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Abstract
We review some recent progress on the research of the periodic orbits of theN-body problem,
and numerically study the spatial doubly symmetric periodic orbits (SDSPs for short). Both
comet- and lunar-type SDSPs in the circular restricted three-body problem are computed,
as well as the Hill-type SDSPs in Hill’s lunar problem. Double symmetries are exploited so
that the SDSPs can be computed efficiently. The monodromy matrix can be calculated by
the information of one fourth period. The periodicity conditions are solved by Broyden’s
method with a line-search, and some numerical examples show that the scheme is very
efficient. For a fixed period ratio and a given acute angle, there exist sixteen cases of initial
values. For the restricted three-body problem, the cases of “Copenhagen problem” and the
Sun–Jupiter–asteroid model are considered. New SDSPs are also numerically found in Hill’s
lunar problem. Though the period ratio should be small theoretically, some new periodic
orbits are found when the ratio is not too small, and the linear stability of the searched SDSPs
is numerically determined.

Keywords Symmetric periodic orbits · Restricted three-body problem · Hill’s lunar
problem · Numerical continuation · Linear stability

1 Introduction

Many versions of the n-body problems are studiedwithin the theme of periodic orbits orKAM
tori, as periodic orbits and quasi-periodic orbits are important in celestial mechanics and very
useful in understanding the motions of celestial bodies. For the aspects of the applications
of the KAM theories on celestial mechanics, one may refer to Celletti and Chierchia (2006),
Biasco and Coglitore (2008), Meyer et al. (2011), Zhao (2014) and the references therein.
Here, we mainly discuss the periodic orbits. For the non-integrable dynamical systems,
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periodic orbits determine the skeleton of the phase space, and stable ones usually accumulate
onto the KAM tori.

The problem on the periodic orbits of the three-body problem is intractable ever since
(Poincaré 1892). Symmetric periodic orbits are prior to be studied, as symmetries can usu-
ally reduce the complexity. Some earlier work on the periodic orbits can be referred to
Hadjidemetriou (1984). Three classical families of periodic orbits of the three-body prob-
lem are of Euler–Lagrange type (Meyer and Schmidt 1986; Sicardy 2010; Hu and Sun 2010;
Zhou and Long 2017), figure-eight type (Chenciner andMontgomery 2000;Muñoz-Almaraz
et al. 2007; Chen and Lin 2009; Hu and Sun 2009; Galan-Vioque et al. 2014; Yu 2017) and
“Broucke-Hénon”,“Schubart-like” type (Hénon 1974, 1976; Martínez 2013; Ortega and Fal-
coni 2016; Voyatzis et al. 2018; Kuang et al. 2019). It is summarized in Li and Liao (2019)
that only these three families and a few more new periodic orbits are numerically calculated
before a series of their work, and more than 2000 families of periodic orbits are found by
taking use of the “clean numerical simulation” (CNS) technique, the grid search and the
Newton-Raphson method on a supercomputer. The CNS is based on the arbitrary order of
Taylor series method with a convergence check (Jorba and Zou 2005; Liao and Li 2019). The
periodicity conditions are based on the difference of two solutions at different times, and the
permissible error is set to be less than 10−6.

The restricted three-body problem (RTBP) and Hill’s lunar problem are well known as
two basic mathematical models, in which many families of periodic orbits have been shown
to exist, analysed and calculated. Periodic orbits of a nearly integrable Hamiltonian system
with a small parameter are usually shown to exist by Poincaré’s continuation method or
Arenstorf’s implicit function theorem, combinating several techniques such as canonical
transforms, symplectic scaling, averaging, symmetry reduction and so on (Meyer et al. 2009;
Cors et al. 2005). If there exist orbits very far away from the primaries, these orbits are
classified as the comet-type. If there exist orbits around and very close to one primary, these
orbits are of Hill-type. Howison and Meyer (2000a, b) showed the existence of both the
comet- and Hill-type spatial doubly symmetric periodic orbits (SDSPs) in the circular RTBP
(CRTBP) and theHill-type SDSPs inHill’s lunar problem.Howison andMeyer’s results were
generalized to the cases of the restricted (n+1)-body problem with general homogeneous
potential successively by Llibre and Roberto (2009) and Llibre and Stoica (2011), where n
bodies form a regular polygon or a nested central configuration. Xu (2019, 2020) showed that
there exists a class of Hill-type SDSPs around one oblate primary in a generalized CRTBP
and in Hill’s lunar problem. According to the known results (Palacián and Yanguas 2006;
Meyer et al. 2011), there exist spatial comet-typeKAM tori in the ellipticRTBP. For the lunar
three-body problem, which is also called the hierarchal triple system, Zhao (2014) showed
that there exist families of periodic orbits accumulating onto several KAM tori by applying
Féjoz’s finer version of KAM theorem. These analytical results reveal that some SDSPs exist
and stable when the small perturbation parameter is sufficiently small.

In Broer and Zhao (2017), only one linearly stable family is shown to exist though there are
16 families of Keplerian periodic orbits of De Sitter. This enlightens us to numerically study
Howison and Meyer’s SDSPs with different initial values. If the initial values of SDSPs
of the full system can be numerically continued from those of the circular SDSPs of the
approximate system, the SDSPs of the full system will be of multiple revolutions and nearly
circular. According to Poincaré’s classification, these orbits in the CRTBP can be classified
as the third sort of the first species, while these orbits in Hill’s lunar problem can be classified
as the third sort of the third species. However, we don’t know the cases when the perturbation
is not too small, thus the numerical work on these periodic orbits is necessary and interesting.
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The purpose of this paper is to study the numerical calculation and stability of the SDSPs in
the CRTBP and Hill’s lunar problem.

The readers who are interested in the related history and more aspects are encouraged to
refer to Hénon (1969, 1997, 2003), Bruno and Varin (2006), Frauenfelder and van Koert
(2018) and the citations. In the earlier stage, solutions of the periodicity conditions are
continued based on Newton’s method. Macris et al. (1975) calculated four families of SDSPs
of the elliptic RTBP with one fixed massμ = 0.4 and the eccentricity as the small parameter,
but all of the 107 orbits are unstable. With the mass ratio of the Sun–Jupiter case, Kazantis
(1979) calculated 7 families of SDSPs which bifurcate from the vertical-critical symmetric
families a, g1, g2, h, i, l and m. Family a goes from the Euler collinear libration point L2.
Families g1 and g2 are branches of the family g which begins as direct circular orbits of Hill-
type around the Jupiter. Families h and i begin from the retrograde and direct circular orbits
of Hill-type around the Sun, respectively. Families l and m are retrograde nearly circular
periodic orbits of comet-type with positive and negative Jacobi constants, respectively. In
addition, families b and c begin from the infinitesimal orbits around L3 and L1, respectively.
Family f begins from the infinitesimal orbits around the primary with a mass tending to
zero. Robin and Markellos (1980) dealt with the vertical branches of planar families in the
CRTBP and found some linearly stable SDSPs. The accuracy of the initial values for those
orbits is 10−6. The relation between the multiplicity and the symmetry is discussed, and eight
vertical branches of retrograde family f around Jupiter with multicity from 5 to 8 are taken
as examples. Antoniadou and Libert (2019) studied the stability of some spatial symmetric
resonant periodic orbits with resonances 3/2, 2/1, 5/2, 3/1, 4/1, 5/1 for both prograde and
retrograde motions. They used the detrended Fast Lyapunov Indicator (DFLI) as a tool to
study the maps of dynamical stability (DS map) around some resonant periodic orbits. With
similar tools, Kotoulas et al. (2022) focused on the spatial symmetric retrograde periodic
orbits of asteroids moving in low order interior mean resonances with Jupiter. A review
paper about the resonant periodic orbits can be referred to Pan and Hou (2022).

