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Abstract
We compute planar and three-dimensional retrograde periodic orbits in the vicinity of the
restricted three-body problem (RTBP) with the Sun and Neptune as primaries and we con-
centrate on the dynamics of higher-order exterior mean motion resonances with Neptune. By
using the circular planar model as the basic model, families of retrograde symmetric periodic
orbits are computed at the 4/5, 7/9, 5/8 and 8/13 resonances. We determine the bifurcation
points from the planar circular to the planar elliptic problem andwe find all the corresponding
families. In order to obtain a global view of the families of periodic orbits, the eccentricity
of the primaries takes values in the whole interval 0 < e′ < 1. Then, we find all the possible
vertical critical orbits (v.c.o) of the planar circular problem and we proceed to the three-
dimensional circular restricted 3-body problem. In this model, retrograde periodic orbits are
generated mainly from the retrograde v.c.o. Also, if we continue families of direct orbits for
i > 90◦, then we can obtain families of 3D symmetric retrograde periodic orbits. The linear
stability is examined too. Stable periodic orbits are associated with phase space domains of
resonant motion where TNOs can be captured. In order to study the phase space structure
of the above resonances, we construct dynamical stability maps for the whole inclination
interval (0 < i < 180◦) by using the well-known “MEGNO Chaos Indicator”. Finally, we
discuss about TNOs which are currently located at these resonances.

This article is part of the topical collection on Theory and applications of resonances and central
configurations.
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1 Introduction

The dynamics of exterior mean motion resonances with Neptune has been studied widely in
the past and has drawn the attention of many researchers (see Duncan et al. 1995; Morbidelli
et al. 1995; Malhotra 1996; Nesvorny and Roig 2000, 2001; Kotoulas and Voyatzis 2004;
Celletti et al. 2007; Lykawka and Mukai 2007; Brasil et al. 2014). An atlas of three body
mean motion resonances in the Solar System was made by Gallardo (2006), and, especially
for the asteroid belt and trans-neptunian region, by Gallardo (2014). Very recently, Malhotra
et al. (2018) studied the dynamics of Neptune’s 2/5 resonance using Poincaré sections and
then N−body simulations including the effects of all four giant planets and a wide range
of orbital inclinations of the TNOs. Furthermore, Lan and Malhotra (2019) investigated the
phase space structure of a large number of Neptune’s MMRs for 33 < a < 140 AU by using
the same methods. In a review article, Malhotra (2019) studied the relation between the
migration of giant planets and resonant populations of the Kuiper belt. All studies mentioned
above refer to direct motion. In the last decade, asteroids in the main or the Kuiper belt
have been discovered revolving in retrograde orbits. Li et al. (2019) provided a list of such
asteroids which are or may be captured in retrograde resonance with a major planet (Table
A.1, pp. 8), e.g. the asteroid (343158) Marsyas is in 3/1 internal resonance with Jupiter, the
asteroid 2006 BZ8 is in 2/5 external resonance with Jupiter, the TNO (471325) 2011 KT19,
nicknamed ‘”Niku,is currently at the 7/9 resonance with Neptune and so on. So it is important
to study the dynamics of retrograde motion, too.

The RTBPmodel is an efficient model for studying the motion of small bodies in the Solar
Systemunder the gravitational perturbation of a giant planet. In thismodel periodic orbits play
an important role in the study of its phase-space structure. Particularly, we consider the system
Sun-Neptune-TNO in which periodic orbits are related with MMRs and their stability affects
directly the dynamics (Celletti et al. 2007). Two- and three-dimensional prograde symmetric
periodic orbitswere studied inmany cases of resonances (Kotoulas andHadjidemetriou 2002;
Voyatzis and Kotoulas 2005; Voyatzis et al. 2005; Kotoulas and Voyatzis 2005; Kotoulas
2005). Moreover, Voyatzis et al. (2018) computed families of asymmetric periodic orbits
for the asymmetric resonances 1/n, n = 2, .., 5, and related their results with asymmetric
libration of observed TNOs. We note here that a broad database of symmetric periodic orbits
in the planar circular RTBP model is reported by Restrepo and Russell (2018). All these
studies refer to prograde orbits.

