Q, p, q)

+
N∑

j=Nnorm+1

g( j,Nnorm )(P, Q, p, q). (39)

From (37), it is clear that the functions g( j,�) might contain terms which are angle-dependent
and constant or linear in the actions. Aswewill see later, the series are convergent in particular
domains of the parameters. In that case, the normalization procedure succeeds to reduce the
magnitude of all the terms in the perturbation to a size sufficiently small for the application
of the Nekhoroshev theorem.

It is also important to observe that particular angle combinations in the angle-dependent
part of the Hamiltonians can produce, if r is odd, constant terms both in actions and angles,
which do not affect the dynamics; however, when r is even, the same combinations can
produce terms which do not depend on the angles, but are linear in the actions. These terms
represent a perturbation on the frequencies, which can have important effects on the appli-
cability of Nekhoroshev theorem.

From the definition of the r−th order generating function (38), one can observe that the
convergence of the normalization algorithm depends heavily on the presence of resonances,
which produce small divisors of the type ω1k

(res)
1 + ω2k

(res)
2 ≈ 0 for suitable integers k(res)

1 ,

k(res)
2 . Section4.2 provides numerical examples of how the presence of resonances can affect
the convergence of the normalization procedure, along with effects on the variation of the
initial frequencies.

3 Nekhoroshev stability estimates

In this Section,we recall the version of theNekhoroshev theoremdeveloped in Pöschel (1993)
for frequencies satisfying a non-resonance condition (see Sect. 3.1). Based on this theorem,
we developed an algorithm computing all quantities needed in order to check whether the
necessary conditions for the holding of the theorem are fulfilled in the case of theHamiltonian
(39). The algorithm is presented in Sect. 3.2.

3.1 Theorem on exponential stability

Let us consider an n−dimensional quasi-integrable Hamiltonian of the form

H(I,u) = h(I) + fε(I,u),
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with h called the integrable part and fε the perturbing function, depending on a small real
parameter ε > 0. The HamiltonianH is assumed real analytic in the domain (I,u) ∈ A×T

n

with A ⊆ R
n open and bounded. Besides, we assume thatH can be extended analytically to

the set Dr0,s0 defined as

Dr0,s0 = Ar0 × T
n
s0 , (40)

where for r0, s0 > 0:

Ar0 = {I ∈ C
n : dist(I, A) < r0} (41)

and

T
n
s0 = {u ∈ C

n : Re(u j ) ∈ T, max
j=1,...,n

|Im(u j )| < s0}.

Finally, we assume that there exists a positive constant M such that

sup
I∈Ar0

‖Q(I)‖o ≤ M,

where Q denotes the Hessian matrix associated with h and ‖ · ‖o denotes the operator norm
induced by the Euclidean norm on Rn .

For any analytic function

g(I,u) =
∑
k∈Zn

gk(I)eik·u,

in Dr0,s0 , we define its Cauchy norm as

|g|A,r0,s0 = sup
I∈Ar0

∑
k∈Zn

|gk(I)|e|k|s0 , (42)

where |k| is the �1-norm of k ∈ Z
n . Finally, let ε be such that

| fε |A,r0,s0 ≤ ε. (43)

The following Theorem provides a bound on the action variables for exponentially long
times; we refer to Pöschel (1993) for the proof and further extensions. First, we need the
following definition.

Definition 1 A set D ⊆ A is said to be a completely α, K -non-resonant domain in A, if for
every k ∈ Z

n\{0}, |k| ≤ K , and for every I ∈ D

|k · ω(I)| ≥ α > 0, (44)

where ω(I) = ∂Ih(I).

Theorem 2 (Pöschel (1993)) Let D ⊆ A be a completely α, K-non-resonant domain. Let
a, b > 0 such that 1

a + 1
b = 1. Let ε be as in (43) for some r0, s0 > 0. If the following

inequalities are satisfied:

ε ≤ 1

27b

αr

K
= ε∗, r ≤ min

( α

aMK
, r0

)
, (45)

then, denoting by || · || the Euclidean norm in A, one has

‖I(t) − I0‖ ≤ r f or |t | ≤ s0r

5ε
eKs0/6 (46)

for every orbit of the perturbed system with initial position (I0,u0) in D × T
n.
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3.2 Algorithm for the application of the theorem

To apply Theorem 2 to the final HamiltonianH(Nnorm ) defined in (39), one has to compute all
the quantities involved in the Theorem. This procedure gives rise to an explicit constructive
algorithm to give stability estimates for every pair of reference values (e∗, i∗) in the uniform
grid [0, 0.5] × [0, 89.5◦] with step-size equal to 0.1 in eccentricity and 0.5◦ in inclination.
Notice that the upper value of the grid in inclination is equal to 89.5◦ to avoid singularities.