Lara and Peláev (2002) implemented an intrinsic predictor-corrector algorithm with the
help of the Frenet frame. The computations of some periodic orbits of the CRTBP show
the robust of this algorithm, although it is a little difficult to implement. Kalantonis et al.
(2003) transformed the solving problem of the nonlinear equations into an unconstrained
optimization problem and calculated some periodic orbits of Robe’s CRTBP within accuracy
10−8. Robe’s RTBP considers the motion of an infinitesimal body inside one primary, which
is a rigid spherical shell filled with a homogeneous incompressible fluid (Hallan and Rana
2001). Xu (2022) independently applied Broyden’s method with a line-search (Press et al.
1992) to the periodicity conditions and implemented the scheme with the accuracy generally
no greater than 10−10.

The interests on the RTBP come from the non-integrability and a lot of useful research
targets, including three species of periodic orbits, elemental periodic orbits, invariant man-
ifolds, homoclinic and heteroclinic orbits, bifurcations and transit orbits. For the interests
on the elemental periodic orbits emanating from five librations and homoclinic orbits of the
CRTBP, one may refer to Doedel et al. (2007). The transit orbits between an interior region
and an exterior region can be studied by the symbolic dynamics. Based on the values for
the Sun–Jupiter–Oterma system, Wilczak and Zgliczynski (2003) showed the existence of a
homo- and heteroclinic cycle between two Lyapunov orbits, and also showed the existence
of a symbolic dynamics on four symbols. Barrabés and Mikkola (2005) computed families
of symmetric periodic horseshoe orbits both in the planar RTBP and the spatial RTBP. Ben-
gochea et al. (2013) studied the numerical continuation of the doubly symmetric horseshoe
orbits in the general planar three-body problem. Fitzgerald and Ross (2022) demonstrated
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the phase space geometry of the transit and non-transit orbits of the bicircular problem and
the elliptic RTBP by linearing the Hamiltonian differential equations about the collinear
Lagrange points. For more numerical aspects on the homo- and heteroclinic orbits, one may
refer to Koon et al. (2000), Kalantonis et al. (2006), Papadakis (2006) and Zhang (2022).

Periodic orbits of some special versions of RTBP are studied recently. Sitnikov problem
is a special RTBP which considers the vertical motions of the infinitesimal body along a
straight line perpendicular to the orbital plane of the primaries. A brief view of the Sitnikov
problem is stated in Abouelmagd et al. (2020), and the first- and second-order approximated
analytical periodic orbits of the circular Sitnikov problem are constructed without the secular
terms via the multiple scales method. With the background of the earth-moon-spacecraft
system, Zaborsky (2020) considered the generating solutions of the problem of two fixed
attracting masses and derived 7 spatial families by continuing the angular velocity of rotation
of the primaries around their center of masses.

Spatial Hill’s problem is important for the study on the motions of small bodies near
one primary. Zagouras and Markellos (1985) constructed the fourth-order expressions for
the periodic orbits originating at two Euler libration points near the smaller primary by
the Lindstedt–Poincaré technique. Gómez et al. (2005) combined the semi-analytical and
numerical techniques to study the invariantmanifold of the spatialHill’s problemassociated to
two Euler libration points. For a brief introduction to the recent progress on the periodic orbits
of Hill’s problem, one may refer to Kalantonis (2020). By computing the linear stability of
the basic planar families, Kalantonis determined twelve vertical-self-resonant (VSR) periodic
orbits bifurcating from planar ones, and found each VSR orbit generates two branches where
the multiplicity and symmetry depend on the stability. In the numerical results, the periods
of the spatial ones are of three or four times of the periods of the planar ones. The quantized
Hill problem can be considered as an equation system derived under the effects of quantum
corrections. The periodic orbits emerging from the equilibrium points of the spatial quantized
Hill problem are evaluated by the averaging theory in Abouelmagd et al. (2022).

The secular behaviors of the orbits in the RTBP are important. Prokopenya et al. (2015)
considered a new version of RTBP when the masses of the primaries vary isotropically with
different rates, and the total mass changes according to the joint Meshcherskii law. They
studied the secular perturbations of the quasi-elliptic orbits by the averagingmethod andHill’s
approximation. Qi and Xu (2015) considered the long-term behavior of the spatial orbits near
the Moon in the earth-moon-spacecraft CRTBP and calculated some spatial periodic orbits.
Cheng and Gao (2022) studied the lognormal distribution of the mass of Saturn’s regular
moons by the nonparameter test method in statistics, and obtained the analytical expression
of the approximate periodic orbit near the Lagrangian point L3 by the Lindstedt–Poincaré
technique. Also, the influence of some parameters on the periodic orbits is also discussed.

Although some SDSPs have been calculated before, we draw attention to the fact that our
research is new, including the algorithm and results. First, we use the numerical continuation
scheme supplied in Xu (2022). We get the desired periodicity conditions of the SDSPs of
the autonomous CRTBP by the integration and Hermite interpolation, and then take use
of Broyden’s method with a line-search to acquire the roots as the initial values. The key
program codes can be found in Press et al. (1992), which is not referenced byKalantonis et al.
(2003). Second, we consider the continuation of the SDSPs of the spatial Kepler problem in
a rotating frame without the restriction on the mass ratio of the primaries, and the periods
of the comet- and Hill-type SDSPs are quite different from the known ones. As far as we
know, the SDSPs before our work were found as vertical branches of some planar families
or the Lyapunov orbits near the Euler equilibrium points. Third, we find 16 initial conditions
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for each comet-type or Hill-type resonant period ratio, and do the numerical research on the
SDSPs systematically.

The paper is organized as follows. In Sect. 2, the equations of motion and the Hamiltonian
dynamical systems for the CRTBP and Hill’s lunar problem are introduced. In Sect. 3, we
introduce the concept of double symmetry and some related lemmas. In Sect. 4, the geometric
way to understand the comet- and Hill-type SDSPs of the approximate system is discussed.
In Sect. 5, the numerical way to study the linear stability of the SDSPs is supplied. In Sect. 6,
some numerical examples are given. This article ends with the discussion section.

2 Equations and Formulation

In this section, the equations of theCRTBP for describing the comet-type orbits are introduced
both in the inertial frame and the rotating frame, with the origin at the center of masses.
Besides, move the origin to the center of one primary, the Hamiltonian for the Hill-type
motions is also introduced. In order to get a clear relation between the rectangular coordinates
and the canonical elliptic variables, the orbital elements, Delaunay elements and Poincaré–
Delaunay elements are introduced.

