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Abstract
This paper introduces three types of dynamical indicators that capture the effect of uncertainty
on the time evolution of dynamical systems. Two indicators are derived from the definition
of finite-time Lyapunov exponents, while a third indicator directly exploits the property of
the polynomial expansion of the dynamics with respect to the uncertain quantities. The paper
presents the derivation of the indicators and a number of numerical experiments that illustrates
the use of these indicators to depict a cartography of the phase space under parametric
uncertainty and to identify robust initial conditions and regions of practical stability in the
restricted three-body problem.

Keywords Uncertainty quantification · Polynomial chaos expansion · Finite-time Lyapunov
exponent · Random walks · Anomalous diffusion

1 Introduction

In Szebehely (1982), Victor Szebehely underlines how dynamicalmodels are approximations
of real-world phenomena and how initial conditions and parameters can be known with a
finite degree of accuracy. The approximation in the modelling of natural phenomena and
the degree of accuracy in model parameters and initial conditions are all aspects of the
uncertainty in dynamical systems. A complete understanding of the evolution of a dynamical
system requires a quantification of the effects of this uncertainty.More specifically, the goal is
to compute a measure of the uncertainty in a given quantity of interest. In dynamical systems,
the quantity of interest is often a function of the state variables at a given time and the value
of the state variables is a function of the uncertain quantities in the dynamical model.

In the past two decades, there has been a growing interest in developing methods for
uncertainty quantification in dynamical systems. Broadly speaking, methods differ for the
assumptions on the nature of the uncertainty, aleatory or epistemic, the way uncertainty
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is propagated and the quantity of interest is computed. A complete review of methods for
uncertainty quantification in dynamical systems is out of the scope of this paper. Here, wewill
focus on a rather large and popular class of these methods that uses polynomial expansions
to model the dependency of the state variables or, directly, the quantity of interest, on the
uncertain quantities. Among them, it is worth mentioning methods that propagate high-
order Taylor polynomials (Massari et al. 2017; Pérez-Palau et al. 2015), polynomial chaos
expansions (PCE) (Bhusal and Subbarao 2019; Ozen 2017; Gerritsma et al. 2010; Schick
and Heuveline 2014) and Chebyshev polynomials (Vasile et al. 2019).

Often, the study of dynamical systems makes use of indicators to identify chaotic
behaviours, diffusion phenomena and invariant and coherent structures (e.g. Froeschlé et al.
1997; Skokos 2009; Darriba et al. 2012; Lega et al. 2016). Among these indicators, the finite-
time Lyapunov exponent (FTLE) (Shadden et al. 2005) was recently proposed as an attempt
to generalise the concept of invariant manifolds for non-autonomous dynamical systems
(Haller 2015), and identify structures that separate qualitatively different dynamical regimes.
Some applications can be found in Gawlik et al. (2009), Short and Howell (2014), Short et al.
(2015) and Manzi and Topputo (2021). Other chaos indicators are the frequency map anal-
ysis (Laskar 1993), the Mean Exponential Growth factor of Nearby Orbits (MEGNO); the
Smaller Alignment Index (SALI); the Fast Lyapunov Indicator (FLI); the Dynamical Spectra
of stretching numbers and the corresponding Spectral Distance and the Relative Lyapunov
Indicator (RLI). A review of some of them can be found in Maffione et al. (2011). Another
class of indicators are used to study dynamical systems driven by stochastic processes, from
time series, e.g. Steeb and Andrieu (2005), Grassberger and Procaccia (1983) and Tarnopol-
ski (2018). However, to the best of our knowledge, there is no indicator that is designed to
quantify the effect of uncertainty in the system dynamics. Commonly used chaos indicators,
for example, would need to be recomputed for each realisation of the uncertain quantities
and a statistics on their sensitivity to the variation of the uncertain quantities would need to
be computed a posteriori from a Monte Carlo simulation. In this respect, it is worth men-
tioning the work on the computation of Lyapunov exponents of stochastic driven processes
in Schomerus and Titov (2002) and Froyland and Aihara (2000).

In this paper, we propose three novel dynamical indicators that exploit the properties of
polynomial expansions for uncertainty quantification. Two indicators generalise the concept
of finite-time Lyapunov exponents to the case where the parameters of the dynamicmodel are
uncertain. The third indicator directly relates the coefficients of the polynomial expansion to
the rate at which an ensemble of trajectories, given by different realisations of the uncertain
parameters, diffuses. All three indicators allow one to directly study the effect of uncertainty
without the need to run a Monte Carlo simulation and recompute multiple times the value of
the chaos indicators. Unlike previous works that aimed at differentiating deterministic chaos
from the effect of stochastic processes (Rosso et al. 2007; Poon and Barahona 2001; Turchetti
and Panichi 2019) or identify particular types of motion from time series (Cincotta et al.
1999), in this paper we propose indicators that quantify the effect of parametric uncertainty
in the dynamic model. Furthermore, the third indicator, called pseudo-diffusion exponent in
the following, is shown to be more computationally advantageous as it does not require the
derivation and propagation of the variational equations.

Three examples of known dynamical systems are used to illustrate the applicability of the
three types of indicators to the construction of a cartography of the dynamics and the identi-
fication of regions, in the phase space, that are more or less sensitive to model uncertainty. It
will be shown that the new indicators provide results that are consistent with the FTLE, when
the uncertainty is only in the initial conditions. When the uncertainty is in the parameters of
the dynamic model, the new indicators allow one to identify behaviours that manifest only
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due to the presence of a parametric uncertainty. At the same time, the new indicators, consis-
tent with other chaos indicators in the literature, allow one to identify regions of regular and
chaotic motion. However, unlike existing chaos indicators, the ones proposed in this paper
provide additional information on these regions, including variance, skewness, and higher
statistical moments, of the ensemble of trajectories induced by multiple realisations of the
uncertain quantities.

In particular, we will show how the pseudo-diffusion exponent can be used to identify
trajectories that are nearly insensitive to parametric uncertainty in the dynamics and others
that, for the same initial conditions, manifest radically different behaviours for different
realisations of the uncertain quantities.

The paper is structured as follows. After introducing the problem that this paper is address-
ing and a brief summary of the background material, the paper introduces the definition and
derivation of the three indicators. Then, the indicators are applied to three known dynami-
cal systems where a model parameter is affected by uncertainty. A discussion section with
computational cost and significance of the three indicators follows. Finally a section on the
practical applicability of the indicators concludes the paper.

2 Problem statement

In this work, we consider a general dynamical system in the form:

dz
dt

= g(t,p, z) (1)

with initial conditions:
z(t = t0) = z0 (2)

where t is the time, z : [t0, t f ] → R
n is the state of the system and p ∈ � ⊂ R

n p is a vector
of uncertain model parameters. In the general case, both p and z0 are uncertain quantities
and similar in nature. The vector function g : [t0, t f ] × R

n p × R
n −→ R

n is the dynamic
model.

The objective is to derive a scalar quantity α(z, t) : Rn × [t0, t f ] → R that measures the
divergence of the trajectories of system (1), belonging to an ensemble�(t,p) = {z(t,p)|∀p ∈
�∧t ∈ [t0, t f ]} induced bymultiple realisations ofp.Wewant also to quantify the uncertainty
in the distance between a realisation z and themeanvalue of all the realisations in the ensemble
at a given time t f . We can quantify this uncertainty by computing the integral:

E(δ(t f ) < ε) =
∫

�

I (‖z(t f ) − ẑ(t f )‖ < ε)w(p)dp (3)

where δ = ‖z(t f ) − ẑ(t f )‖, I is the indicator function, ε is a threshold value and ẑ(t f ) is the
mean value of the state variables at time t f , or:

ẑ(t f ) =
∫
�
z(t f )w(p)dp∫
�

w(p)dp
(4)

The function w can represent the distribution of p over �. In this case, (3) is a probability
and (4) an expected value.
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3 Backgroundmaterial

In this section,we recall somebasicmaterial that is required to derive the dynamical indicators
proposed in this paper. In particular, we will focus on polynomial expansions to propagate
the uncertainty in p through system (1). Thus, we will first briefly introduce both intrusive
and non-intrusive polynomial chaos expansions.