First, we need to determine the greatest integer K̄ , to which we refer as the cut-off value,
such that conditions (45) hold. From the definition of α in (44) and ε∗ in (45), it is clear
that ε∗ decreases as K increases; then, provided that condition (45) holds for K = 1, the
maximal value K̄ exists. On the other hand, if (45) does not hold for K = 1, it continues to
remain false for all K > 1.

From a computational point of view, the procedure is composed by the following steps,
(S1),..., (S8), performed for every pair (e∗, i∗) in the grid defined above; by trial and error,
we fix the values of r0, s0, a, b. Their choice is arbitrary and can be tuned so to satisfy the
conditions of the Theorem and to optimize the final estimates.

(S1) Taylor expansion up to order N = 12 in the expansion (16) around the actions (P∗, Q∗),
corresponding to the Keplerian elements (e∗, i∗) with the precise values inserted after
the symbolic expansion;

(S2) normalization up to order Nnorm = 6, following the procedure described in Sect. 2.4,
which leads to compute the normalized Hamiltonian H(Nnorm );

(S3) splitting of the Hamiltonian H(Nnorm ) in the unperturbed part h0(P, Q), containing
the terms of H(Nnorm ) which depend only on the actions, and the perturbing part
h1(P, Q, p, q) = H(Nnorm )(P, Q, p, q) − h0(P, Q); computation3 of ω = (ω1, ω2),
with ω1 and ω2 coefficients respectively of P and Q in h0;

(S4) definition of the real and complexified domains in the actions as in (40) and computation
of the quantity

M = sup
(P,Q)∈Ar0

||Q(P, Q)||o (47)

in particular, we define A = [P∗ − dP(max), P∗ + dP(max)] × [Q∗ − dQ(max), Q∗ +
dQ(max)] with dP(max) = dQ(max) = 0.1; we select r0 = s0 = 0.1 and, following
(Pöschel 1993), we take a = 9/8 and b = 9;

(S5) for every K = 1, . . . , 50, computation of the quantities

αK = min|l|≤K
{ω · l}, rK = min

{ αK

aMK
, r0

}
, ε∗

K = 1

27b

αK rK
K

(48)

(S6) defining ε = |h1|A,r0,s0 , check of the condition ε ≤ ε∗
K for every K = 1, . . . , 50;

(S7) if ε ≤ ε∗
1 , computation of K̄ , namely the greatest K such that ε ≤ ε∗

K , and of the
corresponding stability time

t = s0rK̄
5ε

eK̄ s0/6 (49)

(S8) if ε > ε∗
1 , the conditions for the application of Theorem 2 are not satisfied. In this case,

we impose K̄ = 0.

3 With an abuse of notation, we continue to define the new frequencies, which could be modified by the
normalization, with the symbols ω1 and ω2. When, in Sect. 4.2, it will be required to distinguish between the
initial and the final frequencies, the latter will be denoted by ω̃1 and ω̃2.
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Table 2 Inclination-dependent resonances which affect the stability in the lunisolar model. The coefficients
α and β are such that α ṗ + βq̇ = 0

α β i(deg) α β i(deg) α β i(deg) α β i(deg)

1 0 46.37 0 1 90 1 1 0 1 −1 63.4351

2 1 33.0156 −1 2 73.1484 −2 1 56.0646 −2 3 69.007

−4 3 60.0001 −4 1 51.5596 −1 3 78.4633 −4 5 66.422

We remark that the order of the Taylor expansion N = 12, the order of normalization
Nnorm = 6, the iteration of K up to 50 are set on the basis of having a reasonable computa-
tional execution time on standard laptops.

4 Results

In this Section, we present the results of the application of Theorem 2 to the Hamiltonian
model described in Sect. 2. This allows us to derive stability estimates as well as to discuss
the convergence of the normalization procedure.

4.1 Stability estimates

We apply the algorithm of Sect. 3.2 to prove the Nekhoroshev stability for satellites with
semimajor axes between 11 000 km and 19 000 km under the model presented in Sect. 2.
The results exposed below highlight the strong dependence of the stability conditions on the
precise values of the elements (e, i). Of crucial role in this dependence is the location of
the ‘inclination-dependent’ resonances (see Sect. 1). These satisfy a condition of the form
α ṗ + βq̇ = 0 for some coefficients α, β ∈ Z.

