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Abstract
In this work, we study the evolution of the families of simple symmetric periodic orbits in
the restricted three-body problem whatever the value of the mass parameter μ. To classify
these characteristic curves, we introduce a topological characterization of both orbits and
families. Starting from the work of Strömgren for the Copenhagen case, we analyze the
evolution of these families, when the mass parameter μ varies in (0, 1/2], focusing on their
topological characterization, the existence of asymptotic points and the appearance of certain
types of orbits such as horseshoe orbits. Lastly, we consider two samples, the Earth–Moon
and Sun–Jupiter systems and classify the different types of orbits for these systems.

Keywords Circular restricted three-body problem · Families of periodic orbits · Symmetric
periodic orbits

1 Introduction

The restricted three-body problem (RTBP) is without doubt the most studied problem in
Celestial Mechanics. Names like Euler, Lagrange, Laplace, Jacobi, Poincaré, Birkhoff, and
many other giants of Celestial Mechanics have their names associated with this problem.
In the RTBP, much effort has been dedicated to find and classify periodic orbits because as
Poincaré (1892) wrote: “ce que nous rend ces solutions périodiques si précieuses, c’est q’elles
sont, pour ainsi dire, la seule brèche par où nous puissions essayer de pénétrer dans une
place jusqu’ici réputée inabordable.” Again, we find golden names working on this topic, like
Stromgren, Brown, Rabe, Moulton, Hill, Whittaker, Lyapunov, Arenstorf, Brouwer, Hénon,
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Bruno, Szebehely, Deprit, Broucke, Henrard, or Hadjidemetriou, among many others [see
Szebehely (1967) or Hénon (2003) for a complete list]. In autonomous Hamiltonian systems,
periodic orbits appear in families. A family of periodic orbits is represented by a smooth
one-parameter continuous curve (characteristic curve) in the space of initial conditions of
parameters. In Deprit’s words: “natural families actually constitute the skeleton of the stable
domains of a dynamic system” (Deprit and Henrard 1968). Although the RTBP is well
known for readers of this article, we present a short description of it in order to fix notation
and equations we will use in next sections. A clear exposition of this problem can be found
in Chapter 8 of Danby’s classical textbook (Danby 1988).

As said before, many efforts have been dedicated to this problem and, in particular, to the
determination of periodic orbits. A detailed study of periodic orbits of different types, their
classification and evolution can be found in the excellent book written by Hénon (2003).
Before this publication, it is worth to mention the huge work developed by Strömgren (1933)
and his coworkers at the Copenhagen observatory, considering the case in which both pri-
maries have the same mass (μ = 0.5). As a matter of fact, the case μ = 0.5 is usually known
as Copenhagen problem. In this impressive Mémoir, Strömgren does not only obtain a very
high number of symmetric periodic orbits (with no computer!), but he makes a complete
classification of families in classes depending on the points the orbit encircles (primaries and
equilibria); besides, he describes asymptotic orbits approaching the triangular points, and
also, he describes the method used for numerically computing the orbits, which later on has
been named grid search and that will be briefly described in the next section.

There are many works dedicated to the finding and classification of periodic orbits in the
RTBP besides the authors appearing in the list two paragraphs above, considering specific
values of the mass parameterμ, like Bruno and Varin (2006), Hadjidemetriou and Ichtiaroglou
(1984), Goudas and Papadakis (2006) or Restrepo and Russell (2018), just to mention a few
but interesting works.

To our knowledge, there is no an analogous and systematic study for unequal masses
similar to the one carried out by Strömgren (1933). We try to fill this gap in the present
article. In order not to miss any orbit, we follow, as Strömgren, the grid search method for
μ ∈ (0, 0.5]. Next, we make a new topological classification based on what points the orbit
encircles together with its character, direct or retrograde. Special emphasis is dedicated to
asymptotic orbits. In so doing, we make a classification of the symmetric periodic orbits and
determine subintervals of μ where some types of families exist and others do not.

The paper is organized as follows. In Sect. 2, we present some basic definitions and results
on symmetric periodic orbits and heteroclinic orbits, with some indications on how to compute
them. Due to the great variety of periodic orbits, we give a topological classification of these
orbits; the classification is based on what points the orbit encircles, its direct or retrograde
character, and when necessary, the evolution of asymptotic orbits. In Sect. 3, as a test for
our procedure, we compute and classify periodic and heteroclinic orbits in the Copenhagen
problem, reproduce those obtained by Strömgren (1933) and name them with our terminology.
Once checked that our method of classification is consistent with known results, we move in
Sect. 4 to the case of arbitrary mass parameter μ ∈ (0, 0.5). In this case, we observe that there
are subintervals for μ in which some types of periodic or heteroclinic orbits exist, but those
orbits do not exist for other subintervals. We make a complete classification of the types of
periodic orbits we find for all values on each subinterval. At this point, it is worth to mention
the work of Goudas and Papadakis (2006) for some specific values of the mass parameter
(μ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5) where they find families of symmetric periodic orbits with
multiple periods (called multiple oscillations in their paper). Because they also present the
plots (x, C) for only one oscillation, we may compare our and their results and we can see that
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there is a good agreement with the ones obtained by these authors for their chosen particular
cases of μ. Lastly, in Sect. 4 we compute the periodic orbits for two particular cases, perhaps
the most outstanding from a practical point of view, the cases Sun–Jupiter and Earth–Moon,
for which the mass parameter is actually small.

2 Formulation and basic aspects of the problem

2.1 The RTBP basics

Let us consider two primary bodies P1, P2, with masses m1, m2 (m1 ≥ m2), such that P2

describes a Keplerian circular orbit around P1. The RTBP considers the motion of a third
body P , of infinitesimal mass, under the gravitational attraction of the primaries P1, P2 in
such a way that the motion of P does not affect the circular motion of the primaries. We
consider only the planar case, that is, the motion of P is always on the plane of the primaries.