Families of spatial periodic orbits that extend from planar to the three-dimensional model
(0 < i < 180◦) were found since many years ago (Jefferys and Standish 1972; Ichtiaroglou
et al. 1989) but their stability computation is not included in these works. Greenstreet et al.
(2012) performed numerical integrations of NEAs and showed that it is possible, although
rare, to have orbit inversions (prograde to retrograde) at the 3/1 mean motion resonance. The
dynamics of retrograde resonances was studied by several authors in the previous decade.
Morais and Namouni (2013a) obtained a suitable disturbing function to describe retrograde
resonance and used it to identify asteroids in these configurations (Morais and Namouni
2013b). Morais and Namouni (2016) studied numerically the coorbital retrograde resonance
in the 2D and 3D restricted 3-body problem at Jupiter to Sun mass ratio, and computed
the associated families of periodic orbits (Morais and Namouni 2019). This allowed the
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identification of an asteroid in the retrograde coorbital resonance with Jupiter (Wiegert et al.
2017). Huang et al. (2018) studied the retrograde coorbital resonance using a semi-analytic
model based on an averaged disturbing function. Morais and Namouni (2017) identified
and studied the dynamics of the first trans-Neptunian object in polar resonance (Namouni
and Morais 2017) with Neptune, 471325 (2011 KT19). Li et al. (2019) made an extensive
survey of asteroids which are or may be captured in retrograde resonances with planets and
confirmed that the near-polar trans-Neptunian objects 471325 (2011KT19) and528219 (2008
KV42) have the longest dynamical lifetimes of the discovered minor bodies in retrograde
orbits. Analytical or semi-analytical models based on disturbing functions which are valid for
arbitrary inclination have been proposed recently for the study of the phase space structure
in inclined MMRs by Lei (2019), Gallardo (2020) and Namouni and Morais (2020). The
structure and stability of retrograde periodic orbits for a < a′ having Sun-Jupiter as primary
bodies has been studied in Kotoulas and Voyatzis (2020a) and Kotoulas et al. (2022) and
for a > a′ considering Sun-Neptune as primary bodies has been studied in Kotoulas and
Voyatzis (2020b). Furthermore, retrograde coorbitals in the Earth-Moon system remain stable
and may survive the perturbation exherted by the Sun (Oshima 2021).

In the present study, we consider the RTBP model with mass parameter μ=5.15×10−5.
Thus, our results are associated with the planet Neptune. We focus our interest on the study
of retrograde orbits of TNOs which are located at mean motion resonances; these orbits
are coplanar (i = 180◦) or spatial (90◦ < i < 180◦). We study the dynamics of 4/5, 7/9,
5/8 and 8/13 exterior MMRs because trans-Neptunian objects moving near these retrograde
resonances have been recently identified. In Sect. 2, we present briefly the basic model and
we introduce the basic notions on periodic orbits and their families. In Sect. 3, we compute
families of symmetric retrograde periodic orbits at 4/5, 7/9, 5/8 and 8/13 exterior MMRs
and we study their stability type. In Sect. 4 we consider the planar elliptic model (nonzero
eccentricity of the perturbing planet, e′) and we compute families of symmetric periodic
orbits for the mass of Neptune but for all possible eccentricity values, 0 < e′ < 1 in order to
obtain a global viewof the ellipticmodel. InSect. 5,we compute families of three-dimensional
periodic orbits. The stability type of these orbits is also examined and the connection between
families of prograde and retrograde orbits is presented. We also construct dynamical stability
maps by using the MEGNO chaos indicator for different values of the resonant angles and
we investigate the phase-space structure of the three-dimensional circular model. Finally, we
conclude by summarizing our main results in Sect. 6.