2.1 Rectangular coordinates

Consider the CRTBP in the center-of-mass inertial frame. Two primaries are denoted as m1

and m2, while their masses are also denoted as m1 and m2, respectively. The primaries move
in a fixed plane which is set as the reference plane. The inertial Cartesian coordinate frame
O − u1u2u3 is established by choosing O as the center of masses and fixing one direction
from O as the u1 axis. Denote the vector from m2 to m1 as d and the length d is a constant.
The angular velocity n′ of the vector d satisfies (n′)2d3 = G(m1 + m2), where G is the
gravitational constant. Set the normalized units of mass, distance and time, [M] = m1 + m2,
[d] = d and [T ] = d1/2(GM)−1/2. In such units, μ = m2/M, G = 1, n′ = 1, d = 1, and
d = (cos t, sin t, 0)T, where the upper T represents transposition. Let the position of the
infinitesimal body be x = (x1, x2, x3) ∈ R

3\{μd, (μ − 1)d}. The corresponding conjugate
momentum of x is ẋ. The differential equation system for the motion of the infinitesimal
body is

ẍ = − (1 − μ)(x − μd)

r31
− μ (x + (1 − μ)d)

r32
. (1)

The Hamiltonian is composed of the kinetic energy and the potential energy (Frauenfelder
and van Koert 2018),

Hiner = 1

2
‖ẋ‖2 − 1 − μ

r1
− μ

r2
, (2)

where the upper “iner" represents “inertial", and ‖ · ‖ is the Euclidean norm,

‖ẋ‖2 = ẋ21 + ẋ22 + ẋ23 ,

r21 = ‖x − μd‖2 = (x1 − μ cos t)2 + (x2 − μ sin t)2 + x23 ,

r22 = ‖x + (1 − μ)d‖2 = (x1 + (1 − μ) cos t)2 + (x2 + (1 − μ) sin t)2 + x23 .

Consider theCRTBP in the center-of-mass rotating frame O−q1q2q3. The vector direction
of d is fixed as the q1 axis. Denote the position vector of the infinitesimal body in this rotating
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frame as ξ . Substitute the formulas into the differential equations (1), module the rotation,
then the differential equations in the rotating frame are acquired (Meyer et al. 2009),

(
ξ̈1 − 2ξ̇2
ξ̈2 + 2ξ̇1

)
=

(
ξ1
ξ2

)
− 1 − μ

r31

(
ξ1 − μ

ξ2

)
− μ

r32

(
ξ1 + 1 − μ

ξ2

)
,

ξ̈3 = −μξ3

r31
− (1 − μ)ξ3

r32
. (3)

Denote η1 = ξ̇1 − ξ2, η2 = ξ̇2 + ξ1, and η3 = ξ̇3. The Hamiltonian system in the rotating
system can be checked out as follows,

Hrot = 1

2
‖η‖2 − (ξ1η2 − ξ2η1) − 1 − μ

r1
− μ

r2
, (4)

where r21 = (ξ1 − μ)2 + ξ22 + ξ23 , and r22 = (ξ1 + 1 − μ)2 + ξ22 + ξ23 .

2.2 Canonical elements

In order to better describe the nearly circular motions, canonical Poincaré elements are
usually used. It is convenient to replace the rectangular coordinates by the instantaneous
orbital elements firstly, then convert the orbital elements to the Delaunay elements, and
finally use the Poincaré–Delaunay elements.

Define two three-dimensional anticlockwise-rotating matrices R1 and R2 as

R1(θ) =
(
1 0
0 exp(−Jθ)

)
, R2(θ) =

(
exp(−Jθ) 0

0 1

)
,

where the skew-symmetric matrix J and the two-dimensional orthogonal matrix exp(−Jθ)

are, respectively, defined as

J =
(

0 1
−1 0

)
, exp(−Jθ) =

(
cos θ − sin θ

sin θ cos θ

)
.

The orbital elements contain six variables, which are semi-major axis a, eccentricity e (0 ≤
e < 1), inclination i (0 ≤ i < π ), longitude of ascending node Ω (0 ≤ Ω < 2π), argument
of pericenter ω (0 ≤ ω < 2π ) and mean anomaly � ∈ R. The eccentric anomaly and the true
anomaly are E = E(e, �) and f = f (e, �), respectively. Note that

r = ‖x‖ = ‖ξ‖ = a(1 − e cos E) = a(1 − e2) (1 + e cos f )−1 .

Let n denote the mean motion and n is positive for the prograde motion while negative for
the retrograde motion. For the unperturbed system, if the mass of the central primary is μ,
then we have n2a3 = μ. The angular momentum is denoted as Θ = ±√

ma(1 − e2), where
the “+” represents the prograde motion while “−" represents the retrograde motion. The
rectangular coordinates of the position can be expressed by

x = R2(Ω)R1(i)R2( f + ω) (r , 0, 0)T .

In the sense of instantaneous, the velocity is about the derivative of the anomalies,

ẋ = R2(Ω)R1(i)R2( f + ω)
(
ṙ , r ḟ , 0

)T
,
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where ṙ = e sin( f )/Θ , r ḟ = (1 + e cos f )/Θ . According to the formulas below, the
anomalies can be converted to each other,

E − e sin E = �, r cos f = a(cos E − e), r sin f = a
√
1 − e2 sin E .

The Delaunay elements are

L = √
μa, G = L

√
1 − e2, H = G cos i,

� = nt + �0, g = ω, h = Ω,

and the Poincaré–Delaunay elements are

P1 = L − G + H , P2 = √
2(L − G) cos(g + h), P3 = G − H ,

Q1 = � + g + h, Q2 = −√
2(L − G) sin(g + h), Q3 = � + g.

2.3 Perturbed system

Consider the comet-type motion of the infinitesimal body, so 1/r is small. Let {Pk}∞k=0 be the
Legendre polynomials, and P0 = 1, P1(ξ1) = ξ1, P2(ξ1) = 3

2 ξ
2
1 − 1

2 , P3(ξ1) = 5
2 ξ

3
1 − 3

2 ξ1.
According to the Legendre expansion technique,

1 − μ

r1
+ μ

r2
= 1 − μ√

r2 + μ2 − 2μξ1
+ μ√

r2 + (1 − μ)2 + 2(1 − μ)ξ1

= 1

r
+ 1 − μ

r

∞∑
j=2

P j

(
ξ1

r

) (μ

r

) j + μ

r

∞∑
k=2

Pk

(
−ξ1

r

) (
1 − μ

r

)k

.