Let us define a synodic reference frame as a frame with the origin at the center of mass of
the primaries, the Ox-axis rotating with the direction of the primaries and the Oy-axis the
orthogonal to have a direct orthogonal frame. By choosing m1 + m2 as the unit of mass, the
radius of the orbit of P2 around P1 as the unit of length and the unit of time such that the
gravitational parameter becomes equal to one, the positions of the primaries on the synodic
frame are P1(−μ, 0), P2(1−μ, 0), where μ = m2 ∈ (0, 0.5] is the so-called mass parameter,
and the position of the body P(x, y) will be given by the equations

ẍ − 2 ẏ = ∂�

∂x
, ÿ + 2ẋ = ∂�

∂ y
, (1)

where the effective potential is

� = 1

2
(x2 + y2) + 1 − μ

r1
+ μ

r2
, (2)

and

r2
1 = (x + μ)2 + y2, r2

2 = (x − 1 + μ)2 + y2,

are the distances from P to the primaries P1, P2, respectively (Fig. 1).
When working with rotating frames, there exists a first integral, the Jacobi’s constant,

given by the expression

C = 2 �(x, y) − (ẋ2 + ẏ2) (3)

and that can be easily obtained from Eq. (3).
As it is well known, the problem has five equilibrium points called Lagrange points. Three

of them L1, L2, L3, the collinear points, are on the Ox-axis, and the other two, the triangular
ones, L4, L5, have the coordinates (1/2 − μ, ±√

3/2), forming an equilateral triangle with
the primaries (see Fig. 1).

Triangular equilibria, L4, L5, are unstable for μ > μR where μR = 0.0385... is the
Routh’s mass, see, e.g., (Danby 1988; Deprit and Deprit-Bartholomé 1967)
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Fig. 1 Planar restricted
three-body problem

2.2 Symmetric periodic orbits

Equations (1) are invariants under the symmetry (t, x, y, ẋ, ẏ) −→ (−t, x,−y,−ẋ, ẏ), so
orbits with two orthogonal crossing to the Ox-axis, separated by a time T /2, are symmetric
periodic orbits of period T .

If we take the condition x(t = 0) = x0 = (x0, 0, 0, ẏ0) as the initial condition of an orbit,
then, the orbit will be symmetric of period T if, when propagating the orbit, there is a value
t = T /2 such that x(t = T /2) = xT /2 = (xT /2, 0, 0, ẏT /2), i.e., the following conditions
hold (Strömgren 1933)

y(T /2; x0, 0, 0, ẏ0) = 0, ẋ(T /2; x0, 0, 0, ẏ0) = 0. (4)

Substituting the conditions (x0, 0, 0, ẏ0) in Eq. (3), we find the relation

ẏ2
0 = 2 �(x0, 0) − C0, (5)

where C0 is the value of the Jacobian constant for this orbit, which means that the pair (x0, C0)

characterizes a periodic orbit. For this reason, the families of symmetric periodic orbits are
usually graphically presented on the plane (x, C). Taking into account the position of the
primaries, the plane (x, C) is divided into three regions Rl = {(x, C) | x ∈ (−∞,−μ)},
Rc = {(x, C) | x ∈ (−μ, 1 − μ)}, and Rr = {(x, C) | x ∈ (1 − μ,+∞)}.

We will only consider simple periodic orbits with only two orthogonal crossings with
the Ox-axis. From a graphic point of view, a symmetric orbit (x0, C0) begins at a point
(x0, 0, 0, ẏ0), with ẏ0 > 0 [positive root of equation (5)] and the middle of the orbit corre-
sponds to the point (xT /2, 0, 0, ẏT /2), with ẏT /2 < 0.

To find families of symmetric periodic orbits, we use the grid search method already
used by Strömgren (1933). A more detailed exposition on how to implement this method
is described, for instance, in Markellos et al. (1974) and Palacios et al. (2019). The method
starts from a regular grid (xi , C j ), 1 ≤ i, j ≤ N , N ∈ N on the plane (x, C). Taking two
consecutive points (xi , Ck), (xi+1, Ck), as a pair of initial conditions, we integrate equation
(1) until the solutions cross the Ox-axis, then, if ẋi · ẋi+1 < 0 due to continuity there exists
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Fig. 2 Six different kinds of symmetric periodic orbits. From left to right and up to down: R(L1 P2 L2T ),
R(L2), R(L1T ),D(P1 L1 P2T ), D(P2), R(L1 P2 L2T ). Axes (x, y)

a pair (x∗
i , Ck), with xi < x∗

i < xi+1 that represents the initial condition of an orbit that
verifies (4). Brent’s method (Brent 1971) is used to find x∗

i because it is very reliable and
guarantees convergence. Note also that for the grid search method there is no need to have a
small parameter as it happens with the analytical continuation of periodic orbits.

In order to classify these orbits, following the ideas developed in Strömgren (1933), we
will introduce a notation that takes into account the following considerations:

• The direction of rotation of the orbit: direct or retrograde orbits. We name D() to the
direct orbits and R() to the retrograde ones. The orbit will be direct if x0 > xT /2 and
retrograde if x0 < xT /2.

• What points, among P1, P2, L1, L2, L3, L4, L5, are surrounded by the orbit. For instance,
we shall call R(P1L1 P2) to a retrograde orbit around the points P1, L1, P2. Due to the
symmetry, if the orbit surrounds L4 then it also surrounds L5; thus, R(P1, L1, P2, T )

stands for an orbit around P1, L1, P2, L4, L5 where the letter T represents both points
L4 and L5.

As an illustration of our notation, we present in Fig. 2 six different orbits: R(L1 P2 L2T ),
R(L2), R(L1T ), D(P1L1 P2T ), D(P2), R(L1 P2 L2T ).

Among the various types of orbits, we highlight the following:

• P-orbits: orbits that surround the two primaries (R(P1L1 P2),D(P1L1 P2)). Dvorak
(1984) introduces this name to consider the orbits of a planet around a double star. P-
orbits encircle the three points P1, L1, P2, but they can surround more than these points,
for instance R(L3 P1L1 P2 L2T ).