Table 2 shows the values of the inclinations corresponding to each pair of coefficients
(α, β). We find that these resonances determine regions where Theorem 2 cannot be applied.
This can be exemplified with the help of Fig. 1, showing (in blue) the region where the
algorithm of Sect. 3.2 returns that the necessary conditions of Theorem 2 hold true. The
algorithm provides an answer as a function of the chosen reference values i∗ and e∗ (for a
fixed a∗). We take the values of i∗ in a grid by steps of 0.5◦ in the interval 0 ≤ i∗ ≤ 89.5◦, and
of e∗ in a grid by steps of 0.1 in the interval 0 ≤ e∗ ≤ 0.5. Figure2 shows the Nekhoroshev
stability times computed at every grid point (e∗, i∗) where the algorithm returns a positive
answer for the holding of the necessary conditions of the theorem.

It is evident from Fig. 1 that increasing the distance from the Earth’s center causes a
shrinking of the size of the domains of Nekhoroshev stability, as well as a fast decrease in
the corresponding computed stability times. From the physical point of view, this tendency is
evident and can be explained on the basis of the simple remark that the averaged Hamiltonian
Hkep +HJ2 without third-body perturbations is integrable (the averaged Hamiltonian has no
dependence on the Delaunay angles). Since the overall relative size of third-body perturba-
tions increases with the altitude, these perturbations affect the stability more as a∗ increases.
At a formal level the effect of the semimajor axis on the estimates can be identified by an
analysis of the convergence of the preliminary normalization algorithm (see Sect. 4.2 below).

On the other hand, also evident from Fig. 1 is the strong role of resonances in affecting
the stability properties of the system: in fact, around everyone of the resonances listed in
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Fig. 1 Domains of applicability of Theorem 2 for different values of the altitude. The blue regions represent the
values of (i∗, e∗) for which the Theorem can be applied, while the red lines define the values of the inclination
which are associated with the most important resonances in the considered regions (see Table 2)

Table 2 we observe, in the figure, the formation of a white zone, which indicates values
(e∗, i∗) excluded from the Nekhoroshev stability as detected by our algorithm. As a general
comment, the presence of the resonances acts at two different stages of the computation:

(i) it can affect the convergence of the classical normalization, producing an increase in the
size of the perturbing function and a consequent failure of conditions (45);

(ii) near the low-order resonant values of the inclination, the quantity αK (see (48)) can
be extremely small, even for low values of K . As a consequence, in the proximity of
a resonance, the corresponding value of the quantity ε∗

K might not be small enough to
satisfy (45).
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Fig. 2 Stability time (in years) computed for the values of (i∗, e∗) in the domain of applicability of Theorem
2

At any rate, we stress that Theorem 2 used in the present work holds only for non-
resonant domains in the phase space; therefore, by definition it cannot be used to probe the
Nekhoroshev stability very close to resonances. We defer to a future study the question of
the precise investigation of the conditions for Nekhoroshev stability inside resonances, by
implementing a resonant form of the theorem, as first suggested in Nekhoroshev (1977).
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Fig. 3 Blue: plot in LogLog scale of | fε |A,r ,s0 for a = 13 000 km, e∗ = 0.2, and i∗ = 23◦ (left) and i∗ = 56◦
(right). For the computations, we selected A = [P∗ − r , P∗ + r ] × [Q∗ − r , Q∗ + r ], r0 = r , s0 = 0.1. The
slope of the plot for high r is compared with that of a line with slope 2 (red); the value at the plateau (denoted
with a green line) is compared with the value of the norm of the purely trigonometric part of fε with s0 = 0.1

4.2 Convergence of the preliminary normalization

As pointed out in Sect. 2.4, the aim of the preliminary normalization is to allow to control the
norm of the perturbing function | fε |A,r0,s0 by reducing the size of the complexified action
domain Ar0 (see (41)). In particular, the consequence of the removal of angle-dependent
terms which are constant or linear in the actions is that, within certain values of the size of
the domain Ar0 , the norm of the perturbation decreases quadratically with the actions.

Figure3 shows the behavior of | fε |A,r ,s0 for a = 13 000 km, e∗ = 0.2 and two selected
values of i∗, as a function of the size of the action in the complexified domain Ar (the domain
A is set to be a rectangle of width 2r around the central values P∗ and Q∗). As expected, the
value of | fε |A,r ,s0 decreases quadratically with r , until it reaches a plateau, whose value is
the norm of the terms of fε which do not depend on the actions.