If 1/r is sufficiently small, the Hamiltonian Hrot can be written in the perturbed form as
Hrot = Hrot

0 + O(1/r3) by the canonical elements, where

Hrot
0 = − 1

2L2 − H = − 1

2(P1 + P3)2
−

(
P1 − P2

2 + Q2
2

2

)
. (5)

If the infinitesimal body is very close to primary m2, it is convenient to move the origin
to the center of m2. Let m2 − q1q2q3 denote the m2 centered rotating frame. Let the position
q = ξ + (1−μ, 0, 0)T, the conjugate momentum p = η+ (0, 1−μ, 0)T. Note that ‖q‖ � 1.
The Hamiltonian for the Hill-type motion around m2 can be written as

Hmtwo = Hμ
0 + (1 − μ)q1 − 1 − μ√

1 − 2q1 + ‖q‖2 − (1 − μ)2

2
,

Hμ
0 = 1

2
‖p‖2 − (q1 p2 − q2 p1) − μ

‖q‖ .

Expand the potential function by Legendre expansion technique, neglect the constant −(1−
μ) − (1− μ)2/2, and write the part of the integrable Hamiltonian in the canonical elements,
we get

Hmtwo = Hμ
0 − (1 − μ)

(
3

2
q2
1 − 1

2
‖q‖2

)
− (1 − μ) · O(‖q‖3), (6)

where Hμ
0 = − μ

2L2 − H and the canonical elements change with L = √
μa.
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Hill’s lunar problem can be derived by the following way. Make symplectic scaling q →
μ1/3q and p → μ1/3p, then scale the Hamiltonian by μ−2/3, afterwards make μ → 0, the
Hamiltonian becomes

HHill = Hrot
0 −

(
3

2
q2
1 − 1

2
‖q‖2

)
. (7)

In the following, the integrable system likeHrot
0 andHμ

0 is usually referred as the approxi-
mate system.

3 Double symmetries and SDSPs

The double symmetries exist in the RTBP and Hill’s lunar problem, because these systems
satisfy two time-reversing symmetries. One is with respect to the syzygy (the line containing
both primaries), the other is about the vertical plane containing the primaries. The differential
equation system (3) is invariant under the two anti-symplectic reflections (Kazantis 1979;
Robin and Markellos 1980; Howison and Meyer 2000a, b; Llibre and Roberto 2009; Llibre
and Stoica 2011; Bengochea et al. 2013; Xu 2019, 2020; Antoniadou and Libert 2019;
Kotoulas et al. 2022).

R1 :(ξ1, ξ2, ξ3, ξ̇1 − ξ2, ξ̇2 + ξ1, ξ̇3) → (ξ1,−ξ2,−ξ3,−ξ̇1 + ξ2, ξ̇2 + ξ1, ξ̇3),

R2 :(ξ1, ξ2, ξ3, ξ̇1 − ξ2, ξ̇2 + ξ1, ξ̇3) → (ξ1,−ξ2, ξ3,−ξ̇1 + ξ2, ξ̇2 + ξ1,−ξ̇3).

The two time reversing symmetries can be explained geometrically.R1 denotes the symmetry
about the ξ1 axis, whileR2 denotes the symmetry about the ξ1ξ3 plane. It is difficult to know
directly the rectangular initial values for the SDSPs, but there is one way to get the precise
initial values by numerically continuing the approximate initial values, which can be achieved
by determining the SDSPs of the approximate system.

Though the Hamiltonians of the comet and Hill-type motions are different, the corre-
sponding approximate systems are similar to Hrot

0 . The SDSPs of the approximate system
can be determined according to the following three lemmas (Howison and Meyer 2000a; Xu
2019).

Lemma 1 If one orbit of the Hamiltonian (4) starts from a Lagrangian subplane L
(0)
1 (or

L
(0)
2 ), and intersects L

(0)
2 (or L

(0)
1 ) after time T /4 > 0, then the orbit is periodic with

period T and doubly symmetric, where

L
(0)
1 = {(ξ, η)|ξ = (ξ1, 0, 0), η = (0, ξ̇2 + ξ1, ξ̇3)},

L
(0)
2 = {(ξ, η)|ξ = (ξ1, 0, ξ3), η = (0, ξ̇2 + ξ1, 0)}. (8)

The Hamiltonian systems (5), (6), (7) also satisfy this proposition.

Proof Consider one solution starts fromL
(0)
1 . Let φ(t, X0, Y0) be a solution of (3) with the

initial values X0 = (ξ1, 0, 0) and Y0 = (0, η2, η3) at the time t = 0. The differential equation
system satisfies the double symmetries R1 and R2. After time T /4, the solution intersects
with the set L (0)

2 at X1 = (ξ̃1, 0, ξ̃3), Y1 = (0, η̃2, 0). One has

φT /4 = φ(T /4, X0, Y0) = (ξ̃1, 0, ξ̃3, 0, η̃2, 0).
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As the solution satisfies the symmetry R1, one has

R1φT /4 = φ(−T /4, X0, Y0) = (ξ̃1, 0,−ξ̃3, 0, η̃2, 0).

It takes T /2 for this orbit fromL2 toL2 again. The solution also satisfies the symmetryR2,
so one has

φ(T /4 + T /2, X0, Y0) = R2φ−T /4 = (ξ̃1, 0,−ξ̃3, 0, η̃2, 0) = φ(−T /4, X0, Y0).

So the solution φ(t, X0, Y0) is periodic with period T and doubly symmetric. For the case
that one solution starts from L

(0)
2 , the proof is the same as above. 
�

Lemma 2 The Lagrangian subplane L
(0)
k is equivalent to L

(1)
k , to L

(2)
k and to L

(3)
k for

k = 1, 2, where

L
(1)
1 = {( f = 0 mod π, ω = 0 mod π, Ω = 0 mod π)},

L
(1)
2 = {( f = 0 mod π, ω = π

2
mod π, Ω = π

2
mod π)}. (9)

L
(2)
1 = {(� = 0 mod π, g = 0 mod π, h = 0 mod π)},

L
(2)
2 = {(� = 0 mod π, g = π

2
mod π, h = π

2
mod π)}. (10)

L
(3)
1 = {(Q1 = 0 mod π, Q2 ≡ 0, Q3 = 0 mod π)},

L
(3)
2 = {(Q1 = 0 mod π, Q2 ≡ 0, Q3 = π

2
mod π)}. (11)

Lemma 3 The SDSPs of the approximate system Hrot
0 can only be the circular orbits.