2 Retrograde periodic orbits of the restricted three body problem

We consider the classical RTBP model in the Oxyz rotating frame (see e.g. Szebehely 1967)
which can describe efficiently the Sun-Neptune-TNO system. The equations of motion of a
massless body are

ẍ − 2 ẏυ̇ − yϋ − x υ̇2 = −(1 − μ)
x + μ

r30
− μ

x − 1 + μ

r31
,

ÿ + 2ẋ υ̇ + x ϋ − yυ̇2 = −(1 − μ)
y

r30
− μ

y

r31
,

z̈ = −(1 − μ)
z

r30
− μ

z

r31
(1)
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where r0 = √
(x + μr01)2 + y2 + z2, r1 = √

(x − (1 − μ)r01)2 + y2 + z2, υ = υ(t) is
the true anomaly and r01 = r01(t) the mutual distance of the primaries along their relative
Keplerian orbit.

For υ̇ = 1 and r01 = 1,we obtain the circular problem, either the planar or the spatial. If we
set z = ż = 0, then we obtain the planar RTBP. For μ = 0,we end up to the corresponding
degenerate case of the two-body problem in a rotating frame. The circular model has the
energy integral defined in our case as

h = 1

2

(
ẋ2 + ẏ2 + ż2

) − 1

2

(
x2 + y2

) − 1 − μ

r0
− μ

r1
(2)

We refer also to the osculating orbital elements of the TNO, a (semi-major axis), e
(eccentricity), ω (argument of perihelion), Ω (longitude of ascending node), � (longitude
of perihelion), M (mean anomaly) and n (mean motion). The same primed symbols refer to
the Neptune and, according to the chosen reference system, is a′ = n′ = 1, i ′ = 0, � ′ = 0
or π and M ′(t = 0) = 0 or π .

The model obeys the fundamental symmetry

Σ : (t, x, y, z) → (−t, x,−y, z)

and, consequently, orbits which show two perpendicular crosses with the section y = 0 are
symmetric periodic orbits (Szebehely 1967). Particularly, for the planar model we consider
initial conditions x(0) = x0, y(0) = 0, ẋ(0) = 0 and ẏ(0) = ẏ0. The periodic orbits
are computed by using differential corrections in order to satisfy the periodicity conditions
y(T /2) = ẋ(T /2) = 0,where T the period of orbit, on the surface of section y = 0 (Broucke
1968, 1969). These orbits are either prograde or retrograde and they exist for open intervals
of the energy forming monoparametric families and are characterized by their linear stability
(Broucke 1969).

In the three-dimensional model, the periodic orbits also form monoparametric families
having as parameter the inclination. They bifurcate from the planar orbits which are vertically
critical orbits (v.c.o.) as it has been shown by Hénon (1973).We consider initial conditions
x(0) = x0, y(0) = 0, z(0) = z0, ẋ(0) = 0, ẏ(0) = ẏ0 and ż(0) = 0 (symmetry with respect
to the plane xz or type F) which correspond to a periodic orbit of period T . The periodic orbits
are computed by using differential corrections in order to satisfy the periodicity conditions
y(T /2) = ẋ(T /2) = ż(T /2) = 0 (Robin and Markellos 1980). Another set of initial
conditions is the following: x(0) = x0, y(0) = 0, z(0) = 0, ẋ(0) = 0, ẏ(0) = ẏ0 and
ż(0) = ż0 (symmetry with respect to the x-axis or type G) which correspond to a periodic
orbit of period T , if y(T /2) = z(T /2) = ẋ(T /2) = 0. Also, for μ = 0 there could exist
families of orbits which start from inclined circular orbits. The orbits of these families are
also continued for μ > 0 in 3D space (Zagouras and Markellos 1977; Ichtiaroglou and
Michalodimitrakis 1980).