As already mentioned in Sect. 4.1, the convergence of the normalization presented in
Sect. 2.4 for H(sec) is crucial to control the size of the perturbing function h1; such value
plays a fundamental role in Theorem 2. A first study of the effect of the chosen value of the
semimajor axis on the convergence can be performed by considering a simplermodel towhich
a normalization procedure similar to the one implemented in Sect. 2.4 can be performed. The
model is defined by the Hamiltonian

H̃(in)(P, Q, p, q) = ω1P + ω2Q + c2
2
Q2 + f1 cos q, (50)

where the frequenciesω1,ω2 and the coefficient c2 depend essentially only on the J2 averaged
Hamiltonian, while the coefficient f1 depends on the lunar and solar third-body perturbation
potentials, and it is proportional to the sinus of the inclination i0 of the ecliptic. We will
examine the effect of performing the preliminary normalization algorithm on theHamiltonian
H̃(in) so as to remove purely trigonometric terms. After Nnorm normalization steps, the
Hamiltonian takes the form:

H̃( f in) = ω1P + ω2Q + c2
2
Q2 +

Nnorm∑
ı=1

Zi (P, Q, q) +
∞∑

i=Nnorm+1

Ri (P, Q, q), (51)

where the normalized parts Zi (P, Q, q) do not contain terms which depend only on the
angle q (as well as linear terms in the actions multiplied by trigonometric terms). By an
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explicit computation of the Poisson brackets involved in the normalization, we readily find
that RNnorm+1 contains trigonometric terms with coefficients proportional to the quantity

2b f1

(
c2 f1
4ω2

2

)Nnorm

, (52)

where b = 1, 2, 3 depends on the value of Nnorm . The convergence of the remainder through
the steps of the normalization algorithm depends, then, on the value of the ratio c2 f1/4ω2

2;
in particular, when this quantity is greater than 1, the normalization does not converge.
Neglecting the lunar and solar contributions in ω1, ω2 and c2, the coefficient c2 f1/4ω2

2 can
be expressed in terms of the orbital elements of debris, Sun and Moon as

c2 f1
4ω2

2

= 1

32

sin 2i0
R2
EμE J2

(
μM

(aM (1 − eM ))3

+ μ�
(a�(1 − e�))3

)
a5(2 + 3e2∗)(1 − e2∗)3/2 tan i∗ . (53)

As a consequence, it is clear that its size strongly depends on a and i∗: it grows sharply when
a increases and when i∗ approaches 90◦.

On the other hand, the coefficient f1 is proportional to sin 2i0, that is, proportional to the
(nonzero) inclination i (p) of the Laplace plane (see Eqs. (1) and (2)). Hence, the presence in
the secular Hamiltonian of purely trigonometric terms is a manifestation of the presence in
the model of a Laplace plane. Since i (p) increases with a and f1 increases both with i (p) and
i∗, this gives a first explanation of the loss of stability of the model as a and i∗ increase.

As already mentioned in Sect. 4.1, the other important factor influencing the size of the
remainder across the preliminary normalization process is the effect of resonances, which,
due to Eq. (38), leads to the appearance, in the series terms, of small divisors. Of particular
importance are the small divisors appearing in the series’ purely trigonometric terms, whose
size cannot be controlled by altering the size of the domain in the actions Ar0 .

Figure4 shows the behavior of the normof the purely trigonometric part of the perturbation
h1 (with the notation (S3) of Sect. 3.2) as a function of the inclination for four different values
of a and two different values of e. As one can see, the size of the trigonometric part reaches
its peaks in correspondence with the resonant values of the inclination, as expected. We also
notice that the number of resonances involved in the growth of the size of the trigonometric
part increases with a and e.

As explained in Sect. 2.4, the normalization algorithm used in this work does not perform
a re-tuning of the frequencies for every normalization step. This fact has important effects on
the applicability of Theorem 2: when the normalization converges, the change between the
original and the new frequencies is negligible with respect to their magnitude; on the other
hand, when it does not converge, a large variation in the value of the frequencies occurs, with
important consequences on the computation of αK and, therefore, of the quantities involved
in Theorem 2.

As an example, Fig. 5 shows the variations of the frequencies as a function of the inclination
for a = 13 000 km and e∗ = 0.2. Comparing Figs. 4 and 5, it is clear that the resonances
which affect the growth in size of the purely trigonometric part of h1 and the variation of the
frequencies are the same.
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Fig. 4 Behavior of the normof the purely trigonometric part of h1 as a function of the inclination i∗ for different
semimajor axes and eccentricities (left: e = 0, right: e = 0.5). The red lines represent the inclinations of the
resonances (see Table 2)
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Fig. 5 Variation between the initial (ω1 and ω2) and the final (ω̃1 and ω̃2) frequencies as a function of the
inclination i∗ for a = 13 000 km and e∗ = 0.2. The red lines represent the values of i∗ associated with the
resonances which affect the convergence of the normalization algorithm (see Fig. 4)