Proof The rectangular coordinates ξ and η can be expressed by the orbital elements,

ξ = R2(−n′t)x = rα1, η = R2(−n′t)ẋ = ṙα1 + r ḟ α2,

where A = R2(Ω − n′t)R1(i)R2( f + ω) = (α1, α2, α3) is a 3 × 3 matrix,

α1 =
⎛
⎝ cos( f + ω) cos(Ω − t) − cos i sin( f + ω) sin(Ω − t)
cos( f + ω) sin(Ω − t) + cos i sin( f + ω) cos(Ω − t)

sin( f + ω) sin i

⎞
⎠ ,

α2 =
⎛
⎝− sin( f + ω) cos(Ω − t) − cos i cos( f + ω) sin(Ω − t)

− sin( f + ω) sin(Ω − t) + cos i cos( f + ω) cos(Ω − t)
cos( f + ω) sin i

⎞
⎠ ,

and α3 = (sin(Ω − t) sin i,− cos(Ω − t) sin i, cos i)T. Let the initial values of one orbit be
X0, Y0 as above. Suppose that after time T /4, the solution intersectL (0)

2 at X1, Y1. According
to the two boundary conditions, the solution satisfies f = ω = Ω = 0 mod π at t = 0,
and f = 0 mod π , g = π/2 mod π , h = π/2 mod π at t = T /4. However, ġ = 0 in the
approximate system. There exists a conflict if the orbit is elliptic. So the doubly symmetric
periodic orbit can only be circular. 
�

4 Approximate system and SDSPs

Let us recall three theorems proved by Howison and Meyer (2000a, b) in order to make the
readers to understand what kinds of SDSPs to be calculated in this paper.
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Theorem 1 (Howison and Meyer 2000a, b) (1) There exist doubly symmetric periodic solu-
tions of the spatial restricted three-body problems for all values of the mass ratio parameter
μ with large inclination which are arbitrarily far away from the primaries. (2) There exist
doubly symmetric periodic solutions of the spatial restricted three-body problems for all
values of the mass ratio parameter μ with large inclination which are arbitrarily close to
one of the primaries. (3) There exist doubly symmetric periodic solutions of the spatial Hill’s
lunar problems with large inclination which are arbitrarily close to the primary.

The existence of the SDSPs is shown by the continuation method, which needs a small
parameter. The small parameter is introduced by the symplectic scaling method (Howison
and Meyer 2000a). Theoretically, the small parameter is small enough, however, it is not
necessarily to be too small in the numerical research.

4.1 Symplectic scaling

In order to understand the small parameter and estimate the order of magnitude of the pertur-
bation to the approximate system, we recall the symplectic scaling procedure (Meyer et al.
2009; Howison and Meyer 2000a; Xu 2019, 2020). For the comet-type orbits, the coor-
dinate frame is the rotating frame with the origin at the center of masses. The symplectic
transformation is ξ → ε−2ξ, η → εη, and the new Hamiltonian is equal to the old Hamil-
tonian multiplied with ε. The small parameter ε2 represents the inverse of the great distance
of the infinitesimal body from the origin 1/r . The symplectic scaled new Hamiltonian is
H̃rot = H̃rot

0 + O(ε7), where H̃rot
0 = −ε3/(2L̃2) − H̃ , L = √

a, L̃ = εL and H̃ = εH .
While for the Hill-type orbits, the origin is set to locate at the center of one primary

m2. This symplectic transfromation is ξ → ε2ξ, η → ε−1η, and the new Hamiltonian is
equal to the old Hamiltonian multiplied with ε−1. Here the small parameter ε2 represents
the degree of closeness to the primary m2. Hmtwo is transformed to Ĥmtwo = Ĥμ

0 + O(ε3),

where Ĥμ
0 = − ε−3μ

2L̂2 − Ĥ , L = √
μa, L̂ = ε−1L and Ĥ = L̂

√
1 − e2 cos i . If μ → 0, we

use L̂ = μ1/3 Ľ , and have ȞHill = Ȟrot
0 + O(ε3), where Ȟrot

0 = −ε−3/(2Ľ2) − Ȟ .

4.2 Sixteen cases of the initial values

In order to do the numerical study, it is convenient to use the usual rectangular coordinates
to represent the initial values. Consider the initial values of the comet-type SDSPs of the
approximate system.Letφ(t, X0, Y0)beone solution and satisfy (X0, Y0) ∈ L

(0)
1 .According

to Lemma 2 and Lemma 3, the initial values at t = 0 can be written as

X0 = (±a cosΩ0, 0, 0), Y0 = ±(0, na cos i cosΩ0, na sin i).

Suppose φ( T
4 , X0, Y0) = (X1, Y1)∈ L

(0)
2 . Let Ω1 = Ω0 − T /4, and we have again

X1 = a (∓ cos i sin(Ω1), 0,± sin i) , Y1 = (0,±na sin(Ω1), 0) .

Usually, Ẋk = Yk − (0, a, 0) for k = 1, 2 are used instead of Y0, Y1, respectively.
Let sgn(n) = 1 if the infinitesimal bodymoves prograde (anticlockwise) and sgn(n) = −1

if the infinitesimal body moves retrograde (clockwise). Given an acute angle i0 < π/2, the
inclination is supposed to be i0. If the orbit starts from L

(0)
1 , each parameter in (ξ1, ξ̇2, ξ̇3)

has a possibility to be positive or negative, so there are eight cases of the initial values. There
are also eight cases for the signs of (ξ1, ξ3, ξ̇2) if the orbit starts fromL

(0)
2 . As we can see in
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Fig. 1 Three sketch maps are supplied for describing the initial values for the SDSPs of the approximate

system. The included angle between the initial orbital planeL (0)
1 and the ξ2 axis is no greater than 90◦ for the

first sketch (upper left) and greater than 90◦ for the second sketch (upper right). There are four cases of initial
values in each of the first two sketch maps. In the third sketch map (lower middle), the included angle between

the initial orbital plane L (0)
2 and the ξ2 axis is 90◦, and there are also eight cases of initial values. The signs

of (ξ1, ξ̇2, ξ̇3) are marked in the upper two sketch maps, while the signs of (ξ̃1, ξ̃3,
˙̃
ξ2) are marked in the third

sketch map. There are totally sixteen cases of initial values for the SDSPs of the approximate system

Fig. 1, there are three orbital planes with different dihedral angles. The first two sketch maps
represent that the orbits start from L

(0)
1 , and the third sketch map represents that the orbits

start from L
(0)
2 . There are eight cases of initial values in each Lagrangian subplane. The

signs of (ξ1, ξ̇2, ξ̇3) or (ξ1, ξ3, ξ̇2) are applied to represent a set of initial values. For example,
(1,+,+,+) means that the orbit starts from L

(0)
1 and ξ1 = a > 0, ξ̇2 > 0, ξ̇3 > 0, while

(2,+,+,+) represents that the orbit starts fromL
(0)
2 and ξ̃1 = a cos i0 > 0, ξ̃3 > 0, ˙̃ξ2 > 0.

In all, there can be 16 possibilities of initial values of SDSPs for a fixed period ratio in the
approximate system. For more details, the readers can refer to the caption of the Fig. 1.

4.3 Initial values

According to the Hamiltonian Hrot
0 of the approximate system in Eq. (5), the longitude of

the ascending node satisfies the differential equation ḣ = ∂Hrot
0

∂ H = −1, so h(t) = h(0) − t
and the line of apsides moves retrograde. Let Z+ denote all the non-negative integers. One
fourth period is set to be T0

4 = π
2 + kπ (k ∈ Z

+), such that h( T0
4 ) = h(0) − T0

4 satisfies

L
(2)
2 if h(0) = 0 mod π and satisfies L (2)

1 if h(0) = π
2 mod π . In addition, we have the
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differential equation Q̇3(t) = �̇(t) + ġ(t) = sgn(n)L−3, so Q3(t) = Q3(0) ± L−3t . We
must have L−3 T0

4 = π
2 + jπ with j ∈ Z

+, such that Q3(
T0
4 ) satisfies L (3)

2 if Q3(0) = 0

mod π and satisfies L (3)
1 if Q3(0) = π

2 mod π . Because the argument of perigee g is of

no definition in the circular orbit, and we redefine �( T0
4 ) = �(0) + sgn(n) jπ and g( T0

4 ) =
sgn(n) π

2 such that this definition keeps in coincident with the Poincaré–Delaunay elements
for the symmetries. Then T0 = 2π + 4kπ is set as the period of a SDSP of the approximate
system. In the inertial frame, during the period that the primaries revolve 2k +1 turns around
each other, the projection of infinitesimal body in the ξ1ξ2 plane revolve 2 j + 1 = T0

2π |n|
turns.