Twoof the indicators are derived fromfinite-timeLyapunov exponents; hence, a subsection
will introduce the concept of FTLE. Finally, one dynamical indicator is based on the idea of
anomalous diffusion in stochastic systems; therefore, the last subsection will present some
basic concepts of anomalous diffusion.

3.1 Polynomial expansions

A popular technique to study the dependency of a dynamical system on a set of uncertain
quantities is polynomial chaos expansions. The idea is to represent the state vector z as a
truncated expansion in the orthogonal polynomials �i (p) of the uncertain quantities p:

z(t,p) ≈
m∑
i=0

ci(t)�i (p) (5)

where ci (t) are time-dependent coefficients. The �i terms define a set of orthogonal polyno-
mials up to degree m (Gautschi 2004). The orthogonality condition is formalised as follows:

〈� j , �k〉 =
∫

�

� j (p)�k(p)w(p)dp = E[� j , �k] �= 0 ⇔ j = k (6)

where 〈·, ·〉 is a shorthand of the inner product. As mentioned before when thew is a distribu-
tion (6) defines the expectation operator associated withw. Because of the polynomial nature
of the terms appearing in (6), it is straightforward to compute the nonzero terms. Then, given
a particular weight function w(p), one can use the following three terms recursion relation
given in Gautschi (1968) to create stabilised univariate orthogonal polynomials:

�i+1(p) = �i (p)(p − Ai ) − �i−1(p)Bi , Ai = E[p�2
i ]

E[�2
i ] , Bi = E[�2

i ]
E[�2

i−1]
(7)

In the case in which more than one source of uncertainty is present, it is still possible
to construct orthogonal multivariate polynomials via tensor product rules (Feinberg and
Langtangen 2015). Note that while the method proposed in this paper is applicable to any
orthogonal polynomial constructed with (7) in all the examples in this paper Chebyshev basis
functions of the second kind are used together with the associated weight function w(p).

By substituting the approximation given by (5) in (1), one gets:

dz
dt

= d

dt

m∑
i=0

ci(t)�i (p) =
m∑
i=0

ċi (t)�i (p) = g(t,p, z) (8)

and by making use of the intrusive Galerkin method, one obtains the following:
〈

m∑
i=0

ċi (t)�i (p),�k(p)

〉
= 〈g(t,p, z),�k(p)〉 (9)

123



Polynomial stochastic dynamical indicators Page 5 of 35 4

from which the time variation of the coefficients can be derived:

ċk(t) = 〈g(t,p, z),�k(p)〉
〈�k(p),�k(p)〉 (10)

The integrals at numerator of the right-hand side of (10) need to be computed numerically,
in the general case, while the integrals at denominator can be pre-computed analytically.
Gauss quadrature rules (Feinberg and Langtangen 2015) can be used to approximate the
integrals at numerator, as follows:

〈g(t,p, z),�k(p)〉 = ∫
�
g(t,p, z(p))�k(p)w(p)dp

≈
N∑

j1=1
...

N∑
ji=1

...
N∑

jn=1
Wj1 ...Wji ...Wjng(t,p ji , z(p ji ))�k(p ji )

(11)

where Wji and p ji are, respectively, the N quadrature weights and abscissa points along
each dimension i . Sparse quadrature schemes (Smolyak 1963) can be used to reduce the
computational complexity of the numerical integrals with the increase in the number of
dimensions.

The initial value of the coefficients ck(t = 0) is found by projecting the initial conditions
z0:

ck(t = 0) = 〈z0, �k(p)〉
〈�k(p),�k(p)〉 (12)

which greatly simplifies in the case in which the initial state is deterministic (i.e. none of
the components of z0 are components of p): the only nonzero coefficient is c0, the one
associated with the degree-zero polynomial of the orthogonal basis, whose value is the one
of the deterministic initial condition.

Up to this point, PCEs are simply a way to represent the state of the system z with a
polynomial expansionof the parametersp andpropagate this expansion forward in time.Thus,
regardless of whether p is an uncertain quantity with an associated probability distribution
w or a simple parameter defined on a parameter space �, (41) provides a way to propagate
the polynomial forward in time.

Furthermore, (12) can be applied at any time t to calculate a polynomial expansion of the
state variables with respect to the uncertainty variables. In this case (12) reads:

ĉk(t) = 〈z(t,p),�k(p)〉
〈�k(p),�k(p)〉 (13)

In both (12) and (13), the integral at denominator can be computed analytically, one time
before the calculation of the coefficients. The integral at numerator of (13) can be solved
numerically as in (11):

〈z(t,p)�k(p)〉 = ∫
�
z(t,p)�k(p)w(p)dp

≈
N∑

j1=1
...

N∑
ji=1

...
N∑

jn=1
Wj1 ...Wji ...Wjnz(t,p ji )�k(p ji )

(14)

The polynomial expansion computed with (13) is called non-intrusive because one needs
only samples of the state vector z(t,p) at time t for different realisations of p. These samples
can be obtained from the direct forward integration of the equations of motion.

The use of a non-intrusive computation of the coefficients of the polynomial expansion
is advantageous when the dynamical model is not directly accessible, the state vector is
available through observations or, as it will be explained in Sect. 5, if the integration of
system (17) becomes problematic due to the presence of singularities or discontinuities in
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the uncertainty space. In this case, restart mechanisms like the ones proposed in Greco et al.
(2020); Manzi and Vasile (2020) and Ozen and Bal (2016) can be effectively used to improve
the propagation of the polynomial expansion. In this paper, however, we will not consider
these restart mechanisms and we will show the use of (13) instead of (10) to compute two of
the indicators.

Since the interest is to exploit the evolution of the coefficients of a polynomial expansion
and not to exactly propagate a particular probability distribution, the weight w and basis
functions � can be arbitrarily chosen to make the numerical integration of (11) efficient.
In the following, we will consider the components of p to be independent and � to be an
orthotope. Furthermore, integral (11) is performed after the change of coordinates:

pi = (bi − ai )

2
ξi + bi + ai

2
i = 1, ..., n (15)

with pi ∈ [ai , bi ] and ξ ∈ [−1, 1]n so that:
∫

�

g(t,p, z(p))�k(p)w(p)dp =
∏n

i (bi − ai )

2n

∫
[−1,1]n

g(t, ξ , z(ξ))�k(ξ)w(ξ)dξ (16)

In this section, we derived the expansion, intrusive or non-intrusive, of z in orthogonal
polynomials of p. Other forms of uncertainty quantification in the literature, like Taylor series
expansions, for example, do not use orthogonal polynomials. However, in the definition of the
stochastic dynamical indicators we will exploit the orthogonality of the polynomials. Thus,
while, in principle, any polynomial representation of z is applicable, before computing the
stochastic indicators one would need to transform the polynomial expansion into orthogonal
basis as suggested in Fodde et al. (2022).

Note also that the use of Taylor expansions to derive dynamical indicators was already
proposed in Pérez-Palau et al. (2015). However, the approach introduced in this paper differs
from the one in (Pérez-Palau et al. 2015) in two important ways: (i) in this paper, we use
the evolution of the coefficients of the polynomials to directly define the indicators and (ii)
the indicators proposed in this paper quantify the effect of uncertainty in the parameters
defining the dynamic model. This later point is of particular importance because, as it will
be explained in the remainder of the paper, the primary utility of the indicators proposed in
this work is to study the effect of the uncertainty in the dynamic model.

3.2 Finite-Time Lyapunov Exponent

Following Milani and Gronchi (2009) Section 2.3, we now briefly recall the definition of
finite-time Lyapunov exponents. We start from the definition of the variational equations in
the deterministic settings:

dz(t,p) ≈ ∂z(t,p)

∂z0
dz0 (17)

The FTLE emerges from the spectral analysis of the Cauchy–Green (CG) strain tensor:


 = �T� (18)

where � is the state transition matrix of the system. From it, the definition of finite-time
Lyapunov exponent (Shadden et al. 2005) is given by:

σ(z(t f ,p)) = 1

t f − t0
log

√
λmax(z(t f ,p)) (19)
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where t f is the time interval associated with the propagation, starting at t0, and λmax is the
maximum eigenvalue of the Cauchy–Green strain tensor.