• S-orbit: orbits that surround only one of the primaries (R(Pi ),D(Pi ), i = 1, 2). This
notation was also introduced by Dvorak (1984) and represents orbits of a planet around
one of the components of a binary systems, or a satellite of a planet.

• Lyapunov orbits: orbits surrounding only one of the collinear points (L1, L2, L3) and
close to that point (R(Li ),D(Li ), i = 1, 2, 3).
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• Horseshoe orbits (Brown 1911): orbits surrounding only the triangular points L4, L5 and
the collinear L3, i.e., (R(L3T ),D(L3T )). Sometimes, the condition that both crossings
with the x-axis, one very near L3 (and the other far away from P1), is added (Barrabés
and Mikkola 2005). Incidentally, let us mention that Henrard (2002) and Henrard and
Navarro (2004) made a study on the evolution of homoclinic orbits and obtained also
horseshoe orbits; however, their orbits are not symmetric and, hence, are out of the scope
of our present work.

2.3 Heteroclinic orbits

The stable and unstable manifolds of the triangular equilibrium points Li are defined by

W s(Li ) = {x ∈ M, limt→∞ φ(t, x) → Li } ,

W u(Li ) = {x ∈ M, limt→−∞ φ(t, x) → Li } ,

}
(i = 4, 5),

respectively, where M ∈ R
4 is the phase space of the restricted three-body problem and φ

represents the flow of the field.
By the symmetry of the problem, each element of the intersection W u(L4) ∩ W s(L5)

corresponds to a heteroclinic orbit, labeled U , that goes from L4 to L5. In the same way,
each element of the intersection W s(L4)∩W u(L5) corresponds to another heteroclinic orbit,
dubbed S, that goes from L5 to L4. Both orbits orthogonally cut the Ox-axis (y = 0, ẋ = 0).

Note: To avoid possible confusion, we emphasize that symbols S and U have no relation
with the stable or unstable character.

As said above, triangular equilibria, L4, L5, are unstable for μ > μR ; then, by solving the
variational equations of (1), the solution around the unstable triangular equilibria is given by

x(t) = xT + eλr t (A1 cos λi t + A2 sin λi t) + e−λr t (A3 cos λi t + A4 sin λi t),
y(t) = yT + eλr t (B1 cos λi t + B2 sin λi t) + e−λr t (B3 cos λi t + B4 sin λi t),

(6)

where (xT , yT ) represents the position of the corresponding triangular point and λr , λi are
the real and imaginary parts of the eigenvalues of the variational matrix. An adequate election
of the constants Ai , Bi allows to have an orbit belonging to either the stable or the unstable
manifold (Szebehely 1967).

To find the heteroclinic orbits S (orbits that go from L5 to L4) and U (orbits going from
L4 to L5), Gómez et al. (1988) develop a method based on the computation of the manifold
by propagating from Eq. (6) the solution starting from a set of initial conditions (x(0), y(0))

that describe a circle with very small radius around the Lagrangian point. From the values
of the solutions, when y = 0 we plot the curves (x, ẋ) for both the stable and the unstable
manifold; the intersections of these curves with the Ox-axis give the cut of the heteroclinic
orbit with the Ox-axis. Let us mention that all the obtained numerical values are approximate
numbers, and we present them with six significant digits.

Figure 3 (left and right) represents both manifolds for μ = 0.45. The intersection of the
stable manifold with the Ox-axis gives four points: (x1 = − 1.91259, x2 = − 0.40554, x3 =
− 0.27021, x4 = 0.56291), whereas the unstable manifold cuts the Ox-axis at only three
points: (x1 = 0.37915, x2 = 0.54127, x3 = 1.89059).

Henceforth, we will use the subscripts l, c, r to represent, respectively, the intervals
(−∞,−μ), (−μ, 1 − μ) and (1 − μ,∞) where the orbit cuts the Ox-axis, and the number
in the superscript (if any) represents the order of appearance of the orbit (from left to right)
when more than one heteroclinic orbit cuts the Ox-axis in the same interval. For instance,
Fig. 4 shows the seven heteroclinic orbits: Sl ,S1

c ,S2
c ,Sr ,U1

c ,U2
c ,Ur the case μ = 0.5.
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Fig. 3 Left: stable manifold, W s (L4), for μ = 0.45. Right: unstable manifold, W u(L4), for μ = 0.45. Axes
(x, ẋ)

Fig. 4 Left: Heteroclinic orbits S, from L5 to L4, for μ = 0.45. Right: heteroclinic orbits U , from L4 to L5,
for μ = 0.45. Axes (x, y)

Table 1 Evolution of heteroclinic orbits in terms of the parameter μ

L5 −→ L4 L4 −→ L5

I1 = (0.470111, 0.5] Sl (S1
c ,S2

c ) Sr Ul (U1
c ,U2

c ) Ur

I2 = (0.380258, 0.470111] Sl (S1
c ,S2

c ) Sr (U1
c ,U2

c ) Ur

I3 = (0.345801, 0.380258] Sl Sr (U1
c ,U2

c ) Ur

I4 = (0.170355, 0.345801] Sl Sr Uc Ur

I5 = (0.124363, 0.170355] Sl Sr Uc (U1
r ,U2

r )

I6 = (0.107992, 0.124363] Sl Sr (U1
c ,U2

c ) (U1
r ,U2

r )

Gómez et al. (1988) only studied five cases: μ = 0.5, 0.4, 0.3, 0.2, 0.1. In the present
paper, we present a more complete study by including in Table 1 six disjoint intervals of
μ, in the range (0.107992, 0.5], where the number of heteroclinic orbits changes from one
interval to the next one.