The mean anomaly can be determined by the period ratio, that is |n| = 2 j+1
2k+1 . For the

comet-type orbits, the semi-major axis a is much longer than d = 1 and is determined
by a = L2 = [(2k + 1)/(2 j + 1)]2/3 with k � j ≥ 0. We can check that the Kepler’s
third law n2a3 = 1 is satisfied for the comet-type SDSPs. The small parameter ε is also
determined by the period ratio as ε3 = [(2 j + 1)/(2k + 1)] with L̃ = 1. We conclude that
na = sgn(n)ε = a−1/2. Suppose a = a0 when j and k are fixed. The initial orbital inclination
is i0 < π

2 or π − i0. Then the initial values of a SDSP starting from L
(0)
1 can be written as

(ξ1, 0, 0, 0, ξ̇2, ξ̇3) = (±a0, 0, 0, 0,±a−1/2
0 cos i0 − a0,±a−1/2

0 sin i0). (12)

While the initial values of a SDSP starting from L
(0)
2 can be written as

(ξ̃1, 0, ξ̃3, 0,
˙̃
ξ2, 0) = (±a0 cos i0, 0,±a0 sin i0, 0,±a−1/2

0 − a0, 0). (13)

The initial values (q, q̇) of a Hill-type SDSP of Hμ
0 in (6) are formally the same as (12)

or (13). For the Hill-type orbits, the semi-major axis a1 is much shorter than d = 1, and

a1 =
(

μ

n2

) 1
3 = μ1/3 [(2k + 1)/(2 j + 1)]2/3 with j � k ≥ 0. Denote the initial orbital

inclination as i1 < π
2 or π − i1. The initial parameters of a Hill-type SDSP starting from

L
(0)
1 can be expressed as

(q1, q̇2, q̇3) = (±a1,±
√

μ/a1 cos i1 − a1,±
√

μ/a1 sin i1). (14)

If a Hill-type SDSP starts from L
(0)
2 , the set of initial parameters is given by

(q̃1, q̃3, ˙̃q2) = (±a1 cos i1,±a1 sin i1,±
√

μ/a1 − a1). (15)

The initial values for the Hill-type SDSPs of the approximate system of Hill’s lunar problem
can be calculated by Eqs.(12) and (13) for j � k ≥ 0.

4.4 Periodicity conditions

The integration procedure and the periodicity conditions are based on the rectangular coordi-
nates. Consider the comet-type case and let j and k be fixed as k � j ≥ 0. Suppose that the
initial values are chosen as (X0, Ẋ0) ∈ L

(0)
1 . There are three undetermined values ξ1, ξ̇2, ξ̇3,

and three periodicity conditional equations are as follows,

ξ̃2(T /4, ξ1, ξ̇2, ξ̇3) = 0, ˙̃
ξ1(T /4, ξ1, ξ̇2, ξ̇3) = 0, ˙̃

ξ3(T /4, ξ1, ξ̇2, ξ̇3) = 0.

As T is also unknown, the integration time can be determined by the orbit’s (k + j + 2)-th
passing of the ξ1ξ3 plane. The parameter T can be exported as a global variable. One can
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also try to add the period as one undetermined parameter to the conditional equations, like
T /4 = T0/4+ ξ2(T0/4)/ξ̇2(T0/4), and T can be calculated iteratively. However, it may fail
when the precision of T0 is poor for the full system, or say when the ratio j/k is not small
enough.

A SDSP starts from the x1x3 plane, which is also the ξ1ξ3 plane at the initial epoch. During
the time span T0/4, as the line of syzygy rotates (k +0.5)π , the orbit of the infinitesimal body
hits the x2x3 plane perpendicularly at the ( j + k + 1)-th passing. Meanwhile, the ξ1ξ3 plane
rotates in the inertial frame anticlockwise with the angular velocity n′ = 1, and coincides
with the x2x3 plane at T0/4. The infinitesimal body passes the ξ1ξ3 plane j + k + 2 times
containing the beginning and the ending within one fourth period. We use the interpolation
method to get the (k + j + 2)-th intersection with the ξ1ξ3 plane so as to get the periodicity
conditional equations.

Suppose that the initial values are chosen as (X1, Ẋ1) ∈ L
(0)
2 . Three parameters (ξ̃1,

ξ̃3,
˙̃
ξ2) are needed to be determined. Then the periodicity conditions are as follows,

ξ2(T /4, ξ̃1, ξ̃3,
˙̃
ξ2) = 0, ξ3(T /4, ξ̃1, ξ̃3,

˙̃
ξ2) = 0, ξ̇1(T /4, ξ̃1, ξ̃3,

˙̃
ξ2) = 0.

For example, the (k + j + 2) passings can be counted from how many times that ξ2(t)ξ2(t +
Δt) ≤ 0 is satisfied, where Δt is the integration step. And the (k + j + 2)-th intersection
can be precisely acquired if we use the Hermite interpolation (or cubic spline interpolation).

5 Linear stability

Consider the linear variation of the differential equations (3), which can be rewritten as
ξ̇ = ∂Hrot/∂η, η̇ = −∂Hrot/∂ξ . Then the linear variations satisfy

δξ̇ = δη + (δξ2,−δξ1, 0)
T, δη̇ ≈ − ∂2Hrot

∂ξ∂(ξ, η)

(
δξ

δη

)
, (16)

the formulas can be referred to Lara and Peláev (2002) or one can calculate them by one
symbol algebra software.

Suppose (ξ(T ), η(T )) = (ξ(0), η(0)), this means that a solution starts from (ξ0, η0) and

comes back after time T . Along this periodic solution, the coefficient matrix − ∂2Hrot

∂ξ∂(ξ,η)
is

periodic. According to the Floquet theorem, the stability depends on the eigenvalues of the
monodromy matrix, which is a fundamental solution matrix taking the value after a period.

The eigenvalues of ∂(ξ(T ),η(T ))
∂(ξ(0),η(0)) are the same as those of ∂(ξ(T ),ξ̇ (T ))

∂(ξ(0),ξ̇ (0))
as there exists only

elementary matrix transforms between these two monodromy matrices.
Consider ζ = (δξ1, · · · , δη1, · · · , δη3)

T ∈ R
6. The differential equation can be derived as

(16). The standard fundamental solution matrix about ζ can be denoted as Z(t) = Z(t, 0) =(
∂ζi (t,0)
∂ζ j (0)

)
1≤i, j≤6

and satisfies Z(0) = I6×6, where I6×6 is a 6 × 6 identical matrix, so the

monodromy matrix Z(T ) can be integrated numerically. Some Lemmas can be referred to
Meyer et al. (2009).