3.3 Randomwalks, mean square displacement and diffusion

A random walk is a stochastic process that defines a path made of random steps. Steps can
have random direction, random length and be taken at random times. One of the best known
random walks is Brownian motion. Brownian motion can be well described by a Weiner
process Wt with independent steps and each step taken from a normal distribution N (0, t)
with zero mean and variance Dt .

x(t) − x0 = √
2DWt (20)

〈(x(t) − x0)
2〉 = W 2

t = 2Dt (21)

where D is the diffusion coefficient. In normal diffusion, the exponent of the time t is one,
however, some stochastic processes can diffuse faster or slower (e.g. fractionated Brownian
motion or Levy processes) (Alves et al. 2016). Thus, in the general case one can write:

〈(x(t) − x0)
2〉 ≈ Ktα (22)

where K is a constant and α is the diffusion exponent. In the next section, we will make use
of (22) to derive an indicator that relates the coefficients of the polynomial expansion to the
diffusion exponent.

4 Stochastic dynamical indicators

In this section, we introduce and define three different types of stochastic dynamical indica-
tors, or SDIs. The first one is a simple quantification of the uncertainty in the FTLE induced
by multiple realisation of the uncertain parameter vector p. The second type of indicator is
an extension of the idea of FTLE that measures the divergence of two polynomial expansions
of neighbouring trajectories. The third type measures the degree of diffusion of an ensemble
of trajectories induced by multiple realisation of the uncertain quantities.

4.1 Stochastic Finite-Time Lyapunov Exponents

In this section, we will develop two types of stochastic finite-time Lyapunov exponents. The
first type replaces the FLTE with the statistical moments quantifying the uncertainty in the
FTLE. If the dynamics depends on some uncertain quantities, the strain tensor in (18) is a
random matrix with entries that are a function of the realisations of the uncertain quantities.
Thus, one could study the ensemble of matrices and derive a statistics over the realisations
of the eigenvalues. An approach to derive the statistical moments of the FTLE can be found
in Schomerus and Titov (2002). In Schomerus and Titov (2002), the authors considered the
case of a one-dimensional dynamical system driven by a random potential and built the
statistical moments of the FTLE by computing the moments of the components of the matrix
∂z(t f )(t)/∂z0. In what follows, instead, we will use a polynomial chaos expansion of the
FTLE with respect to the uncertain vector p. By sampling the uncertain space �, one can

123



4 Page 8 of 35 M. Vasile, M. Manzi

directly construct the PCE expansion of the FTLE σ defined in (19):

σ(z(t f ,p)) ≈
m∑

k=0

σk(t f )�k(p) (23)

where the coefficients σk(t f ) are computed by projection:

σk(t f ) = 〈σ(z(t f ,p)),�k(p)〉
〈�k(p),�k(p)〉 (24)

Definition 1 Wecall stochastic finite-timeLyapunov exponents type 1 the statisticalmoments
of the FTLE derived from expansion (23):

α1
1 = σ0 (25)

α2
1 =

m∑
k=1

σ 2
k 〈�k, �k〉 (26)

For all higher moments, one can use the multinomial expansion and pre-calculate the
integrals of the basis functions:

αm
1 =

∑
|k|=m

(
m

k1, k1, ..., kq

) 〈 q∏
j=1

�
k j
j

〉 q∏
j=1

σ
k j
j (27)

where 〈∏q
j=1 �

k j
j 〉 can be pre-computed given a set of basis function and associated distri-

bution function, and |k| = m means all the combination of indexes k j such that the sum is
equal to m.

Remark 1 From the definition of stochastic finite-time Lyapunov element type 1, it is clear
that the same procedure described above can be applied to any other deterministic indicator
to derive their statistical moments as a function of the distribution of p.

For the second type, as in the deterministic settings, we start from the hypervolume dzT dz
and compute the time evolution of its expectation E(dzT dz).

Proposition 1 Given two solutions of system (1) and assuming that each solution can be
expanded in the same orthogonal basis functions �(p) of the uncertain parameter vector p,
and given the distribution function w(p), the expected value of the square difference of the
two solutions can be approximated with:

E(dzT dz) ≈
m∑
i=0

dzT0

(
∂ci
∂z0

T ∂ci
∂z0

)
dz0〈�i , �i 〉 (28)

Proof Given the two solutions z(p, t : z0) and ẑ(p, t : ẑ0), with initial conditions z0 and ẑ0,
under the assumption that the solutions can be expanded in the same basis functions �i , we
can write:

dz = z(t,p : z0) − ẑ(t,p : ẑ0) ≈
m∑
i=0

ci�i −
m∑
i=0

ĉi�i (29)

and from (17) calling dz0 = z0 − ẑ0 we have:

dz ≈
m∑
i=0

dci�i ≈
m∑
i=0

∂ci
∂z0

dz0�i (30)
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from which, computing the expected value of the square of the final offset, we obtain:

E(dzT dz) ≈
∫

�

m∑
i=0

m∑
j=0

dcidcj�i� jw(p)dp

=
m∑
i=0

dciT dci〈�i , �i 〉

≈
m∑
i=0

dzT0

(
∂ci
∂z0

T ∂ci
∂z0

)
dz0〈�i , �i 〉

(31)

��
We now derive an equivalent definition of variational equations (17) but in the coefficients

of the PCE expansion of dz.

Proposition 2 Given a dynamical system (1), the following set of equations describes a
polynomial chaos expansion-based generalisation of the variational equations:

∂

∂t

∂ck
∂z0

= 1

〈�k, �k〉

〈
∂g
∂z

m∑
i=0

(
∂ci
∂z0

�i

)
, �k

〉
(32)

Proof The following holds for “smooth” dynamics:

∂

∂t

[
∂z
∂z0

(t,p, z0)
]

= ∂

∂z0

[
∂z
∂t

(t,p, z0)
]

(33)

where the term in brackets is explicitly given by:

∂z
∂t

(t,p, z0) = g(t,p, z) = g(z(z0, t,p),p, t) (34)

Therefore, we can write:

∂

∂t

[
∂z
∂z0

(t,p, z0)
]

= ∂

∂z0
g(z(z0, t,p),p, t) (35)

By using the PCE decomposition, the second term in Eq. (35) leads to:

∂

∂z0
g(z(z0, t,p),p, t) ≈ ∂

∂z0
g(z(c1(t, z0), . . . , cm(t, z0),p, t),p, t)

= ∂g
∂z

m∑
i=0

(
∂z
∂ci

∂ci
∂z0

)
= ∂g

∂z

m∑
0=1

(
∂ci
∂z0

�i

)
(36)

while the first term of Eq. (35) leads to:

∂

∂t

[
∂

∂z0

m∑
i=0

ci(t, z0)�i (p)

]
= ∂

∂t

m∑
i=0

∂ci
∂z0

�i (37)

By putting Eqs. (36) and (37) back into Eq. (35), one gets:

∂

∂t

m∑
i=0

∂ci
∂z0

�i = ∂g
∂z

m∑
i=0

(
∂ci
∂z0

�i

)
(38)
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and, by making use of the orthogonality condition, one arrives at the following result:

∂

∂t

∂ck
∂z0

= 1

〈�k, �k〉

〈
∂g
∂z

m∑
i=0

(
∂ci
∂z0

�i

)
, �k

〉
(39)

��
As discussed for the deterministic formulation in Gawlik et al. (2009), in order to compute

the variation of the coefficients ci , it is possible to propagate a regularly spaced grid of
tracers with the same dimension as the phase space. In fact, the spectral harmonics of the
generalised State Transition Matrix appearing in Eq. (17) consist of partial derivatives which
can be computed via central differencing of neighbouring tracers,making use of the following
second-order approximation:

∂(cki )
t f
t0 (z)

∂z j
≈ (cki )

t f
t0 (z + 
z j ) − (cki )

t f
t0 (z − 
z j )

2
z j
(40)

with 
z j = [0, . . . , 0,
z j , 0, . . . , 0]. This methodology greatly reduces the computational
cost associatedwith the generalisation of the variational equations, as it is for the deterministic
case. While the accuracy of the computation of the CG tensor degrades with this approach,
the authors in Shadden et al. (2005) points out that: “finite differencing may unveil Lagrange
Coherent Structures more reliably than obtaining derivatives of the flow analytically”.