3 Families of retrograde orbits in the planar circular model

In the planar circular problem, for μ = 0 there exists the family RC of retrograde circular
orbits which also exists for μ �= 0 in all cases of resonances. The computations show that
the orbits of RC for μ � 1 are nearly circular and stable (Kotoulas and Voyatzis 2020b). We
note that the family RC breaks only at the 1:1 resonance (a ≈ 1) and is separated into the
inner and the outer branch (see also Morais and Namouni 2019, Fig. 2). The continuation
of the elliptic families of the unperturbed system is also valid for μ �= 0 and we obtain two
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(a) (b)

Fig. 1 Families of retrograde periodic orbits in the 4/5 MMR presented on the planes x0 − e0 (left) and
x0 − h (right). The linear stability is indicated by different colors : solid blue (red) lines stand for horizontal
stability (instability) and vertical stability. Vertical instability is indicated by dashed lines. The cross-symbols
denote the collision orbits which are computed analytically by using the unperturbed model (see Kotoulas
and Voyatzis (2020a)).

branches, branch RI and branch RI I which differ only in phase, φ	=0 and φ	=π respectively,
where φ	 is defined as

φ	 = qλ − pλ′ − (p + q)�	 (3)

where �	 = ω − Ω is the longitude of perihelion of a TNO for retrograde motion. Periodic
orbits exist for intervals of the energy h or the corresponding eccentricity e0. Here, h =
−C j/2 where C j is the Jacobi constant as defined in Murray and Dermott (1999). So, we
can present the characteristic curves of the families on the planes x0 − e0 and x0 − h. In Fig.
5 we present a surface of section for h = 0.5 where many retrograde resonances appear but
also chaotic regions are indicated. The centers of islands correspond to stable periodic orbits.
Unstable periodic orbits are not clearly distinguished since they are embedded in chaotic
regions. At the region close to collision orbits, the characteristic curve of the family breaks,
the ratio n/n′ varies significantly and takes values far from the nominal values p/q and, also,
the orbits become strongly chaotic.

In Fig. 1, we present the families of 4/5 resonant periodic orbits. In order to declare
the linear stability of the orbits, we use different colours : blue denotes both horizontal
and vertical stability, red denotes horizontal instability but vertical stability. The vertical
instability is presented with dashed lines. Family RIa starts from e0 = 0 with horizontally
unstable orbits; there is a collision around e ≈ 0.12 and a gap along this family appears since
the computation fails to continue. For higher eccentricities, we obtain the second segment
of this family, i.e. RIb, which includes horizontally and vertically stable orbits but another
collision exists around e ≈ 0.8 and a second gap appears along this family. Finally, we obtain
the third segment, i.e. RIc, which is all stable too. On the other hand, family RI I is full stable
except for a collision around e = 0.14. Another collision appears around e = 0.28. The
segment RI Ib consists of horizontally stable orbits. The vertical instability occurs in the part
0.323< e < 0.561, and, thus, we have two v.c.o.
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(a) (b)

(c) (d)

Fig. 2 Characteristic curves of families of retrograde symmetric periodic orbits in the case of 7/9 MMR on
the planes x0 − e0 and x0 − h respectively. a, b family RI , c, d family RI I . The presentation of colors is the
same as in Fig. 1

In Fig. 2, we present the families of 7/9 resonant periodic orbits. Similarly to the 1st order
resonance 4/5, two families of retrograde orbits RI and RI I , bifurcate from the corresponding
resonant circular orbits of RC . The periodic orbits included in family RI I cross vertically the
axis Ox (i.e. ẋ0 = 0) only for x < 0, while in family RI such a vertical cross occurs only
for x > 0. Thus, the two families are presented in separated plots x0 − e0 or x0 − h shown in
Fig. 2. Family RIa starts from e0 = 0 with horizontally unstable orbits; there is a collision
area around e ≈ 0.18 and a gap along this family appears. One v.c.o. exists at e = 0.158
and it is unstable. For moderate eccentricities, we obtain the second segment of this family,
i.e. RIb, which includes horizontally and vertically stable orbits but another collision exists
around e ≈ 0.46 and a second gap appears along this family. At the end, we obtain the third
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(a) (b)

Fig. 3 Families of retrograde periodic orbits in the 5/8MMR presented on the planes x0 −e0 (left) and x0 −h
(right). The presentation of colors is the same as in Fig. 1

segment, i.e. RIc, which is stable too. On the other hand, family RI I is full stable except for
a collision around e = 0.16. Collisions appear also around e = 0.18, 0.27 and e = 0.795.
The segment RI Ic consists of vertically unstable orbits; the vertical instability type occurs
in the part 0.340< e <0.444, and, thus, we have two v.c.o. These points give rise to the
three-dimensional families of symmetric retrograde periodic orbits.