Lemma 4 If Z(t) is a fundamental solution matrix of a linear differential system with a
T -periodic coefficient matrix, then Z(t + T ) = Z(t)Z(T ).

Theorem 2 The fundamental solution matrixZ(t) is symplectic for all t ∈ R. The eigenvalues
of Z(T ) (characteristic multipliers) are symmetric with respect to the real axis and the unit
circle.
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According to the double-symmetry property, the Z(T ) can be calculated by just inte-
grating T /4 (Robin and Markellos 1980).

Theorem 3 LetZ(t) be defined as above. If aSDSP starts fromL
(0)
1 , andZ(T /4) = Z(0,T /4)

is known, then the monodromy matrix of this SDSP can be calculated by

Z(T ) =
(
N

(
T

2

)
R1

)2

, N
(

T

2

)
= Z

(
T

4

)
R2Z−1

(
T

4

)
, (17)

where R1 = diag (1,−1,−1,−1, 1, 1) and R2 = diag(1,−1, 1,−1, 1,−1). If the solu-
tion starts from L

(0)
2 and Z̃(T /4) is known, then

Z(T ) =
(
Ñ

(
T

2

)
R2

)2

, Ñ
(

T

2

)
= Z̃

(
T

4

)
R1Z̃−1

(
T

4

)
.

Proof According to Liouville’s theorem, the trace of the periodic coefficient matrix equals
zero, so the determinant of Z(t) equals 1. According to the property of the fundamental
solution matrix, we have Z(T ) = Z(T /2)Z(T /2,T ). For the symmetry R1, we can find that
Z(T /2,T ) = R1Z−1(T /2)R1. For the symmetries R1 and R2, we have

Z(T ) = Z
(

T

2

) (
R1Z−1

(
T

2

)
R1

)
,

Z
(

T

2

)
= Z

(
T

4

) (
R2Z−1

(
T

4

)
R2

)
.

We derive

Z−1
(

T

2

)
= R2Z

(
T

4

)
R2Z−1

(
T

4

)
= R2N

(
T

2

)
R2.

Then Z(T ) for the SDSP can be calculated by Z(T /4). The proof for the other case of Z(T )

is similar if the SDSP starts from L
(0)
2 . 
�

The characteristic multipliers of (16) measures the stability of periodic solutions. For
the three-dimensional CRTBP, there are six characteristic multipliers which are in pairs of
reciprocals. In fact, these multipliers can be complex conjugate on a circle or can be real
reciprocals. Denote one multiplier as λ, if there exists a |λ| > 1, then the periodic solution is
not linearly stable. The six multipliers can be represented as λi ,

1
λi

(i = 1, 2, 3). We refer to
the well-known index for the linear stability in Hénon (1969), Lara and Peláev (2002), and
define

ρ =
3∑

i=1

(
|λi | + 1

|λi |
)

≥ 6 (18)

as the linear stability index for the spatial periodic orbits. The trace of Z(T ) can be firstly
used to judge the stability. If ρ ≥ Tr(Z(T )) > 6, the orbit is linearly unstable. While if
Tr(Z(T )) ≤ 6, we will use ρ to help understand the linear stability. When all the multipliers
are on the unit circle, one has ρ = 6, and such a periodic solution is linearly stable. In
fact, for the numerical errors, we cannot get the precise ρ = 6, so we retain 6 significant
digits for convenience to characterize the stability. The monodromy matrix Z(T ) can be
calculated by the integration of linear variational equations together with the corresponding
differential equations, and by the application of Theorem 3. The eigenvalues are calculated by
the elimination method and the QR algorithm. The Fortran subroutines “elmhes" and “hqr"
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can be referred to in Press et al. (1992). “elmges" transforms amatrix to the upper Hessenberg
form, and “hqr" solves the eigenvalues by a sequence of Householder transformations.

6 Numerical Examples

All the numerical experiments are carried out in a Linux system on a personal computer
with Intel Core i7-6500U CPU @ 2.50GHz × 4 and 7.7 GiB memory. If the maximal
numerical deviation of the periodicity conditions at one fourth period is no greater than 10−9,
a symmetric periodic orbit is supposed to be found. The time consuming for the continuation
can be controlled by the maximum number of loops. The symmetric periodic orbits with
the designated k and j are found by Broyden’s method with a line-search, which is globally
convergent. The Fortran subroutines “broyden”, “lnsrch” and so on can be referred in Press
et al. (1992). Although Kalantonis et al. (2003) have pointed out this method, we haven’t
realized their work until very recently.

6.1 Case� = 1/2

The special case of equal masses in the RTBP known as the “Copenhagen problem". This
case has been studied with the generalized force potential. Here, we confine our experiment
on the Newtonian potential. Generally speaking, it is necessary for the perturbation to be
small if one wants to continue the periodic orbits from the approximate system to the full
system. In order to estimate the order of themagnitude of the perturbation on the approximate
system, we compare the first-order perturbation term withHrot

0 . The first-order perturbation
term is Hrot

1 = −(1 − μ)μP2(ξ1/r)/r3. For the nearly circular orbits near the infinity, the
line of syzygy moves much faster than the mean motion of the big orbit of the infinitesimal
body. During one orbit period of the infinitesimal body, the averages of cos 2Ω and sin 2Ω
equal zeros. We refer to Xu (2019) for the necessary terms and have

1

2π

∫ 2π

0
P2(ξ1/r)r−3d�/n = 1

8
(3 cos2 i − 1)Θ−3.

It seems that the first-order averaged perturbation equals zero when cos2 i = 1/3 though the
first-order perturbation does not vanish.

One set of initial values for the planar RTBP can be referred to Lara and Peláev (2002)
as follows,

(x0, y0, z0, ẋ0, ẏ0, ż0) = (0, 4, 0, 4.5, 0, 0) ∈ L
(0)
2 , T0 = 5.585. (19)

The periodic orbits continued from this set of values belong to familym, in which the periodic
orbits are usually stable. Our numerical experiment shows that there are a lot of symmetric
periodic orbits near this approximate solution. The results achieved by our algorithm aremore
close to the initial values. In Fig. 2, there are four near circular retrograde periodic orbits. The
outer orbit is symmetric with respect to the y axis. The initial values of the outer orbit is y1 =
4.00021433614826, ẋ1 = 4.50254016243978, and the period is T1 = 5.5815257432169.
There are two orbits in the middle and almost coincide. One orbit is determined by the double
symmetries, and the other orbit is determined by the second perpendicular crossing of the
positive y axis. The initial values are (y2, ẋ2)=(3.99876390419082, 4.50118225570633),
and (y3, ẋ3)=(3.99857131110253, 4.50100195228139), respectively. The periods are T2 =
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Fig. 2 Planar symmetric period orbits of family m continued from the same initial values in
Eq. (19) with μ = 0.5. The initial values of the inner periodic orbit are (x, y, ẋ, ẏ) =
(0, 3.96199469992294, 4.46677589984367, 0), and the period is 5.57243120610132. The outer periodic
orbits are continued by the optimization method in this paper. Part of the left-side sketch map is enlarged
as the right-side sketch map. Primaries are represented by dots

5.5811840743002 and T3 = 5.58113868599737, respectively. The accuracy of the three
periodic orbits is within 1.1E-13.