From (28), one can now introduce the Cauchy–Green Tensor 
c
ii of the coefficients ci :


c
ii :=

(
∂ci
∂z0

T ∂ci
∂z0

)
(41)

Definition 2 From the spectral decomposition of
c
ii , one canderive themaximumeigenvalue

λi i,max and then compute the corresponding exponent:

αi
2 := 1

t f − t0
ln

√
λi i,max (42)

We call stochastic finite-time Lyapunov exponents type 2 the quantity αi
2 defined in (42).

The quantity αi
2 gives an indication of the deformation of the hypervolume dcTi dci . We can

understand this deformation as the difference in the way two polynomial expansions of z
with respect to p, for two infinitesimally close initial conditions, evolve in time.

Remark 2 Note that dcTi dci measures the hypervolume defined by each coefficient vector of
the polynomial expansion. Thus, the definition of αi

2 suggests the following:

• if the polynomial expansion converges rapidly with m, high-order coefficients will be
small and so is expected to be the hypervolume dcTi dci• if two trajectories, starting from infinitesimally close initial conditions evolve very differ-
ently in time, the polynomial expansion with respect to p is also expected to evolve very
differently. This descends from the definition of the time derivative of the coefficients ci
that depends on g which is a function of z.

• if multiple independent realisations of p induce trajectories that evolve very differently
in time, a higher-order expansion will be needed to properly represent z at a given time
t , furthermore if two trajectories, starting from infinitesimally close initial conditions
evolve very differently in time, one would expect a significant difference in the time
evolution of high-order coefficients ci .
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We will expand further on these three points in the discussion section of the paper.

Indicators in Definition 1 will be called SFTLE1 in the remainder of this paper, while
indicators in Definition 2 will be called SFTLE2. Indicators SFTLE1 give the probability
distribution of the FTLE in (19) as a function of the distribution of the uncertain parameter
vector p. Indicators SFTLE2, instead, give a measure of the divergence of the coefficients of
the polynomial model of the distribution of the solution z(t,p) as a function of a variation of
the initial condition z0. It should be noted how the eigenvectors associatedwith the parameter-
dependent Cauchy–Green strain tensor are also characterised by a probability distribution.
This implies that the direction of maximum strain is not deterministic, and there may be
configurations inwhich there is an abrupt change of themaximumstrain direction for different
realisations of the uncertain parameter.

4.2 Pseudo-diffusion exponent

In order to derive the third indicator, we start from the idea, introduced in Sect. 3.3, that
in a generic random walk process, the expected value of the square of the displacement is
proportional to Ktα . In the univariate case, by using Eq. (26) and exploiting the orthogonality
of the basis functions, one can write the expected value of the square displacement as:

κ2 = 〈z − z0, z − z0〉 =
〈(∑

i=0

ciψi − c0

)2〉
=

∑
i=1

si c
2
i (43)

with si = 〈ψi , ψi 〉. One can now equate κ2 to Ktα to obtain:∑
i=1

si c
2
i (t) = Ktα (44)

The left-hand side is the variance of z at time t , which, for α = 1, is consistent with the
fact that for a one-dimensional Brownian motion the second statistical moment of the Mean
Square Displacement (MSD) is 2Dt + z20, with 2D = K the diffusion coefficient, and the
MSD is equal to the second cumulant of theGaussian distribution characterising theBrownian
motion. This suggests that by looking at the variation of the coefficients of the polynomial,
one can study the dynamical character of a system. Since the coefficients are subject to the
same dynamic equations, see (41), they reflect the same evolution of the state. The evolution
of the coefficients can be derived in other ways, for example via an algebra on the space
of the polynomials (Greco et al. 2020; Pérez-Palau et al. 2015). As long as the state can be
expressed as an expansion in orthogonal polynomials, one can derive Eq. (43).

Proposition 3 The coefficient α in expression (44) can be approximated by:

α ≈ α̃ = log
(∑m

i=1 si c
2
i (t) + 1

)
log t

Proof Take the logarithm of both sides of expression (44) after adding a 1:

log

(
m∑
i=1

si c
2
i (t) + 1

)
= b + α log t + log

(
1 + 1

Ktα

)
(45)

with b = log K , which can be rewritten as:

log
(∑m

i=1 si c
2
i (t) + 1

)
log t

= b

log t
+ α + log

(
1 + 1

Ktα
)

log t
(46)
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and for large t can be approximated by:

α ≈ α̃ = log
(∑m

i=1 si c
2
i (t) + 1

)
log t

(47)

��
Definition 3 In the following, we call the quantity α̃ defined in Eq. (47), pseudo-diffusion
exponent. If z is a vector of dimension n then one can write the covariance matrix:

Cv =

⎡
⎢⎢⎢⎢⎣

∑m
i=1 si c

2
1,i (t) ...

∑m
i=1 si c1,i (t)cn,i (t)

... ... ...

...
∑m

i=1 si c
2
j,i (t) ...

... ... ...∑m
i=1 si cn,i (t)c1,i (t) ...

∑m
i=1 si c

2
n,i (t)

⎤
⎥⎥⎥⎥⎦ (48)

In this case, given that the covariancematrix is positive semi-defined, the pseudo-diffusion
exponent can be computed as follows:

α̃ = log
(∑

i=1 λi (c(t)) + 1
)

log t
(49)

where λi is the i th eigenvalue of Cv . If only one component along the diagonal of the
matrix Cv is considered for the computation of α̃, we call the indicator α̃ j with the subscript
corresponding to the j th component. In this case, the indicator gives the rate of expansion of
the projection of the polynomial along one axis only. In the remainder of the paper, we will
use the following slightly different definition:

α̃ = log
(√

maxi=1 λi (c(t)) + 1
)

log t
(50)

Note that both intrusive and non-intrusive propagation methods can be used to compute
the coefficients of the polynomials at time t . However, in all the examples in this paper
the pseudo-diffusion exponent will be computed with a non-intrusive computation of the
coefficients.

5 Numerical experiments

In this section, we test the applicability of all three types of indicators to the study of three
well-known problems: the uncertain perturbed pendulum, the uncertain double gyre, the
uncertain circular restricted three-body problem. For each of these problems, we will con-
struct a cartography and, by inspection, will analyse the characteristics of some notable
trajectories. All simulations start at t0 = 0. The code for all the simulations and analyses
in this section was written in MATLAB R2021b and was run on a laptop i7, 2.80GHz, in
Windows 10 pro. In all the cases in this section, the expectationE defined in (3)) is computed
by taking 100 uniformly distributed random samples of the uncertain vector p and computing
the corresponding polynomial chaos model at time t f . Numerical quadrature formulae were
computed with 9 abscissa points and associated weights. From the experiments on the prob-
lems in this section, a higher number of abscissa points did not bring any significant change
in the indicators and we could reduce the abscissa points to 6 without important degradations
of the results.
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5.1 The uncertain perturbed pendulum

The motion of a periodically perturbed pendulum can be written as in Pérez-Palau et al.
(2015):

ẍ = (a cos 5t − 1) sin x (51)

or as an equivalent system of first-order differential equations:

ż = d

dt

[
x
vx

]
=

[
vx

(a cos 5t − 1) sin x

]
= g(z, p, t) (52)

with p = a an uncertain parameter. One can then write the Jacobian of system (52):

∂g
∂z

=
[

0, 1
cos x(a cos 5t − 1), 0

]
(53)

The uncertain parameter a is defined over the interval a ∈ [2.5 − 0.25, 2.5 + 0.25], with
known or unknown distribution, dynamics (51) becomes uncertain and its evolution depends
on the realisations of a. Thus, we expanded the state variables in Chebyshev polynomials of
parameter a, up to degree 4, and used the definition of the three indicators SFTLE1, SFTLE2
and α̃ to study the evolution of the system.