Let us describe what happens in those intervals of Table 1. For μ = 0.5, the eight
heteroclinic orbits coincide with those discovered by Strömgren (1933) and Hénon (1965)
with names: I (Ul), III (U1

c ), IV (U2
c ), V (Ur ), I’ (Sr ), III’ (S2

c ), IV’ (S1
c ), V’ (Sl). When
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Fig. 5 Unstable manifold, W u(L4), for μ = 0.18 (left), μ = 0.15 (middle), and μ = 0.12 (right). Axes (x, ẋ)

μ = 0.470111, the orbit Ul disappears and we have four S orbits and three U orbits until
μ = 0.380258 in which (S1

c ,S2
c ) becomes one and later on disappears. There are two S

orbits in 0.380258 > μ > 0.107992, and three U orbits in 0.470111 > μ > 0.345801. For
0.345801 > μ > 0.107992, the number of unstable heteroclinic orbits varies, successively,
from three to two [see case μ = 0.18, Fig. 5, left], three (see case μ = 0.15, Fig. 5, middle)
and four (see case μ = 0.12, Fig. 5, right) orbits.

Besides, we introduce other two intervals I7 = (μR , 0.107992] and I8 = [0.0, μR ]. The
intersection of the curves with the Ox-axis that represents the heteroclinic orbits shows
inside the interval I7 a diffusion phenomenon described by Gómez et al. (1988). This phe-
nomenon corresponds to the existence of infinite 0-homoclinic non-degenerate and infinite
1-heteroclinic orbits (see Gómez et al. (1988) for a detailed explanation).

Finally, in μ ∈ I8 there is no heteroclinic orbit because the triangular Lagrange equilibria
are stable.

2.4 Characteristic curves: topological characterization

Periodic orbits of autonomous Hamiltonian systems appear in families represented by a
smooth one-parameter continuous curve, sometimes named characteristic curve, in the space
of initial conditions of the parameters.

Each point of a characteristic curve represents an orbit that can be represented by the
notation introduced in Sect. 2.2 based on the direction of rotation and the points surrounded
by the orbit. The direction of rotation does not change throughout the orbits of a family;
however, the surrounded points may vary. We can characterize a family of periodic orbits by
indicating the common characterization of all the orbits of the family (as shown in Sect. 2)
and the changes that take place at the end points of the characteristic curve. To indicate these
changes at the ends of the curve, we write, after the characterization of the common part of
the family, brackets with the following information:

• [ ]: all the orbits of the family have the same characterization.
• [ → . . .]: the orbits of the one end of the curve are the same as the common characteri-

zation, but those of the other end are different.
• [. . . → . . .]: Both the ends of the curve are different from the common characterization.

For example, let us see the left plot of Fig. 6 that contains four orbits O1,O2,O3,O4 of
the family h for the case μ = 0.5 (see Fig. 7). We observe that all curves are retrograde
and surround the point P1, but if we go over the curve h, from right (O4) to left (O1) the
orbits also surround, successively, the points L3, L1, T . According to the previous rules, the
topological characterization of this family is

R(P1)[→ {L3L1T } ]
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Fig. 6 Several orbits of three families (case μ = 0.5). Left: family h. Middle: family g. Right: family x . Axes
(x, y)

where, in boldface, there is the common part, R(P1), of all the curves. Inside the brackets,
the arrow and the symbols {L3L1T } mean that the family begins with a R(P1) orbit and ends
with a R(L3 P1L1T ) orbit.

In the center plot of Fig. 6, four orbits O1,O2,O3,O4 of the family g for the case μ = 0.5
are represented (see Fig. 7). All the curves of the family are direct and surround only the point
P1, then the family is represented by

D(P1)[ ]
where the empty brackets represent a family in which all the curves surround the same points;
in this case, only P1.

2.5 Asymptotic points

According to Theorem 2 of Hénon (1965), for each pair of heteroclinic orbits, one of type
S and the other of type U , there exists a family of periodic orbits tending asymptotically to
this pair of orbits. The end point of this family is named asymptotic point (some times it is
also named spiral point). An asymptotic point is characterized by two coordinates (xa, Ca)

where

• xa represents the value of the coordinate x where the heteroclinic orbitS cuts the Ox-axis.
• Ca is the value of the Jacobi’s constant evaluated at the triangular point with zero velocity:

Ca(μ) = 2 �(1/2 − μ,
√

3/2) = 3 − μ + μ2.

The family x of the case μ = 0.5 (see Fig. 7) is an example of this kind of families. The
right plot of Fig. 6 represents three orbits of this family. O2 represents an orbit in the middle
of the curve x . Family x ends on the right with the orbit O1 formed by a pair S1

cUr and on the
left with the orbit O3 formed by a pair S2

c Ur . The topological characterization of this family
can be written as

R(L1P2L2T)[S1
c Ur ←→ S2

c Ur ]
where the common part of all the curves, R(L1 P2 L2T ), is represented in boldface. Inside
the brackets, the two different ends of the characteristic curve are represented. Figure 8 of
the paper of Elipe et al. (2021) shows two more examples of this phenomenon for a different
dynamical problem, namely the dipole segment.

Families that tend to an asymptotic point always surround the triangular equilibria T in
its vicinity, regardless of whether the common orbits of the family surround T or not.
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Fig. 7 Families of symmetric periodic orbits in Copenhagen problem and zoom of the three encircled areas
Zl , Zc and Zr . Each point on the plane (x, C) corresponds to a periodic orbit. Axes (x, C)

3 The Copenhagen problem, case � = 1/2

The case in which the masses of the primaries are equal, known as the Copenhagen case
(μ = 0.5), has been studied in detail in Strömgren (1933), Hénon (1965) and Papadakis
(1996) and many others. In order to follow the evolution of the families of symmetric periodic
orbits for any value of μ, we shall start from this known case; hence, we show here a short
review of the main results for μ = 0.5. There are 22 characteristic curves in Copenhagen
problem (see Fig. 7). Using the notation of Strömgren and Hénon, the 22 families are named,
respectively, as a, b, c, f , g, h, i , j , k, l, m, n, o, r , s, t , u, v, w, x , y and z.