For μ = 0.5 and cos i0 = √
3/3, we vary integers k, j , as well as the directions, and

numerically find many SDSPs. Some examples are listed in Table 1. For k = 30, j = 0,
we get a0 = 612/3 ≈ 15.496, T0 = 30.5π ≈ 95.819. It takes about several minutes to get
the continued initial values. For the (1,+,+,+) case, we have ξ1 = 15.5061254882711,
ξ̇2 = − 15.7370477222493, ξ̇3 = 0.105884508957052, T /4 = 95.81968944276656. The
accuracy is within 10−10 by the program. As we can see, the approximate initial values
approximate the true values, as the small parameter satisfies ε3 = 1/61 ≈ 0.0164. This
periodic orbit is nearly linear stable, as maximum absolute value for the six multipliers is
1.000188. In order to show robust of the program, a bigger ε ≈ 0.101 with k = 15, j = 0 is
taken. The corresponding initial values for the SDSPs can be calculated as a0 ≈ 9.868, n0 =
1/31 and i0 ≈ 0.9553. More continuation results are listed in Table 1, and the corresponding
characteristic multipliers are listed in Table 2. In order to have a better view of the SDSPs,
an example for the case k = 9, j = 0 is shown in Fig. 3, and four interesting sketch maps
are shown in Fig. 4.

6.2 Sun–Jupiter case

The mass of the Sun is about 1.988500E+30 kg, while the mass of the Jupiter is about
1.89813E+27 kg, so we derive the mass ratio 1 − μ ≈ 9.5364E-4. However, if the masses
of the satellites and the rings are included in the Jupiter system, the mass ratio 1 − μ may
approximate 9.5388E-4 according to Bruno and Varin (2006). Consider the calculation of
the Hill-type SDSPs around the Sun. We use our numerical scheme to check some SDSPs
calculated by Kazantis (1979). One example is shown in Fig. 5. The orbit is found to be in the
O − q1q2q3 frame, and the accuracy of the initial values given in Kazantis (1979) is of order
10−4 at a fourth period. This orbit has two nearly perpendicular crossing to the q2 axis during
the time T /4.Our numerical experimentwith k = j = 0 convinced this result by the accuracy
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Fig. 3 An orbit diagram of comet-type SDSPs in case (1, +, −,−)withμ = 0.5, k = 9, j = 0, cos i = √
3/3.

The initial values and the period can be found in Table 1. The characteristic multipliers can be found in Table
2

10−6. However, this SDSP is not linearly stable, as the index ρ ≈ 2.0E+18. Our improved

initial information is ξ̃1 =0.47926856385, ξ̃3 =5.000000496E-3, ˙̃
ξ2 =0.962741651771, and

T =1.569831796427. In addition, some more examples are supplied in Table 3.
If we fix μ = 0.06 and k = 0, j = 10, then the small parameter ε satisfies ε3 = 1/21.

Let a1 = ε2 = 1/(21)2/3 ≈ 0.13138, then |n| = μ1/2ε−3 = 21
√

μ. There is no restriction
on the inclination i , so we can suppose i1 = π/4. A SDSP under this case can be calculated
as is shown in Fig. 6. The orbit is of multiple revolutions and linearly stable. The Hill-type
SDSPs in Hill’s lunar problem can also calculated, as many examples are shown in Table 4.

7 Discussion

This paper considers the numerical continuation of the comet- and Hill-type SDSPs of the
approximate system to the full system. The full system can be the CRTBP or Hill’s lunar
problem. There are few numerical results about Howison and Meyer’s SDSPs. The numer-
ical results reveal that SDSPs exist even if the small symplectic scaled parameters are not
necessarily too small. Classical continuation method based on the implicit function theorem
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Fig. 4 Four sketch maps of SDSPs with μ = 0.5 calculated in Table 1. The upper left one describes the
(1, 0)(1, +, −,−) type orbit, which is retrograde. The upper right one is continued from the (1, 0)(1, +, −,+)

type orbit, and the orbit is of Hill-type and retrograde. The lower left one is continued from the
(2, 0)(1, −,+,−) type orbit, and the orbit is planar retrograde comet-type. The fourth one is interesting
and continued from the (10, 0)(1, −,+, −) type orbit

which just has a local convergence may fail in continuing the approximate initial values to
the exact values for the SDSPs. Broyden’s method with a line-search is taken in use to solve
the nonlinear periodicity conditions expressed in the rectangular coordinates. The algorithm
and related Fortran programs can be referred to Press et al. (1992). Numerically, different
approximate initial values are continued to different initial values for the SDSPs, and we use
sixteen cases to continue the known initial values of theKeplerian orbits. Some cases even fail
because of the strong perturbation or the essential instability. Many successful examples in
Tables 1, 3, 4 and in the Figures show that our numerical scheme behaves well in determining
the SDSPs.

For a periodic orbit with double symmetry, only one fourth period information is needed
to determine the whole orbit, and the reason is well explained. Some questions are raised at
the end of this paper. First, numerical method has its advantages and shortcomings. If the
perturbation is sufficiently small, the period ratio between the inner orbit and the outer orbit
is also very small and the integration time will be long. If the perturbation is mild strong, the
stability of the orbit starting from the beginning initial values affects the numerical integration
and the continuation results. The grid search, Poincaré section method, the optimization
method, the Lyapunov indicator method and so on can be integrated in order to give a better
understanding of the three-dimensional phase structure. If the energy is fixed, then there are
only two unknown initial parameters, and the families of periodic orbits can be tracked. The
bifurcation of the families will be interesting for analysis. Second, there may exist invariant
torus around the linearly stable periodic orbits. The linear stability may be settled with the
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Fig. 5 An unstable SDSP in the i3v family found by Kazantis (1979). The orbital information includes

1 − μ = 0.00095, ξ̃01 ≈0.47926860, ξ̃03 ≈0.005, ˙̃
ξ2≈0.96274159, T /4 ≈1.56983, and the Hamiltonian

Hrot ≈ −1.733535

help of Floquet theory and some perturbation methods. At last, as there exist singularities, so
the regularization may be used in order to find more spatial periodic orbits in these problems
with a background of real astronomy.
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Fig. 6 One example of Hill-type SDSP around m2 in the case (1, +,+, +) with m2 = μ = 0.06,
k = 0, j = 10, cos i = √

2/2 is supplied. The integration time span is 20 and its period T is 4
times of 1.568164286834137. The initial values (ξ1,ξ̇2,ξ̇3) are 0.12098046779638547, 2.24272842162778E-
3,1.4780876804155E-3, respectively
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