All differential equations, were propagated forward in time for t f = 10, with an explicit
adaptive Runge–Kutta method of order 4/5 with absolute tolerance and relative tolerance,
respectively, 10−10 and 10−9. The three indicators were computed over a uniform grid of
200×200 initial conditions over the domain x ∈ [−3, 3], vx ∈ [−3, 3]. The finite increment
for he calculation of both the FTLE and SFTLE is 
z j = 1 · 10−7.

Figure 1a shows the deterministic FTLE for a = 2.5, while Fig. 1b shows α1
1 for a

uncertain. Although the magnitude of the two indicators is slightly different, they present
the same structures, as to be expected given that α1

1 is an average value over the realisations
of a. Figure 1c represents the variance of the FTLE due to the uncertainty in a, and Fig. 1d
the skewness. Because the sin() is an odd function, the mapping (x, vx ) �→ (−x,−vx ) is
a symmetry of (52) and, because of this, the results shown in Fig. 1 are characterised by a
central symmetry with respect to the origin. Note, however, that Fig. 1d clearly shows that the
realisations of the state vector at time t f are positively or negatively skewed depending on the
initial conditions. Thus, SFTLE1 provides different pieces of information on the distribution
of the FTLE depending on the order of the indicator.

Figure 2 shows the SFTLE2 from order 1 to 3. In this case, all three indicators show the
same structures but with very different ranges. To be noted that as the order increases the
regions where the indicators are negative become more negative. This implies that the higher
the coefficient c the more two expansions starting from neighbouring initial conditions tend
to behave similarly.

Figure 3 shows the pseudo-diffusion exponent field together with the probability of the
trajectories in the ensemble to remain within a distance ε = 0.1 from the mean at time t f (see
Eq. (3)) and the skewness of the ensemble of trajectories induced by multiple realisations of
the uncertain parameter a. The skewness is computed only for the state component x . For
multivariate problems, onewould need to compute the skewness vector (Kollo 2008) and then
reduce it to a scalar indicator. This computation will be addressed in future work. Figure 3b
shows the log 10 of Fig. 3a. Also, this indicator identifies the same structures as SFTLE1 and
2 and the associated skewness is consistent with Fig. 1d. Figure 3c provides some additional
information. First, it is interesting to note that it is the negative image of Fig. 3a which is
consistent with the idea that α̃ provides a measure of the diffusion of the trajectories. Then,
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Fig. 1 SFTLE type 1 scalar fields of the perturbed pendulum for t f = 10

3c highlights how some sets of initial conditions, yellow regions, are weakly sensitive to the
uncertainty in a.

Finally, Fig. 4 shows two notable trajectories, one for initial conditions z0 =
[0.889447, −0.19598] and the other for z0 = [1.67337, 1.19095], which correspond, respec-
tively, to low and high values of α̃. In this case, 10 trajectories were propagated for 10 random
realisations of a.

5.2 The uncertain double gyre

The double-gyre model consists of a pair of counter-rotating gyres, with a time-periodic
perturbation. The system is modelled as a first-order system of differential equations, given
by:

ż = d

dt

[
x
y

]
= π A

[− sin(π f (x, t)) cos(π y)
cos(π f (x, t)) sin(π y) ∂ f

∂x

]
= g(z,p, t) (54)

The functions and the coefficients appearing in the dynamics are given by:

f (x, t) = a(t)x2 + b(t)x
a(t) = η sin(ωt)
b(t) = 1 − 2η sin(ωt)
A = 0.1, ω = 2π/10

(55)
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Fig. 2 SFTLE type 2 scalar fields of the perturbed pendulum for t f = 10

The Jacobian of the velocity field is given by:

∂g
∂z

= π A

[
−π cos(π y) cos(π f ) ∂ f

∂x , sin(π f ) sin(π y)

−π sin(π f ) ∂ f
∂x

2 + 2a(t) cos(π f ), π cos(π f ) ∂ f
∂x cos(π y)

]
(56)

We generalise results from previous works (e.g. Farazmand and Haller 2012), by consid-
ering the uncertain parameter p = η to be an uncertain parameter defined over the interval
η ∈ [0.1 − 0.01, 0.1 + 0.01].

As in the previous example, we expand the state variables in Chebyshev polynomials
of degree 4. Differential equations are propagated with the same adaptive Runge–Kutta
integrator with the same absolute and relative tolerances. The propagation is performed for a
fixed integration time t f = 20. A uniform grid of initial conditions has a size of 200 × 200,
in the domains x ∈ [0, 2], y ∈ [0, 1]. The finite increment for the calculation of both the
FTLE and SFTLE is 
z j = 1 · 10−7.

Figure 5a, b compares the deterministic FTLE with SFTLE1. Also, in this case α1
1 shows

the same structures as the FTLE. It is interesting to note in Fig. 5c, how the location of
the ridges of α2

1 , are located near the ridges of α1
1. This implies that for chaotic initial

conditions the set of trajectories behaves qualitatively differently with different realisations
of the uncertain parameter. This emerges also from Fig. 5d where the skewness of FLTE is
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Fig. 3 Pseudo-diffusion exponent field for the uncertain perturbed pendulum model

Fig. 4 Two examples of trajectory ensembles: a low α̃, b high α̃
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Fig. 5 SFTLE1, scalar fields of the double-gyre model. Integration time is t f = 20

positive or negative depending on the initial conditions. Similar consideration can be derived
fromFig. 6where the SFTLE2 are represented and fromFig. 7where α̃ is represented together
with the expectation for a threshold of ε = 0.25 and the skewness of the x component
of the ensemble of trajectories. Ten trajectories corresponding to ten realisation of η are
represented in Fig. 8 for two initial conditions x0 = 1.37688, y0 = 0.73869 and x0 =
1.45729, y0 = 0.44221 corresponding, respectively, to high and low values of α̃. Note in
Fig. 8a the bifurcation of the ensemble into two different groups of trajectories.

5.3 The uncertain circular restricted three-body problem

The circular restricted three-body problem (CR3BP) is arguably one of the most studied
problems in celestial mechanics. In this section, we will consider the planar case with an
uncertain mass parameter. The planar circular restricted three-body problem (Szebehely
1967) is governed by:

ẍ − 2 ẏ = ∂ J

∂x
(57)

ÿ + 2ẋ = ∂ J

∂ y
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Fig. 6 SFTLE2 scalar fields of the double-gyre model. Integration time is t f = 20

where J (x, y) is given by:

J (x, y) = x2 + y2

2
+ 1 − μ√

(x + μ)2 + y2
+ μ√

(x − 1 + μ)2 + y2
+ 1

2
μ(1 − μ) (58)

and μ, the mass parameter of the system, is a function of the masses of the primaries. With
this formulation, the reference frame is uniformly rotating and the primaries’ position, in
such frame, is constant in time. We can again rewrite the system as a first-order system of
differential equations:

ż = d

dt

⎡
⎢⎢⎣
x
y
vx
vy

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

vx
vy

2vy + ∂ J
∂x−2vx + ∂ J
∂ y

⎤
⎥⎥⎦ = g(z, p) (59)

with vx = ẋ and vy = ẏ and uncertain parameter p = μ. The partial derivatives of J ,
appearing in (59), are given by:

∂ J

∂x
= x − (1 − μ)(x + μ)

((x + μ)2 + y2)3/2
− μ(x − 1 + μ)

((x − 1 + μ)2 + y2)3/2
(60)
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Fig. 7 Pseudo-diffusion exponent for the double-gyre model

Fig. 8 Examples of trajectory ensembles for high and low values of α̃. Double-gyre model
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∂ J

∂ y
= y − y(1 − μ)

((x + μ)2 + y2)3/2
− μy

((x − 1 + μ)2 + y2)3/2

The Jacobian of the velocity field, associatedwith the first-order formulation of the dynam-
ics, is:

∂g
∂z

=

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1

∂2 J
∂x2

∂2 J
∂ y∂x 0 2

∂2 J
∂x∂ y

∂2 J
∂ y2

−2 0

⎤
⎥⎥⎥⎦ (61)

in which the second-order derivatives of J are not expanded for brevity. The energy is then
defined as,