In Fig. 3, we present the families of 5/8 resonant symmetric periodic orbits. Family RIa

starts from e0 = 0 with horizontally unstable orbits; there is a collision area around e ≈ 0.27
and a gap along this family appears. After that the family becomes stable and we obtain the
second segment of this family, i.e. RIb which includes stable orbits. Another collision appears
at e ≈ 0.30 andweobtain the third segment of this family, i.e. RIc. Formoderate eccentricities
(e ≈ 0.52) we have another gap and then we get the fourth segment of this family, i.e. RId ,
which includes horizontally stable and vertically unstable orbits. Thus, we have one v.c.o.at
e =0.668. Then, the segment becomes vertically stable. On the other hand, family RI Ia starts
as unstable (0.0 < e < 0.09) and then becomes stable. For 0.09 < e < 0.999 we can say
that family RI I is full stable except for the cases of close encounters. More precisely, close
encounters appear around e = 0.28, 0.38 and e = 0.88. There is one v.c.o. on the segment
RI Ia and it is located at e =0.274. The segment RI Ic consists of vertically stable/unstable
orbits; the vertical instability type occurs in the part 0.454< e <0.557, and, thus, we have two
more v.c.o. These points give rise to the three-dimensional families of symmetric retrograde
periodic orbits.

In Fig. 4, we present the families of retrograde periodic orbits in the vicinity of 8/13 mean
motion resonance with Neptune. Family RIa starts from e0 = 0 with horizontally unstable
orbits; there is a collision around e ≈ 0.28 and a gap along this family appears. After that
the family becomes stable and we obtain the second segment of this family, i.e. RIb which
includes stable orbits. Another collision appears at e ≈ 0.32 and we obtain the third segment
of this family, i.e. RIc. For moderate eccentricities (e ≈ 0.48) we have another gap and then
we get the fourth segment of this family, i.e. RId , which includes horizontally and vertically
stable/unstable orbits. There is one v.c.o on the segment RId and it is located on e =0.613. On
the other hand, family RI I is full stable except for the cases of collision areas.More precisely,
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(a) (b)

Fig. 4 Families of retrograde periodic orbits in the 8/13 MMR presented on the planes x0 − e0 (left) and
x0 − h (right). The presentation of colors is the same as in Fig. 1

Fig. 5 The Poincaré surface of
section at energy level h = 0.5.
The dominant resonances of first
order are indicated

collisions appear around e = 0.30 and e = 0.65 respectively. The vertical instability type
occurs in the part 0.479< e <0.505 on the segment RI Ib.

4 The planar elliptic model

In this sectionwewill study the resonant structure of the elliptic restricted three body problem
at the 4/5, 7/9, 5/8 and 8/13 mean motion resonances with Neptune. Now, periodic orbits
refer not only to the rotating frame but also to the inertial frame. We consider that the planet
Neptune moves on an elliptic orbit with a fixed eccentricity e′. Families of periodic orbits
in the elliptic RTBP bifurcate from the periodic orbits of the circular model with period
multiple to the period of the primaries (Broucke 1969). The bifurcation points are presented
in Table 1. Two families of retrograde periodic orbits arise from each bifurcation orbit; one
with the Neptune at perihelion (� ′ = 0) and one at aphelion (� ′ = π). Along these families
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Table 1 Bifurcation points from
the planar circular to the planar
elliptic model