The characteristic curves are grouped into three classes (Palacios et al. 2019) because of
the symmetry originated by the equality of masses:

1. first class families, in which all the orbits are symmetric with respect to both axes,
2. second class families, in which the orbit and its symmetric one belong to the same family

and
3. third class families, for which the symmetric orbit of each orbit of the family does not

belong to the family.

In particular, the transition from orbits to their symmetric ones in the second class families
requires the existence of a double symmetric orbit in the family; then, each second class
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Table 2 Topological characterization of families of symmetric periodic orbits for μ = 0.5

Region F Topological characterization F Topological characterization

Rl m R(P1L1P2)[→ {L3 L2T } ] u R(L3T )[→ Sl Ul ]
h R(P1)[→ {L3 L1T } ] w R(L3P1L1T )[Sl U1

c ←→ Sl U2
c ]

b R(L3)[→ {T } ] l R(L3P1L1P2L2T )[→ Sl Ur ]
Rc f R(P2)[→ {L1 L2T } ] x R(L1P2L2T )[S1

c Ur ←→ S2
c Ur ]

n R(L1T)[ ] r R(L1T )[S1
c U2

c ←→ S2
c U1

c ]
c R(L1)[→ {T } ] o R(L1T )[S1

c U1
c ←→ S2

c U2
c ]

i D(P1)[ ] s D(P1T )[→ S2
c Ul ]

i ′ D(P1)[→ {T } ] y D(P1T )[→ S1
c Ul ]

Rr a R(L2)[→ {T } ] k D(P1L1P2)[ → Sr Ul ]
g D(P2)[ ] t D(P2T )[→ Sr U1

c ]
g′ D(P2)[→ {T } ] z D(P2T )[→ Sr U2

c ]
j D(P1L1P2)[ ] v R(L2T )[→ Sr Ur ]

At the right, families ending at an asymptotic point

Table 3 Curves ending to the
asymptotic points for μ = 0.5 Ul U1

c U2
c Ur

Sl u w w l

S1
c y o r x

S2
c s r o x

Sr k t z v

family intersects with a curve of the first class, and this produces the three intersections
j − k, n − c and o − r .

Table 2 presents all the characteristic curves of the Copenhagen problem with the region
in which they appear and with their characterization. In what follows, we enumerate some
of the main features of these families.

• Families i and g are formed by two disjoint curves. Then, we use the symbols (i, g) to
represent the curve above and with superscript (i ′, g′) to represent the one below.

• Three of these families, a, b, c, begin at each collinear point L2, L3 and L1, respectively,
with retrograde Lyapunov orbits (R(L2),R(L3),R(L1)) around these points.

• Families h, f , i, i ′, g, g′ begin with S-orbits, h, i, i ′ surrounding P1 and f , g, g′ sur-
rounding P2.

• Figure 7 presents four asymptotic points (A1,A2,A3,A4) with a coordinate x equal to
the value of the coordinate xa of the four orbits Sl ,S1

c ,S2
c ,Sr . Each of these points is the

end of four curves corresponding to the four orbits Ul ,U1
c ,U2

c ,Ur . As it has been said in
Sect. 2.5, each pair of heteroclinic orbits S U corresponds to the end of a characteristic
curve. In this case, we have four S orbits and four U orbits; hence, we have 16 curves,
l, u, w, x, r , o, s, y, k, t, z, v, that end at an asymptotic point. The rows and columns of
Table 3 show the two heteroclinic orbits toward which each of these curves tends (Hénon
1965).
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Fig. 8 Left: characteristic curves for μ = 0.49. Right: zoom of the two encircled areas Zc, Zr . Axes (x, C)

4 Arbitrary mass parameter � < 1/2

Before starting describing the families evolution, and in order to better understand the mean-
ing of the different subintervals of the mass parameter μ, let us mention that the numbers
we present are not exact numbers, but approximate ones with only two significant digits, at
difference of Sect. 3, where the changes on the evolution of asymptotic points are given with
six significant digits.

4.1 Familym

The family m persists, with the same topological characterization, for all values of μ ≤ 0.50
(see Figs. 8, 12, 17, 18).

4.2 Symmetry breaking and cases with a value of� close to 0.50

When μ �= 0.50, the symmetry due to the equality of masses of the primaries disappears and
the classification of the families as of the first, second and third classes has no longer sense.

In the left part of Fig. 8, we show the characteristic curves for the case μ = 0.49. These
are similar to the case μ = 0.50 except for the curves within the enclosed areas Zc and Zr .
This behavior holds for all values μ close to 0.50.

For μ = 0.50, the three intersections of families, n − c, o − r and j − k, are a direct
consequence of the symmetry of masses; hence, when μ �= 0.50, these curves do not cross
each other. A zoom of the areas Zc and Zr is presented in the right part of Fig. 8. The new
families ñ, c̃, j̃, k̃ have the same topological characterization as the old ones; however, õ, r̃
change slightly with respect to the old ones: One of the two ends of each curve is interchanged
with that of the other. The new topological characterization of these uncrossed families is

r̃ : R(L1T)[S1
c U2

c ←→ S2
c U2

c ], õ : R(L1T)[S1
c U1

c ←→ S2
c U1

c ].
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Fig. 9 Families near the asymptotic point A4. Left: μ = 0.50. Middle: μ = 0.48. Left: μ = 0.46. Axes
(x, C)

Table 4 Curves ending to the
asymptotic points for μ ∈ I1 and
μ ∈ I2

Ul U1
c U2

c Ur

(a) μ ∈ I1 = (0.470111, 0.50]
Sl u w w l

S1
c y o r x

S2
c s r o x

Sr k t z v

U1
c U2

c Ur

(b) μ ∈ I2 = (0.380258, 0.470111]
Sl w w l

S1
c õ r̃ x

S2
c õ r̃ x

Sr g̃t z v

4.3 Behavior near the disappearance of the heteroclinic orbitUl

When μ = 0.470111 (see Table 1), the heteroclinic orbit Ul has disappeared and conse-
quently the four families (u, y, s, k) cannot end at the asymptotic point. In particular, families
u, y, s, disappear and the k̃ family ends before reaching the asymptotic point and becomes:
D(P1L1P2)[→ {T } ] (see Fig. 9).