E(x, y, vx , vy) = 1

2
(v2x + v2y) − J (x, y) (62)

and is a constant of motion for the CR3BP. In order to reduce the dimensionality of the
problem from four to two, the initial conditions are defined as:

zi = [xi , 0, vxi , vy(xi , 0, vxi , E0)] (63)

where the value of vy is computed, from a given condition (xi , vxi ), making use of the
conservation of energy:

vy = −
√
2(E0 + J ) − v2x (64)

For the results in this paper, the energy level has been set to E0 = E(L1) + 0.03715, where
E(L1) = E(Lx

1, 0, 0, 0) is the potential energy at the first Lagrange point, Lx
1 being given

Wakker (2015) by:
Lx
1 = 1 − μ − γ1 (65)

with

γ1 = b − 1

3
b2 − 1

9
b3 − 23

81
b4

and

b =
(
1

3
a

)1/3

; a = μ

1 − μ

We consider two cases. In case 1, the integration is performed for two full revolutions of
the primaries, or t f = 2, using an explicit adaptive Runge–Kutta 4/5 method with absolute
tolerance 10−10 and relative tolerance of 10−8. As in the previous two examples, we use
Chebyshev orthogonal polynomials of type 2; thus, the integration abscissas and weights are
optimised for these polynomials. The initial conditions grid is 200 × 200, in the domains
x ∈ [−0.85,−0.125], vx ∈ [−2.0, 2.0]. The value of the mass parameter is assumed to
be uncertain and within the interval reported in Table 1 case 1. The finite increment for the
calculation of both the FTLE and SFTLE is 
z j = 1 · 10−7. Figure 9 reports the FTLE and
SFTLE1 for case 1. Polynomials are expanded to order 4 and the figure represents the first
three SFTLE1.

In Fig. 9a–c, the intersection of the invariant manifold with the plane y = 0 is identified by
the closed yellow ridge in the upper right part of the figures. As it was found also in previous
works, the presence of ridges in FTLE fields is only a sufficient condition for the existence
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Table 1 Summary of parameter
settings for the two cases of the
uncertain CR3BP

Case Mass parameter Integration time

1 μ ∈ [0.1 − 10−7, 1 + 10−7] t f = 2

2 μ ∈ [0.1 − 10−3, 1 + 10−3] t f = 2.8

Fig. 9 FTLE and SFTLE1 scalar fields for the CR3BP model case 1. Integration time is t f = 2

of Lagrangian coherent structures (and invariant manifolds in particular), but not a necessary
one. In fact, other ridges in the same figures are not associated with manifold crossings.
Figure 10 shows the first three SFTLE2 for the same case. Also, in this case the ridges are
consistent with the ones in the FTLE plot and the range of the indicator is progressively
shifted towards negative values.

For case 2, we extended the integration time and also the range of the uncertain parameter
(see case 2 in Table 1). The extension of the integration time allows one to observe more
interesting behaviours. In particular, some trajectories start from the primary with coordinate
x = 1 − μ and flow to the primary with coordinate x = μ. Figure 11 shows the FTLE
field for case 2. For the second case, we build a cartography only with the pseudo-diffusion
exponent α̃ because it was faster than the computation of SFTLE1 and 2 and gave interesting
results. Figure 12 shows the α̃ field for the CR3BP case 2 together with the expectation E

for a threshold ε = 0.1.
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Fig. 10 SFTLE2 scalar fields for the CR3BP model case 1. Integration time is t f = 2

Figure 13 shows the α̃x and α̃y fields, respectively. Figure 14 presents two trajectory
ensembles for two extreme cases of very low and very high values of α̃ propagated for a time
t f = 28. In particular, Fig. 14a corresponds to initial conditions x0 = −0.157789, vx0 =
1.63819 and Fig. 14b corresponds to initial conditions x0 = −0.624121, vx0 = −0.271357.
The latter corresponds to a point in the blue ring in Fig. 13a, while the former corresponds
to a point in the yellow region in Fig. 12. The ensemble of trajectories is superimposed to
the level curves of J calculated with a fixed μ = 0.1 and we limit the axes for x and y to the
interval [−2, 2] and [−2, 2].

It is remarkable that α̃ captures the diffusion of trajectories that eventually leave the system
(see Fig. 13a) or trajectories that are quasi-periodic (see Fig. 13b). In the former case, a change
in the mass parameter, for a fixed value of the initial conditions, leads the total mechanical
energy to fluctuate from a value below the zero velocity energy of the Lagrange equilibrium
point 2 (L2) to one above it. Thus, for some realisations of μ the zero velocity curves open
at L2 and allow some trajectories to exit. In the latter case, instead all realisations remain
confined and display very little sensitivity to the variation of μ.
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Fig. 11 FTLE field of the CR3BP
for an integration time t f = 2.8

Fig. 12 Pseudo-diffusion exponent for the CR3BP case 2

6 Computational complexity

The computational cost of the SDIs is mainly dictated by the complexity of the calculation of
the coefficients of the polynomial expansions. The computational complexity of the pseudo-
diffusion exponent using non-intrusive polynomials requires the integration of N sample
trajectories. The number N depends on the integration scheme. For a full tensor product and
Gauss formulas N = n

np
g with ng the number of integration points per uncertain dimension.

For a sparse grid, the number of sample trajectories grows as N = 2l ln p−1 where l is the
level of the sparse grid. Thus, in the examples presented above the pseudo-diffusion exponent
required the propagation of 9 trajectories per initial condition. The number of coefficients to
be computed for a full polynomial expansion is given by M = (n p+m

np

)
with a corresponding

number of projection integrals. If an intrusive method is used instead one needs to propagate
M differential equations and, for each equation, compute a multidimensional integral.

The computation of the SFTLE1 requires N values of the FTLE. Since the computation of
the FTLE requires propagating 2n tracers the computation of SFTLE1 requires 2Nn trajec-
tories. In the test cases in the previous section, 9 Gauss integration points were used. Thus,
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Fig. 13 Pseudo-diffusion exponent for the Cr3BP case 2: individual components
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Fig. 14 Example of ensemble of trajectories for: a highly diffusive case,b very low pseudo-diffusion exponent.
Integration time t f = 28

the computation of SFTLE1 required 36 propagations of the dynamics per initial condition
for all two-dimensional problems and 72 propagations for the CR3BP. The computation of
the SFTLE2, instead, requires the propagation of 2Mn equations and in each equation the
dynamics is evaluated N times per integration step. Looking at the examples in the previous
sections, for an expansion to degree 3 and one uncertain parameter, the number of equa-
tions to propagate for each initial condition is 12, for a two-dimensional problem, and 24,
for a four-dimensional problem, and for each equation the dynamics is evaluated 9 times
per integration step. Thus, in terms of number of propagation and computational cost the
use of the pseudo-diffusion exponent computed with non-intrusive expansions and sparse
grids provides the fastest approach. If polynomials are propagated with an algebra the use of
the SFTLE2 becomes an interesting option, along with the pseudo-diffusion exponent, as it
incorporates part of the sensitivity to the initial conditions.
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Fig. 15 Uncertain pendulum. Comparison between pseudo-diffusion exponent in the case of deterministic
parameter a and uncertain initial conditions and FTLE

7 Discussion

The three indicators proposed in this paper were shown to capture similar structures when
applied to a cartographic study of dynamical systems under uncertainty. However, they
measure conceptually different properties. SFTLE1 measures the statistical moments of the
uncertainty in the standard FTLE. The first moment was shown to provide the same qual-
itative information of standard FTLE, while higher moments provide more interesting and
unexpected information on the evolution of the dynamical system. In particular, the strength
of diffusive processes or asymmetries in the evolution of the system. SFTLE2 measures the
divergence of neighbouring polynomial expansions. When this index is negative two poly-
nomial expansions are behaving similarly up to time t f . A value higher than zero means that
the coefficients of the polynomials are diverging, which implies a divergent behaviour of the
trajectories. Since the coefficients can be used to compute the statistical moments, divergent
coefficients signifies that the ensemble of trajectories induced by multiple realisations of the
uncertain parameters are also diverging.

In this sense, analysing all the SFTLE2with superscript up tom might not bring additional
useful information as the highest one is sufficient to understand the behaviour of the system.
Thus, one can argue that the maximal indexm of the positive SFTLE2 can work as a measure
of the degree of divergence. This aspect needs further investigation before coming to a
conclusion and will be the subject of future work.