Table 3 Comparison between the order N (i∗) of the nearest resonance and the computed cut-off value K̄ ,
computed for a = 13 000 km and e = 0.1

i∗(deg) N (i∗) K̄ i∗(deg) N (i∗) K̄ i∗(deg) N (i∗) K̄ i∗(deg) N (i∗) K̄

46.5 1 0 89.5 1 0 1 2 1 63.5 2 0

33 3 2 73 3 0 56 3 0 38 3 3

53 4 1 78.5 4 3 40.5 4 5 27 5 4

51.5 5 4 58.5 5 0 69 5 0 81.5 5 4

41.5 6 5 50.5 6 5 83.5 6 4

4.3 Behavior of the cut-off value K̄

Provided that the classical normalization converges, from the definition of the cut-off value K̄
given in Sect. 3.2, one expects that exactly at a resonance, once denotedwith N (i∗) = |α|+|β|
its order, one has K̄ = N (i∗)−1. Since in this work the inclinations are selected in a mesh of
[0, 89.5◦]with step 0.5◦, the computations of the quantities involved in Theorem 2, including
K̄ , are not performed exactly at resonance (with the exception of i∗ = 60◦, whose distance
from the exact resonance is of the order of 10−3): Table 3 shows the value of K̄ computed
for the points of the mesh which are near to the resonances up to order 6, with a = 13 000
km and e = 0.1, along with the resonance order N (i∗) of the nearest one. With the exception
of the inclinations associated with resonances which affect the convergence of the classical
normalization, themajority of the listed inclinations follows the expected rule K̄ = N (i∗)−1,
while some slight deviation is probably due to the numerical computation.

To conclude, Fig. 6 shows the relation between the computed values of K̄ and | fε |a,s0,r0 for
a = 13 000 km, e∗ = 0.2 and i∗ ∈ [0, 90◦]. As expected, the cut-off decreases exponentially
with the norm of the perturbing function.

5 Effect of higher order geopotential terms

The results of Sect. 4 were obtained by considering as basic model for MEO the one based
on the J2 geopotential terms. It is well known that for the lowermost altitude at MEO (a =
10 000 km), the secular dynamics is shaped by higher order terms (e.g., J 22 ) as well as higher
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Fig. 6 Plot in LogLog scale of
the points {| fε |A,r0,s0 , K̄ } for
a = 13 000 km, e∗ = 0.2 and
i∗ ∈ [0, 90◦] on a mesh of step
0.5◦

harmonics in the Earth’s geopotential. In the present section, we examine a model in which
the J 22 terms obtained by second-order averaging of the J2 Hamiltonian term with respect to
the particle’s mean anomaly, as well as the first order averaging with respect to the J3 and J4
terms, are considered. The Hamiltonian is now as in Eq. (10), but with

H(av)
E = H(av)

kep + H(av)
J2

+ H(av)
J3

+ H(av)
J4

+ H(av)

J 22
, (54)

where

H(av)
J3

= J3
3μE R3

Ee sin i

2a4(1 − e2)5/2

(
1 − 5

4
sin2 i

)
sin(g)

H(av)
J4

= J4
3μE R4

E

8a5(1 − e2)7/2

(
− 1 − 3e2

2
+

(
5 + 15e2

2

)
sin2 i

− 35

8

(
1 + 3e2

2

)
sin4 i − 15e2 sin2 i

4

(
1 − 3 sin2 i

2

)
cos(2g)

)
,

while

H(av)

J 22
= −J 22

3μE R4
E

8a5(1 − e2)7/2

[
5

2
+ η − 1

2
η2 −

(
5 + 3η − 1

2
η2

)
sin2 i

+
(
35

16
+ 9

4
η + 5

16
η2

)
sin4 i −

((
15

4
(1 + η) − 23

4
η2 − 7

4
η3

)
sin2 i

+
(
35

8
(1 − η) + 55

8
η2 + 15

8
η3

)
sin4 i

)
cos(2g)

1 + η

]

with η = √
1 − e2.

The Hamiltonian (54) can be obtained directly by eliminating the small body’s mean
anomaly through a Lie canonical transformation performed in two stages, as indicated in
Deprit (1982) (see Lara 2021 for details): in the first stage, called the elimination of the
parallax, the Hamiltonian is transformed into a function of the form

H(el) = Hkep + 1

r2

(
h(el)
J2

(a, e, i, g, h)

+h(el)
J3

(a, e, i, g, h) + h(el)
J4

(a, e, i, g, h) + h(el)
J 22

(a, e, i, g, h)

)
,
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thus reducing the dependence of the Hamiltonian on the small body’s mean anomaly M in
only the factor 1/r2. In the second stage, we then eliminate this dependence with the usual
procedure ofDelaunaynormalization (Palacián2002). It should be stressed that this procedure
yields equivalent results for the termsH(av)

J2
,H(av)

J3
andH(av)

J4
as the simple scissor averaging

of Eq. (12), but it allows to formally introduce terms of higher order as H(av)

J 22
(a, e, i, g, h).