Associated with the changes due to the disappearance of the heteroclinic orbit, we find
modifications in the behavior of families close to the asymptotic pointA4 that can be observed
in Fig. 9.

Before μ = 0.470111 orbit k tends to the asymptotic point A4 and g′, t are two disjoint
families (Fig. 9, left).

Near μ = 0.470111 (middle plot of Fig. 9), k splits into two separated families: k̃ and k̃′,
that tend toA4. Simultaneously, family g′ merges with family t . This new family, that we name
g̃t , replaces t as the family ending at the asymptotic point. Its topological characterization is
D(P2)[→ Sr U1

c ].
Finally, k̃′ disappears and only g̃t and k̃ persist. Table 4 shows the curves ending to the

asymptotic points and the pair of heteroclinic orbits in which their ends for the cases μ ∈ I1

(Table 4a) and μ ∈ I2 (Table 4b)
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Fig. 10 Evolution of the family i . Left: μ = 0.42. Middle: μ = 0.41. Left: μ = 0.30. Axes (x, C)

4.4 Disappearance of families ñ and j̃

Families ñ and j̃ keep getting shorter until they finally disappear for the values close to
μ = 0.44 and μ = 0.42, respectively.

4.5 Evolution of the family i

For a value between μ = 0.42 and μ = 0.41, the curves i and i ′ that were joined split into
other two ı̃ on the left and ı̃ ′ on the right. Later, near μ = 0.30, ı̃ ′ becomes a closed curve, and
eventually, for μ = 0.26, ı̃ ′ has disappeared while ı̃ remains. Figure 10 shows the evolution
of i .

One of the two ends of i is interchanged with another one of i ′ to form the new families ı̃
and ı̃ ′. Their topological characterization is given by

ı̃ : D(P1)[ ], ı̃ ′ : D(P1)[→ {T } ].

4.6 Disappearance of the family k̃

The family k̃ becomes a closed curve for μ ≈ 0.37, and it has disappeared when μ = 0.35.

4.7 Evolution of the familyw

When μ = 0.40, the closed family w splits into two disjoint curves w̃ (above ) and w̃′
(below) that have only one end, each one, at the asymptotic point A1. Their topological
characterization is

w̃ : R(L3P1L1T)[→ Sl U1
c ], w̃′ : R(L3P1L1T)[→ Sl U2

c ].

4.8 Behavior near the disappearance of the heteroclinic orbitsS1
c ,S2

c

When μ = 0.380258 (see Table 1), the heteroclinic orbits S1
c ,S2

c and, consequently, the
two asymptotic points A2 and A3 of the central region Rc disappear. Figure 11 shows the
evolution of the curves õ, r̃ , x near this value of μ.

In Fig. 11 (up-left), we see the three families õ, r̃ , x for the value μ = 0.39. As μ

approaches the value μ = 0.380258, the x curve closes and splits into two curves x̃c and
x̃ ′ (up-middle of Fig. 11). x̃c is a closed curve while x̃ ′ becomes the family that tends to the
two asymptotic points. After that, the same occurs with r̃ that joins and splits into r̃c, closed
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Fig. 11 Evolution of characteristic curves when the asymptotic points A2,A3 disappear. Axes (x, C)

curve, and r̃ ′ that tends to the points A2,A3. When μ = 0.380258 A2,A3 disappear, then õ
becomes õc (closed curve) and families x̃ ′, r̃ ′ no longer tend to asymptotic points (see up-right
part of Fig. 11, and down-right of Fig. 11 that shows a zoom of families õ and õc). Down-
left and down-middle plots of Fig. 11 represent, respectively, the values μ = 0.37, 0.36 for
which the curves r̃ ′, x̃ ′, õc, r̃c, x̃c successively have disappeared. For μ = 0.35, these curves
no longer exist. Table 5 (a) shows the families that end at asymptotic points for μ ∈ I3.

4.9 Cases� ≤ 0.345801

When μ = 0.345801, the heteroclinic orbits U1
c ,U2

c , of the central region, merge into only
one orbit Uc and the curves w̃′, z disappear. From 0.345801 > μ > 0.170355, only four
curves end at the asymptotic points: two w̃ and l in the left region Rl and two more g̃t and v

in the right region (see the right part of Fig. 12; Table 5b).

4.10 Cases 0.34 > � > 0.18

From μ = 0.34 until μ = 0.18, there are no more changes. Only the families a, b, c̃, f ,
g, g̃t , h, ı̃ , l, m, v, w̃ remain with small changes, previously mentioned, in the topological
characterization of families with tilde. Figure 12 shows the characteristic curves for the case
μ = 0.25 and a zoom over the areas Zl , Zr .

For values of μ < 0.18, many new families appear in three zones: The zone Zl that
surrounds the asymptotic point on the left, the zone Zr that surrounds the asymptotic point
on the right and the zone around the collinear equilibrium point L3.

In general, due to the large number of new families that also appear very close one another,
we only name some of them, although we will describe their evolution and topological
characterization. To refer to them, we will use Greek alphabet that will be repeated for
different families.

4.11 Families around the two asymptotic pointsA1,A4 for� ∈ I5 ∪ I6

To understand the evolution of curves in those intervals, we choose three values of μ: two
values μ = 0.17, 0.13 ∈ I5 and another value μ = 0.12 ∈ I6.
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Fig. 12 Families of symmetric periodic orbits in the μ = 0.25 case and zoom of the two encircled areas. Axes
(x, C)

Fig. 13 Families around Zl for cases μ = 0.17 (left), μ = 0.13 (middle) and μ = 0.12 (right). Axes (x, C)

Figures 13 and 14 represent, respectively, the zones Zl and Zr for the values μ = 0.17
(left), μ = 0.13 (center) and μ = 0.12 (right) where the number of unstable manifolds is,
respectively, 3 (cases μ = 0.17, 0.13) and 4 (case μ = 0.12). To observe the evolution on
each of these areas, we will compare Figs. 13 and 14 with the right part of Fig. 12.