Res Family a (in au) Eccentricity Period Family

4/5 RC 34.881 0.000 10π R4/5
E,0

4/5 RI Ib 34.881 0.231 10π R4/5
E,1

4/5 RIb 34.881 0.673 10π –

4/5 RI Ic 34.881 0.969 10π R4/5
E,2

7/9 RC 35.543 0.000 18π R7/9
E,0

7/9 RI Ib 35.543 0.171 18π R7/9
E,1

7/9 RI Ic 35.543 0.257 18π R7/9
E,2

7/9 RIb 35.543 0.383 18π R7/9
E,3

7/9 RI Id 35.543 0.736 18π –

7/9 RIc 35.543 0.948 18π –

5/8 RC 41.121 0.000 16π R5/8
E,0

5/8 RIb 41.121 0.283 16π R5/8
E,1

5/8 RIc 41.121 0.456 16π R5/8
E,2

5/8 RI Ic 41.121 0.789 16π R5/8
E,3

5/8 RId 41.121 0.970 16π –

8/13 RC 41.549 0.000 26π R8/13
E,0

8/13 RIb 41.549 0.321 26π R8/13
E,1

8/13 RIc 41.549 0.443 26π R8/13
E,2

8/13 RI Ib 41.549 0.583 26π R8/13
E,3

8/13 RId 41.549 0.823 26π –

8/13 RI Ic 41.549 0.954 26π R8/13
E,4

the longitude of perihelion of the TNO (� ) may change (from 0 to π or vice versa) when
the family includes a circular orbit (e = 0). Linear stability is established by computing the
Brucke’s indices (Broucke 1969).

The families of the elliptic model are called as RE,ls , where l = 1, 2, .. is an index for
indicating different families of orbits in each resonance when there exist more than one
bifurcation points and l = 0 is used when the bifurcation orbit belongs to the RC family. The
index s is either p or a and indicates the initial position of the planet (perihelion or aphelion,
respectively). Along the families of retrograde periodic orbits the eccentricity of Neptune
changes from e′ = 0 to e′ = 1. We present them in Fig. 6 by projecting their characteristic
curves on the plane (e0 cos� , e′ cos� ′), so the values 0 or π of the longitudes of perihelia
� and � ′ are also indicated (Fig. 6).

In the case of 4/5 resonance, family RE,0p is unstable; on the other hand, the family RE,0a

includes only stable orbits. Family RE,1p starts with stable orbits and then becomes unstable.
On the other hand, the family RE,1a starts with unstable orbits and then becomes stable. In
addition to that, family RE,2p is also unstable but the family RE,2a consists of stable orbits.
The characteristic curves of these families are smooth and terminate at a collision orbit with
Neptune (e′ ≈ 0.999).
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(a) (b)

(c) (d)

Fig. 6 Families of retrograde symmetric periodic orbits in the elliptic RTBP presented in the plane (e0 cos� ,
e′ cos� ′). For each panel the corresponding resonance is indicated. The different line colours indicate the
linear stability as in Fig. 1

For the 7/9 resonance there exist four families. Families RE,0p and RE,0a are stable up to
e′ = 0.4 and then become unstable. Furthermore, we computed also the other six families
which bifurcate from orbits with e >0.0 (see Table 1). Families RE,1p and RE,2p consist of
stable orbits but families RE,1a and RE,2a start as unstable and then become stable. Finally,
the family RE,3p is unstable up to e′ = 0.675 and then becomes stable; the family RE,3a

includes only stable orbits.
In the case of 5/8 resonance, we have four families of retrogarde symmetric periodic orbits

in the planar elliptic problem. Families RE,0p and RE,1p are both stable; family RE,0a is all
unstable but the family RE,1a starts as unstable and then becomes stable. Family RE,2p is
unstable but the family RE,2a is all stable. Family RE,3p is stable up to e′ = 0.235 and then
becomes stable; the family RE,3a is all unstable.

Finally, studying the 8/13 mean motion resonance with Neptune, we found five families
of retrogarde symmetric periodic orbits in the planar elliptic problem. Families RE,0p and
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RE,1p are both stable; family RE,0a is all unstable but the family RE,1a starts as unstable and
then becomes stable. Family RE,2p is unstable but the family RE,2a includes stable orbits
and becomes unstable at very high eccentricity values of the planet Neptune (e′ ≥ 0.867).
Family RE,3p starts as stable and terminates to a collision orbit with Sun having stable orbits;
there is a big segment with unstable orbits, i.e. 0.196 < e′ < 0.867. The family RE,3a is all
unstable. Family RE,4p is all stable and family RE,4a is all unstable.