The pseudo-diffusion exponent directly measures the degree of diffusion of the ensemble
of trajectories. This suggests that the pseudo-diffusion exponent of an infinitesimal uncer-
tainty in the initial conditions would give the same qualitative information of the FTLE. This
can be seen in Fig. 15 where the FTLE for the uncertain perturbed pendulum is compared to
the log 10 of α̃. In this case, α̃ is computed with a simple first-order polynomial expansion
and only 9 integration points. The initial conditions are assumed to belong to a square with
edge 10−5 centred in the nominal value of the initial conditions while the model parameter
a is deterministic and fixed at 2.5. Since the magnitude of the coefficients of the polynomial
expansion is dependent on themagnitude of the uncertainty, an infinitesimal uncertainty leads
to a small value of α̃. However, from Fig. 15 one can see a remarkable similitude between the
FTLE and α̃ to the point that the latter appears simply to be a scaled version of the former.

123



4 Page 26 of 35 M. Vasile, M. Manzi

This result can be understood if one considers the polynomial approximation of the prop-
agated states. In fact assumes that one computed the FTLE from a linear approximation of
z(t f ) with respect to the uncertain vector p = z0 so that z(t f ) ≈ ∑m

i ci�i (p) with m = 1,
then we can demonstrate the following proposition.

Proposition 4 The eigenvalues λ
Cv

i of the covariance matrix Cv in (48) are proportional to
the eigenvalues λci of the matrix:

�̃ =
[
dz(t f )
dz0

]T [
dz(t f )
dz0

]
(66)

with z(t f ) ≈ ∑m
i ci�i (p), p = z0, m = 1 and �(z0) the Chebyshev polynomials of type 2.

Proof Considering a first-order expansion of z(t f ) ≈ ∑1
i ci�i (z0). One can derive thematrix


̃:

�̃ =

⎡
⎢⎢⎢⎢⎣

∑
i=1 c

2
1,i (t) ...

∑
i=1 c1,i (t)cn,i (t)

... ... ...

...
∑

i=1 c
2
j,i (t) ...

... ... ...∑
i=1 cn,i (t)c1,i (t) ...

∑
i=1 c

2
n,i (t)

⎤
⎥⎥⎥⎥⎦ (67)

where the index j loops over the number of dimensions n. From the definition of the covari-
ance in (48) the terms in the summation are multiplied times the factors si which descend
from the integration over � of the product of basis functions. Assuming that the uncertainty
in the components of z0 is independent and uncorrelated and that also in the covariance the
polynomial expansion is up to first order, all terms si have the same value s̃ and thus we can
write:

Cv = s̃�̃ (68)

��

Remark 3 From linear algebra, theCauchy–Greendeformation tensor� =
[
dz(t f )
dz0

]T [
dz(t f )
dz0

]

has the same eigenvalues of the matrix �̃; thus, for a first-order expansion with respect to
p = z0, it can be concluded that the eigenvalues used in the computation of the pseudo-
diffusion exponent are proportional to the eigenvalues of the Cauchy–Green deformation
tensor.

Remark 4 For infinitesimally small uncertainty in the initial conditions, an expansion up to
the first order is often a reasonable approximation and is consistent with a first-order Taylor
expansion of z(t f ) with respect to z0. If a higher-order expansion is used instead the matrix
�̃ will contain products of higher-order coefficients and also the terms si in the covariance
will correspond to higher-order polynomials. Thus, an extension of Proposition 4 is not
straightforward; however, one can notice that if the expansion is convergent the contribution
of higher-order terms will be small and the linear approximation in Proposition 4 will capture
the main contribution to the value of the eigenvalues.

Note that although in this paper we limited our attention only to the case of parametric
uncertainty, the same methodology can be applied to the study of dynamical systems driven
by stochastic processes via the Karhunen–Loève expansion (Deheuvels 2006).
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7.1 Relation to other indicators derived from polynomial expansions

In Pérez-Palau et al. (2015), two dynamical indicators were derived from Jet Transport. One
indicator was measuring the rate of contraction or expansion of the region propagated with
Jet Transport. The rate was calculated with respect to the size of the set of initial conditions
that was propagated. In the definition of α̃, as demonstrated in Proposition 4, the set of initial
conditions is � and a measure of its size is accounted for in the integrals of the polynomial
bases, see (16). The expansion/contraction is directly measured by the eigenvalues of the
covariance matrix Cv . In fact, given a covariance matrix, the ellipsoid enclosing a given
percentile of the propagated states has the direction of its axes defined by the eigenvectors of
Cv and their lengths by 2c

√
λi , where λi are the eigenvalues and c defines the percentile. In

Proposition 4, we also demonstrated that the eigenvalues of Cv are scaled by the integral of
the basis functions over �. Thus, it can be concluded that if the pseudo-diffusion exponent
is used to quantify the uncertainty in the propagated states from a set of uncertain initial
conditions, it contains the same information, on the expansion or contraction of the initial
uncertainty set, as the contraction/expansion indicator proposed in Pérez-Palau et al. (2015).

In Fodde et al. (2022), an indicator was derived from the magnitude of the predicted and
observed coefficients of a polynomial expansion of the propagated states. This indicator was
called “n+1”. As it was argued above, SFTLE2 is, by its nature, capturing the variation in
the high-order coefficients of the polynomial expansion and is, therefore, related to the n+1
indicator. In fact, it was shown that irregular types of motion require higher-order expansions
to achieve a good accuracy of the polynomial representation. At the same time neighbouring
initial conditions are shown to lead to different evolutions of the polynomial expansions when
two trajectories tend to diverge. In this sense, the SFTLE2 is also connected to the indicator,
proposed in Pérez-Palau et al. (2015), measuring the precision of the polynomial expansion
of the propagated states. However, SFTLE2 presents two important differences: (i) SFTLE2
is not suitable to quantify the uncertainty in the initial conditions because the difference of
the coefficients is computed with respect to an infinitesimal variation of the initial conditions;
(ii) SFTLE2 encapsulates both a measure of the divergence of two neighbouring trajectories
and a measure of the uncertainty in the propagated states induced by model uncertainty.

8 Practical utility of the indicators

In this section, we present two practical uses of the proposed indicators. The first practical
use is the identification of robust initial conditions in the elliptical restricted three-body
problem. We will give a definition of robust initial conditions and show how α̃ can be used
to design trajectories that are weakly affected by the uncertainty in the dynamic model. The
second practical use is the identification of regions of practical stability in the CR3BP. For all
calculations in this section, polynomials were expanded to order 3 and 9 abscissa points per
dimension of the uncertain vector pwere used. The expectation Ewas computed by drawing
100 uniformly distributed samples from the space � and evaluating the polynomial chaos at
t f .

8.1 Identification of robust initial conditions

As previously mentioned, the major utility of the indicators proposed in this paper is to study
the effect of model uncertainty on the evolution of a trajectory starting from a given initial
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condition z0. For example, inGawlik et al. (2009), the authors studied howLagrange coherent
structures would change due to a variation of the eccentricity in the elliptical restricted three-
body problem. We can understand this variability as an uncertainty in the existence and
location of the LCS induced by an uncertainty in the eccentricity. The whole study in Gawlik
et al. (2009) can be revisited by computing the SFTLE1, which would quantify the effect
of the uncertainty in e on the FTLE. A low value of SFTLE1 would correspond to initial
conditions that display a low sensitivity to a variation of the eccentricity. The same logic
can be applied to the pseudo-diffusion exponent as, for a given initial condition, α̃ would be
small if the trajectories in an ensemble presented a small variance with respect to a variation
of the eccentricity. Following this idea, we define the robustness of a given initial condition
z0 as:

Definition 4 The initial condition z0 is robust, with respect to the uncertainty vector p, with
robustness index ρp , if ᾱ < ρp , where ᾱ = α̃, if the pseudo-diffusion exponent is used to
study the dynamics, or ᾱ = α2

1 , if SFTLE1 is used to study the dynamics instead. Therefore,
minimum ρp initial conditions maximise robustness with respect to the uncertainty in p.