Let us have a look at the Zl zone (Fig. 13). For μ = 0.17, we find the families l, w̃ that
end at the asymptotic point A1 as they already did for values greater than this value of μ. In
addition, a new family α appears, of type R(L3P1L1P2L2T)[→ Sl U2

r ] that also ends at
A1. Above these families, there is the family α′, of type R(L3P1L1P2L2T)[ ].

In the case μ = 0.13, we find that α joins α′ and also there appears another new family
β, of type R(L3P1L1T)[ ].

Finally, in the case μ = 0.12, a new unstable manifold has appeared in the central zone, in
such a way that the asymptotic point receives four families. For this value of μ, the families l
and α evolved forming two new families l̃ and α̃, such that l̃ does not tend to the asymptotic
point and becomes of type R(L3P1L1P2L2T)[ ], while the family α̃ closes and tends to
the asymptotic point at both ends, becoming of the type R(L3P1L1P2L2T)[Sl U1

r ←→
Sl U2

r ]. On the other hand, w̃ remains the same, while β, of type R(L3P1L1T)[→ Sl U2
c ],

now tends to the asymptotic point.
The zone Zr can be seen in Fig. 14. For μ = 0.17, we observe three families v and g̃t and

v′ that tend to the asymptotic point A4. Curves v and g̃t already existed for values greater
than μ, while v′, of type R(L2T)[→ Sr U2

r ], appears in the interval I5. In addition, the
family β of the type R(L2T )[ ], that appeared for a value μ > 0.17, is broken into two
ones β1 and β ′ belonging to the same type R(L2T)[ ].

When μ decreases, families v, β ′ and v′ (Fig. 14, left) evolve in such a way that on the
one hand, families v and β ′ regroup and, on the other hand, also do families v′ and β ′, and
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Fig. 14 Families around Zr for cases μ = 0.17 (left), μ = 0.13 (middle) and μ = 0.12 (right). Axes (x, C)

Table 5 Curves ending at the
asymptotic points for μ ∈ I3,
μ ∈ I4, μ ∈ I5 and μ ∈ I6

U1
c U2

c Ur

(a) μ ∈ I3

Sl w̃ w̃′ l

Sr g̃t z v

Uc Ur

(b) μ ∈ I4

Sl w̃ l

Sr g̃t v

Uc U1
r U2

r

(c) μ ∈ I5

Sl w̃ l α

Sr g̃t v γ

U1
c U2

c U1
r U2

r

(d) μ ∈ I6

Sl w̃ α̃ α̃ β

Sr g̃t ṽ ṽ γ

all together form a new closed family ṽ of type R(L2T)[Sr U1
r ←→ Sr U2

r ] that we can
see in the center plot of Fig. 14 for the case μ = 0.13. For this value, μ = 0.13, the g̃t

family remains, and there appear three new families: β2 of the same type of β1; δ of the type
D(P1L1P2)[ ]; and γ of type D(P2T)[ ].

Finally, for μ = 0.12, besides all the families of the case μ = 0.13, there is a new family
γ̃ , of the type D(P2T)[Sr U2

c ←→ ] which for smaller values than μ will be joined with
γ ′.

Table 5 shows the curves ending at the asymptotic points and the pair of heteroclinic orbits
ending at them for the cases μ ∈ I5 (Table 5c) and μ ∈ I6 (Table 5d).

4.12 Region Rl for cases� < 0.1

Let us now study the behavior of the characteristic curves in the region Rl for values of
μ < 0.1. To do that, let us look at the top part of Fig. 15 where this region Rl is shown for
the values of μ = 0.08 (left), μ = 0.05 (center) and μ = 0.03 (right). We will pay special
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Fig. 15 Top: region Rl for μ = 0.08, 0.05 and 0.03. Bottom: zoom of the two encircled areas Z1
l and Z2

l .
Axes (x, C)

attention to the family l̃ and to the zones near the asymptotic point and the Lagrange point
L3.

Recall that family l̃ is of the type R(L3P1L1P2L2T)[ ]. Observing Fig. 15, we see that
for μ = 0.08 and μ = 0.05 a family l̃2 has appeared, close to L3, and which is also of the
type R(L3P1L1P2L2T)[ ]. As μ decreases, both families get closer together until finally
they join and split again into other two new families l̃ and l̃ ′ of the type

l̃ : R(L3P1L1P2L2T )[ ] l̃ ′ : R(L3P1L1P2L2T)[ ]

On the other hand, the areas around the asymptotic point and the Lagrange point are filled
with several families very close to each other of type R(L3P1L1T)[ ], until horseshoe
orbits families, R(L3T)[ ], finally appear.

4.13 Horseshoe orbits

Horseshoe orbits have previously been defined as those that surround only the triangular
points L4L5 and the collinear one L3, i.e., R(L3T ),D(L3T ). The first horseshoe orbits
were discovered in the Copenhagen problem (Brown 1911). All orbits in the family u are
horseshoe orbits; however, this family only exists for values 0.50 ≥ μ > 0.47. Furthermore,
a few orbits of the family b, the farthest from point L3, are also horseshoe orbits. These
horseshoe orbits of b persist for any value of the parameter μ. The main characteristic of
these horseshoe orbits is that they cross the Ox-axis far away from the point L3 and very
close to the primary P1. The left plot of Fig. 16 shows an example of this kind of orbits.