Also, an important difference is in the physical interpretation, since the Lie transformation,
which is a near to identity transformation mapping the original canonical variables to new
ones, still contains short-periodic terms, evenwhile the Hamiltonian does not. In the jargon of
astrodynamics, this is called a transformation from osculating to mean elements. As already
pointed out in Sect. 2.2, this means that, formally, all the results on Nekhoroshev stability in
this and in previous sections refer to the stability of the mean elements, while the osculating
elements perform short-period bounded oscillations around the secularly evolving values of
the mean elements.

Returning to the latter question, Fig. 7 allows to compare the results on Nekhoroshev
stability using the Hamiltonian (10) withH(av)

E computed as in (54), with those of the simple
J2-only model obtained as in (12).

Figure7 provides information on both the domain of applicability of the Nekhoroshev
theorem as well as the corresponding stability times: we consider the case of orbits with
e = 0.3 and two different values of the semimajor axis, namely a = 11000 km (top panel
in Fig. 7) and a = 17000 km (middle panel). The abscissa of each of the marked points
indicates a value of the inclination for which applying Pöschel’s theorem in the form of the
algorithm of Sect. 3.2 yields a positive result, i.e., that the Nekhoroshev stability criterion
holds. The ordinate then indicates the corresponding time of Nekhoroshev stability. From
these figures stem the following remarks:

(i) the twomodels (simple J2 and ‘extended’) yield practically identical domains of stability.
This is to be expected, since the domains of stability are mostly determined by the values
of the (Diophantine) frequencies of the integrable part of the Hamiltonian H0. In the
extended model, the frequencies differ from those of the J2−model by the addition of
the terms O(J 22 ), O(J3) and O(J4). All these terms are about 10−3 the size of the
leading (J2) terms; thus, they only affect the frequencies at the third digit. This implies,
in turn, that all Diophantine constants, cut-off in Fourier space etc., entering into the
application of Pöschel’s theorem remain practically invariant in computations with the
extended model.

(ii) On the other hand, the computed times of Nekhoroshev stability change, by about one
order of magnitude at the lowest limit of theMEO zone (a = 11 000 km), and marginally
aswe approach the limit of the overall loss of theNekhoroshev stability in Pöschel’s sense
a > 17 000 km. The main reason for this difference lies in the integrability of the J2
averaged model, which implies that only lunisolar perturbations affect the size of the
term H1 in the Hamiltonian of the simple J2 model. In the extended model, instead, all
three O(J 22 ), O(J3) and O(J4) terms contribute to H1 due to their containing cos(2g)
and sin(g) terms depending on the canonical angles. It is noteworthy that the relative
importance of these terms decreases as a power of the semimajor axis [see Eq. (54)],
while the lunisolar perturbations increase with a, e.g. as a2 for the quadrupolar terms. In
particular, we find that the cos(2g) term due to J 22 and J4 is dominant over the cos(2g)
term generated by the lunisolar perturbation when a = 11000 km, but the former is
only about 1.5% the size of the latter when a = 20 000 km. As a result, the two different
models converge as regards the times of stability as a increases, a tendency shown clearly
in the bottom panel of Fig. 7.
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Fig. 7 Comparison of the
domains and times of
Nekhoroshev stability for
different values of the inclination
between the J2 model (yellow
dots) and the model including J22 ,
J3, J4 (blue dots), for a fixed
eccentricity e = 0.3 and
semimajor axis equal to
a = 11 000 km (top panel), or
a = 17 000 km (middle panel). A
colored point indicates that
Pöschel’s criterion for
Nekhoroshev stability is satisfied
at the corresponding value of the
inclination, shown in the
abscissa. The ordinate shows the
corresponding value of the
Nekhoroshev stability time (in
years). Bottom panel: comparison
of the Nekhoroshev stability
times as a function of the
semimajor axis a in the J2 model
and in the extended model for
e = 0.3 and i = 20o

At any rate, it is important to note that in both models, the computed times of stability
correspond to 107 orbital revolutions in the lowermost limit of the MEO zone, reducing to
about 105 orbital revolutions in the highermost limit where Nekhoroshev stability holds.
These times are thus quite consistent with applications of the Nekhoroshev theorem in the
practical context of the long-term stability of satellite orbits, as they are larger by orders of
magnitude compared to the satellites’ operational lifetime.