Consider now the case in which a mission analyst needs to identify minimum control
trajectories in a binary system with poorly known physical parameters. This is, for example,
the case of missions to binary asteroids. Given the limited knowledge of the exact mass
of the asteroids and the uncertainty in the orbital parameters of the secondary, there is an
interest in finding initial conditions that are robust with respect to the uncertainty in the
physical parameters of the binary system. Definition 4 can be straightaway applied to this
case. As an illustrative example, consider the problem of finding robust initial conditions
in the uncertain elliptical restricted three-body problem (ER3BP). Following Gawlik et al.
(2009) and Pérez-Palau et al. (2015), the planar ER3BP problem can be modelled as follows:

z′ = dz
dθs

=

⎡
⎢⎢⎣

vx
vy

2vy + ∂ J
∂x /(1 + e cos θs)

−2vx + ∂ J
∂ y /(1 + e cos θs)

⎤
⎥⎥⎦ (69)

where e is the eccentricity of the orbit of the secondary body, z = [x, y, vx , vy]T and θs its
true anomaly. As in Pérez-Palau et al. (2015), we use the pseudo-energy:

E(x, y, vx , vy) = 1

2

(
v2x + v2y

) − J (x, y)/(1 + e cos θs) (70)

to reduce the number of free initial conditions and define the value of vy as:

vy = −
√
2(E0 + J/(1 + e cos θs0)) − v2x (71)

with θs0 = 0. We then consider an uncertainty in both the eccentricity e and the mass
parameter μ (see Table 2) around the values in the examples presented in Pérez-Palau et al.
(2015). Figure 16 shows the pseudo-diffusion exponent and the expectation for ε = 0.1. The
α̃ looks similar to the one of the CR3BP; however, Fig. 16b displays an interesting area in
the upper right corner that is less pronounced in the case of the CR3BP.

Figure 17 shows the initial conditions for which α̃ is, respectively, below 0.01 and within
the interval [0.4, 0.6] for the ER3BP.

Figures 18a, b show two ensembles of 81 trajectories, one starting, respectively, from
initial condition z0 = [−0.416457, 1.51759] belonging to the region identified in Fig. 17a
and the other starting from initial condition z0 = [−0.390955, 0.532663] belonging to the
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Table 2 Summary of parameter settings for the ER3BP

Eccentricity Mass parameter Integration time

e ∈ [0.04 − 10−3, 0.04 + 10−3] μ ∈ [0.1 − 10−3, 1 + 10−3] t f = 2.8

Fig. 16 Pseudo-diffusion exponent for the ER3BP

Fig. 17 Robustness regions for the ER3BP

region identified in Fig. 17b. From Fig. 18, one can see how the ridges identified by the
pseudo-diffusion exponent correspond to ensembles of trajectories that start from the same
identical initial condition but due to the effect of uncertainty display very different behaviours
and diverge quite quickly. On the contrary regions of low α̃ corresponds to ensembles where
trajectories remain close to each other.

8.2 Identification of practical stability regions of the CR3BP

In this section, we show how the indicators proposed in this paper can be used to identify
regions of practical stability in the CR3BP in the case in which the model of the dynamical
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Fig. 18 Example of ensemble of trajectories for: a α̃ < 0.01 and, b 0.4 < α̃ < 0.6. Integration time t f = 28

system is uncertain. The analyses in this section extends the one in Pérez-Palau et al. (2015)
in that the dynamics is considered uncertain, and thus it reflects more closely the situation
in which a space mission to a new binary system is designed. The indicator are calculated
for different values of the initial condition z0 = [x0, y0, 0, 0]T assuming an uncertainty in
the mass parameter. The expected value of the mass parameter is chosen to be μ = 0.039
which is slightly above the limit of the linear stability condition for the triangular points. We
then considered an uncertainty on the value of the mass parameters so that μ ∈ [0.039 −
10−3, 0.039+10−3]. Thus, for some realisations ofμ the triangular points are linearly stable
and for others are not. The question is whether there are regions around L5 and L4 that
provide practical stability for all realisations of the uncertain parameter. Figure 19 shows the
regions around L4 identified by the pseudo-diffusion exponent and the SFTLE2 of the first
three coefficients of the polynomial expansion. In Fig. 19a, one can read the value of α̃ for
an integration time t f = 20. Dark blue means low diffusion, while all values equal to 1 (red
regions) imply that at least one realisation has a collision with one of the two primary bodies.
Figures 19b, c and d show, respectively, σ 1

2 ,σ
2
2 and σ 3

2 , while Fig. 19e shows the FTLE for
the nominal value μ = 0.039. Finally, Fig. 19f shows the expectation for ε = 0.1. In this
last case, yellow regions correspond to low diffusion and no collisions. At this point, one
might want to know if the solutions that appear to be practically stable for t f = 20 can be
extended for longer integration times. To this end, we analysed a smaller region around L4.
We restricted the range of values of x and y to the intervals [0.3, 0.7; 0.7, 1.0], extended the
integration time to t f = 80 and re-calculated α̃. The result can be seen in Fig. 20. Figure 20a
shows the value of the pseudo-diffusion exponent where values of 1 correspond to collisions
of at least one trajectory in the ensemble. In Fig. 20b, we isolated only the regions for which
α̃ < 0.025.We then took two random initial conditions from regionAand regionB in Fig. 20b
and integrated, from those initial conditions, an ensemble of trajectories, for t f = 800. In
particular, the two samples have initial conditions x = 0.446231, y = 0.874874, in region
A, and x = 0.384848, y = 0.718182, in region B. The individual components and the
corresponding trajectory ensembles in configuration space are represented in Fig. 20c and e,
and d and f, respectively. Note that region B was identified also in Pérez-Palau et al. (2015)
that also presents an example of trajectories similar to the ones in Fig. 20f.
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Fig. 19 Stability regions around L4 in the CR3BP: a α̃ and, b σ 1
2 , c σ 2

2 , d σ 3
2 . e FTLE, f E0.1 Integration time

t f = 20

9 Conclusions and future work

This paper introduced three indicators that quantify the effect of parametric uncertainty on the
time evolution of nonlinear dynamical systems. Two are derived from the concept of finite-
time Lyapunov exponents and one from the relationship between mean square displacement
and time in the case of anomalous diffusion. It was shown how the three indicators provide
consistent information on the dynamics when used to build a cartography of the phase space.
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Fig. 20 Close-up of stability regions around L4 in the CR3BP for extended integration time t f = 80: a α̃ and,
b α̃ < 0.025, c components for sample taken from region A for integration time t f = 800, d components for
sample taken from region B for integration time t f = 800, e trajectories of sample taken from region A for
integration time t f = 800, f trajectories of sample taken from region B for integration time t f = 800

While SFTLE1 simply quantifies the statistical moments of the standard FTLE, the other
two indicators were shown to relate the time evolution of the coefficients of polynomial
expansions with the chaotic and diffusive nature of themotion. It was also experimentally and
theoretically demonstrated that the quantification of the uncertainty in the initial conditions
is equivalent to the computation of the FTLE when this uncertainty is infinitesimal.
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The paper presented a measure of the probability associated with the diffusion of an
ensemble of trajectories. At the same time, it was argued that the weight function does
not need to be a probability distribution. Any orthogonal polynomials with respect to any
weight function can be used. More in general any form of polynomial-based quantification
of uncertainty, whether intrusive or non-intrusive, can be used provided that the polynomials
can be orthogonalised.

The computational complexity of the calculation of these indicators is mainly related to
the complexity of the propagation of uncertainty with polynomials. On the other hand it
was shown that the pseudo-diffusion exponent has lower computational complexity for the
same number of uncertainty parameters because it does not require the propagation of the
variational equations. Note that in this paper the indicators were computed for a particular
final times t f but could be equally computed for multiple times t to study their evolution.

From a practical applicability standpoint, it was shown how the indicators could be used
to find sets of robust initial conditions and the pseudo-diffusion indicator could identify
regions of practically stable trajectories around L4, in the CR3BP, also in the case in which
the uncertainty in the mass parameter would imply that the triangular points are linearly
unstable.

Future workwill further extend these indicators to account for stochastic processes driving
the dynamical systems and imprecision in the distribution functions.
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