We do not find more horseshoe orbits until the small value μ = 0.08. For this value,
inside the interval I7, a first family of horseshoe orbits has appeared near the asymptotic
point where the diffusion phenomena described previously occur. On the left part of Fig. 15,
the zone near the asymptotic point where the first family of horseshoe orbits appears for
μ = 0.08 is shown. Above is the general area and below a zoom of the area Z1

l where the
family appears in red. In the center graphic of Fig. 16, we plot one of the orbits of this family.
For μ < 0.08, more and more families of this kind appear in this zone.
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Fig. 16 Three horseshoe orbits for μ = 0.50 (left), μ = 0.08 (center) and μ = 0.03 (right). Axes (x, y)

Let us now look at the right part of Fig. 16 obtained for μ = 0.03. From this value of μ,
a new family of horseshoe orbits has appeared very close to the L3 point. This family can be
seen in red at the bottom right of Fig. 15. On the right of Fig. 16, we plot one of the orbits of
this family.

The main characteristic of these horseshoe orbits for small values of μ is that their cuts with
the Ox-axis are much closer to the point L3 and away from the primary P1. This is precisely
one of the conditions indicated in Barrabés and Mikkola (2005) to define a horseshoe orbit.

5 The Earth–Moon and Sun–Jupiter systems

In the previous section, we have analyzed the evolution of the characteristic curves up to
the value μ ≈ 0.02. However, the most interesting cases from the point of view of celestial
mechanics correspond to smaller values. In this context, let us mention the recent work of
Restrepo and Russell (2018) that provides a broad database of planar symmetric periodic
orbits for many samples of the solar system and the work of Kotoulas and Voyatzis (2020)
for families or retrograde periodic orbits of asteroids at some resonances in the Sun–Jupiter
system.

In particular, we will present here (Figs. 17, 18) the characteristic curves for the Earth–
Moon system (μ = 0.01215) and for the Sun–Jupiter system (μ = 0.00095359).

Observing these and other cases with μ < 0.02, we can conclude that the following
families persist:

• Families b, h, m, l̃ and l̃ ′ in Rl

• Families c, f and ı̃ in Rc

• Families a, g and g̃t in Rr

In Table 6, we present the topological characterization of these families. All families
present the same topological characterization as for values greater of μ except g̃t that no
longer tends to the asymptotic point because this point does not exist. The family a no longer
surrounds the triangular points in their last orbits (the ones closest to the primary P2).

Apart from the previous families, as the value of μ decreases an increasing number of
families of four different types appear. These families appear in small areas of the phase
space where it has been necessary to zoom in to better observe them.

In the Earth–Moon case, we observe (Fig. 17) three areas where these new families accu-
mulate: first, the zone Z1

l around where the asymptotic point previously appeared; second,
the zone Z2

l near the point L3; and finally, the zone Zr near the point L2.

123



7 Page 20 of 23 A. Abad et al.

Fig. 17 Characteristic curves for the Earth–Moon system (μ = 0.01215). Top: the complete phase space.
Bottom: zoom of three zones Z1

l , Z2
l and Zr . Axes (x, C)

In the Sun–Jupiter case, we observe (Fig. 18) four areas where these new families accu-
mulate: the zone Z3

l , inside Z1
l , around where the asymptotic point previously appeared; the

zone Z2
l near the point L3; the zone Zc near the point L1; and finally the zone Zr near the

point L2.
We represent with four different colors the kind of orbits of the different families. The

characteristics of these families are summarized as follows:

• Red curves, in Z1
l and Z2

l in the Lunar case and in Z2
l and Z3

l in the Jupiter case, are
families of horseshoe orbits (R(L3T)[ ]). It can be seen that as μ decreases, there appear
horseshoe orbits whose points of intersection with the Ox-axis get closer and closer to
the L3 point.

• Blue families, in Z1
l and Z2

l in the Lunar case and in Z2
l and Z3

l in the Jupiter case, are
of the type R(L3P1L1T)[ ] and always appear between families in red (type horseshoe
R(L3T)[ ]) and families in black (of type R(L3P1L1P2L2T)[ ]).

• Green families, in zone Zr in both cases, are families of the type D(P1L1P2)[ ].
• Brown families, in zone Zc in the Jupiter case, are of the type D(P1)[ ]. There is also a

family of this type in the region Zc of the Lunar case, between families ı̃ and c.

An example of each type of orbits, for both Lunar and Jupiter cases, is presented in Fig. 19.
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Fig. 18 Characteristic curves for the Sun–Jupiter system (μ = 0.00095359). Top-left: the complete phase
space. Top-right and bottom: zoom of different zones. Axes (x, C)

Table 6 Topological characterization of the old families a, b, c, f , g, g̃t , h, ı̃, l̃ and l̃ ′

Region Rl

b R(L3)[ → {T } ] h R(P1)[→ {L3 L1T } ]
m R(P1L1P2)[→ {L3 L2T } ] l̃,l̃ ′ R(L3P1L1P2L2T )[ ]
Region Rc Region Rr

c R(L1)[→ {T } ] a R(L2)[→ {T } ]
f R(P2)[→ {L1 L2T } ] g D(P2)[ ]
ı̃ D(P1)[ ] g̃t D(P2)[ ]

6 Conclusions

We present a complete classification of families of symmetric periodic orbits in the restricted
circular three-body problem in an analogous way to the one made by Strömgren for equal
masses of the primaries (the so-called Copenhagen problem). It has been necessary to intro-
duce a topological classification of the families taking into account the direct or retrograde
character, their stability, the number or primaries they encircle. Special emphasis is made on
asymptotic orbits.

This topological classification reveals to be very useful, because it allows to have a com-
plete characterization of the families and the determination of some intervals in the domain
μ ∈ (0, 1/2] with the type of families existing on each of these intervals. In our opinion, we
extend and complete the seminal work of Strömgren.
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Fig. 19 Four different kinds of orbits for the Lunar case (up) and Jupiter case (down). Each orbit has the same
color as the family of Figs. 17 and 18 to which they belong. Axes (x, y)
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