6 Conclusions

Our work in the present paper has a twofold aim: on one side, we provide a specific algorithm
bywhich we are able to formally specify the domains in the space of orbital elements (a, e, i)
for which Nekhoroshev stability holds in the sense that all the necessary conditions for the
applicability of Pöschel’s theorem for non-resonant orbits are satisfied. On the other side, in
those domains where Nekhoroshev stability holds, we compute the associated Nekhoroshev
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times and demonstrate that these times are long enough to be of use in practical Earth satellite
applications. Our main results can be summarized as follows:

1. We examine in detail a secular model based on a ‘scissor’ averaged Hamiltonian over the
fast angles, including the term J2 as well as lunisolar perturbations. For this model, we
propose: (i) a detailed ‘book-keeping’ algorithm allowing to write the Hamiltonian in a
form suitable for the application of Pöschel’s theorem, and (ii) a ‘preliminary normal-
ization’, which leads to a model devoid of the effects of trigonometric terms generated
by the shifting of the secular equilibrium from the Earth’s equator to the Laplace plane.
Albeit technical, this step (analyzed in detail in Sect. 2.4) turns to be crucial in suitably
engineering the Hamiltonian so that relevant estimates on the real size of the secular
perturbations can be obtained.

2. We then propose, in subsection 3.2, a particular algorithm by which the theorem of
Pöschel can be transformed into a binary (“yes” or “no”) criterion for the holding of
Nekhoroshev stability in a small domain around any preselected value of the elements
(a, e, i) within the MEO zone. Implementing this algorithm leads to the results of Fig. 1:
as intuitively expected, we find that the domains of Nekhoroshev stability shrink as
the altitude (semimajor axis a) increases. This is due to the growing size of lunisolar
perturbations as a increases. Themost robust domain is found in the intervals 0 ≤ e ≤ 0.3
and 10◦ ≤ i ≤ 30◦; the latter interval roughly corresponds to a domain well protected
from major inclination-only dependent lunisolar resonances.

3. Using the same algorithmwe can compute the times ofNekhoroshev stability, which span
from 105 to 107 satellite orbital periods. These times are sufficiently high for applications
related to the operational lifetime and end-of-life deployment of satellites, as well as to
the long-term orbital evolution of populations of space debris.

4. Finally, we examine a more extended model including the J3 and J4 harmonics of the
Earth’s potential as well as J 22 terms obtained by second-order averaging of the Hamilto-
nian in closed form. While the complexity of the new model renders a full investigation
of this extendedmodel beyond our present scope, we provide some key comparisons with
our basic (only J2) model: (i) the domains of stability remain practically the same in the
two models, while (ii) the times of stability are affected by about one order of magnitude
at the lowermost limit of the MEO zone, a difference tending nevertheless to vanish as a
increases. Section5 discusses in detail the origin for these differences.

We should emphasize again that our study was limited only to the case in which the
frequencies of motion satisfy suitable non-resonant conditions. Another limitation is that
we disregarded the slow precession of the lunar nodes with respect to the ecliptic plane,
by simply considering a constant inclination of the Moon, equal to the one of the ecliptic.
Notwithstanding the arguments presented in Sect. 2 as regards the precision of this model
(presentlymotivatedmostly by our computational limits), we still emphasize that we consider
the results of this work as a first step that paves the way to several future directions of
research. Among possible future extensions, we indicate: (i) exploring the application of
the resonant Nekhoroshev’s theorem, which becomes relevant for particular values of the
inclination associated with lunisolar resonances, and (ii) removing the assumption of a fixed
ellipse for the Moon’s orbit. These possibilities leave open that Nekhoroshev stability might
actually hold in domains larger than the ones found in the present work, extending to altitudes
a > 18,000 km were many satellites reside (e.g., GPS and geosynchronous satellites).

As a final remark, we note that the approach followed in the present paper, based on
applying the Nekhoroshev theorem, is advantageous over other approaches to the stability
problem also in the sense of being directly extendable to Hamiltonian models with more than
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two degrees of freedom (as opposed, for example, to approaches as the Lyapunov or KAM
stability in the sense of confinement between invariant tori), as well as in the case of initial
conditions close to resonances. In this sense, we anticipate that the technique presented in the
current paper could prove useful also in the context of more general problems encountered
in the area of astrodynamics.
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Appendix A.: Analytical expressions ofH(av)

b andH(sec) in Sect. 2

A.1 Expansion ofH(av)
b

We provide an expression of H(av)
b for a third body (index b, referring to the Moon or

Sun) as a function of its orbital parameters (ab, eb, ib, ωb,�b) and the debris’ parameters
(a, e, i, ω,�). Up to second order in the eccentricity, we have:

H(av)
b = a2

16a3b(1 − e2b)
3/2

(
− 2 + 3e2

8
(1 + 3 cos (2i))(1 + 3 cos (2i0))

−15

4
e2(1 + 3 cos 2i0) sin i

2 cos 2ω − 3

2
(2 + 3e2) sin i2 sin i0

2 cos 2(� − �b0 )

−15e2 cos (i/2)4 sin i0
2 cos 2(ω + � − �b0 ) − 3

2
(2 + 3e2) sin (2i) sin (2i0)

cos (� − �b0 ) + 30e2 cos (i/2)3 sin (i/2) sin (2i0) cos (2ω + � − �b0 )

+15

2
e2(−1 + cos i) sin i sin i0 cos (2ω − � + �b0 )

−15e2 sin (i/2)4 sin (i0)
2 cos 2(ω − � + �b0 )

)
. (55)

123

http://creativecommons.org/licenses/by/4.0/


10 Page 28 of 30 A. Celletti et al.

A.2 List of the nonzero terms inH(sec) for j = 1, 2

Assuming, as in Sect. 2, that both the lunar and solar orbits lie on a fixed ecliptic plane
inclined with respect to the Earth’s equatorial plane by an angle i0, the frequencies ω1 and
ω2 appearing in (17) are given by:

ω1 = ω
(J2)
1 + ω

(M)
1 + ω

(�)
1 , ω2 = ω

(J2)
2 + ω

(M)
2 + ω

(�)
2 ,

where

ω
(J2)
1 = −3

4
R2
E J2μ

4
E

(−1 + 5 cos i∗2 − 2 cos i∗)
(μEa)7/2(1 − e2∗)2

ω
(J2)
2 = 3

2

R2
E J2μ

4
E

(μEa)7/2(1 − e2)2
cos i∗

ω
(M/�)
1 = − 3

64
a3/2μM/�

[3 + 2e2∗ − 2(2 + 3e2∗) cos i∗ + 5 cos 2i∗](1 + 3 cos 2i0)√
1 − e2∗

√
μE (aM/�(1 − eM/�))3

ω
(M/�)
2 = 3

32
a3/2μM/�

(
2 + 3e2∗

)
cos i∗ (1 + 3 cos 2i0)√

1 − e2∗
√

μE
(
aM/�(1 − eM/�)

)3 . (56)

The coefficients al and bl,k in (22) are given by:

a(2,0) =3

4

J2R2
E

a4(1 − e2∗)5/2
(1 + 10 cos i∗ − 15 cos2 i∗)+

− 3

128

a

μE (1 − e2∗)

(
μM

R3
M

+ μ�
R3�

)
(1 + 3 cos 2i0)(21 + 4e2∗ − 40 cos i∗ + 15 cos 2i∗)

a(1,1) =3

2

J2R2
E

a4(1 − e2∗)5/2
(5 cos i∗ − 1)+

− 3

32

a

μE (1 − e2∗)

(
μM

R3
M

+ μ�
R3�

)
(1 + 3 cos 2i0)(2 + 3e2∗ − 10 cos i∗)

a(0,2) = − 3

4

J2R2
E

a4(1 − e2∗)5/2
+

− 3

64

a

μE (1 − e2∗)

(
μM

R3
M

+ μ�
R3�

)
(1 + 3 cos 2i0)

(
2 + 3e2∗

)
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b(0,0),(±2,0) = −15

32
(a2e2∗ sin2 i0 cos4 (i∗/2))

(
μM

r3M
+ μ�

r3�

)

b(0,0),(±2,±1) = 15

16

[
a2e2∗ sin (2i0) cos

3 (i∗/2) sin (i∗/2)
] (

μM

r3M
+ μ�

r3�

)

b(0,0),(±2,∓2) = − 15

128

[
a2e2∗(i + 3 cos (2i0)) sin

2 i∗
] (

μM

r3M
+ μ�

r3�

)

b(0,0),(±2,∓3) = −15

16

[
a2e2∗ sin (2i0) sin

3 (i∗/2) cos (i∗/2)
] (

μM

r3M
+ μ�

r3�

)

b(0,0),(±2,∓4) = −15

32

[
a2e2∗ sin2 i0 sin4 (i∗/2)

] (
μM

r3M
+ μ�

r3�

)

b(0,0),(0,±1) = − 3

64

[
a2(2 + 3e2∗) sin (2i0) cos (2i∗)

] (
μM

r3M
+ μ�

r3�

)

b(0,0),(0,±2) = − 3

64

[
a2(2 + 3e2∗) sin2 i0 sin2 i∗

] (
μM

r3M
+ μ�

r3�

)
.
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