5 The 3-D circular model

5.1 Periodic orbits and stability analysis

In a previous paper (Kotoulas and Voyatzis 2020b), the 1/2, 2/3 and 3/4 exterior mean motion
resonances with Neptune have been studied focusing mainly on retrograde orbits. We note
here that such families of orbits were studied firstly by Robin and Markellos (1980) and
later by Kotoulas et al. (2022) for the mass of Jupiter. All the results are referred to the
rotating frame of reference Oxyz. We find the families of periodic orbits as smooth curves
(characteristic curves) with continuation and we present them on the plane e0 − i0 while the
corresponding semimajor axis is almost constant along the family. In addition to that, we
determine the linear stability type of orbits by computing the Broucke’s indices (Broucke
1969). Due to the small mass parameter, the indices are very close to their critical values. So,
use ”long double computations” (18 decimal digits) in order to get reliable results on linear
stability of periodic orbits.

We regard a MMR, where n/n′ = p/q and p, q are mutually primed integers. For 3D
prograde motion the resonant angles are defined φk (Namouni and Morais 2018)

φk = qλ − pλ′ − k� + (p − q + k)Ω, (4)

where λ = M+� and the longitude of perihelion is defined as� = ω+Ω . For k = (q− p)
we obtain the general expression of the 2D resonant angle, i.e. φ, for planar prograde orbits.

For 3D retrograde motion the resonant angles are defined (Namouni and Morais 2018)

φk = qλ∗ − pλ′ − k� ∗ + (q + p − k)Ω, (5)

where λ∗ = λ − 2Ω and � ∗ = � − 2Ω is the mean longitude and the longitude of
perihelion, respectively, of the asteroid in retrograde motion . We note that λ′ = M ′, since
in our reference frame, � ′ = 0. For k = p + q we obtain the general expression of the 2D
resonant angle for planar retrograde orbits, i.e. φ	 (Eq. 3). We can say that the relation (5)
is just another way of writing (4) using retrograde (starred) angles. We also define φz = φ0

noting that for even (odd) p − q this angle appears in the disturbing function expansion as a
first (second) harmonic (Namouni and Morais 2018).

5.2 TheMEGNO chaos indicator

The MEGNO (Mean Exponential Growth factor of Nearby Orbits) chaos indicator (Cincotta
and Simó 2000; Goździewski 2003) was obtained by numerical integration of the full equa-
tions of motion along with the variational equations, using the Bulirsch and Stoer method
with a tolerance 10−14 for 2 × 106 orbital periods of the perturber. MEGNO converges to 2
for regular orbits and increases at a rate proportional to the Lyapunov exponent for chaotic
orbits. The maximum value of MEGNO in the stability maps is set to 8 for chaotic orbits in
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Table 2 The 11 critical 4/5 resonant orbits and the bifurcating families from the planar circular to the 3D
circular model

Critical orbit e0 Type Family name (ω, Ω, M, φ, φz ) (e∗0 , i∗0 )

R0 0.000 F R0 (π
2 , 3π

2 , 0, 0, π
2 ) (0.0, 171.53◦)

R0 ( 3π2 , 3π
2 , π, π, π

2 )

D1 0.222 F D1 ( 3π2 , 3π
2 , π, π, π

2 )

R0 0.000 G R0 (0, π, 0, 0, 0) (0.0, 171.82◦)
R0 (π, π, π, π, 0)

D8 0.825 G D8 (π, π, π, π, 0)

R1 0.323 F R1 ( 3π2 , 3π
2 , π, π, π

2 )

D3 0.526 F D3 ( 3π2 , 3π
2 , π, π, π

2 )

R2 0.561 F R2 ( 3π2 , 3π
2 , π, π, π

2 )

D2 0.232 G D26 (π, 0, π, π, 0)

D4 0.546 F D4 (π
2 , 3π

2 , 0, 0, π
2 )

D5 0.569 F D5 (0, 0, 0, 0, 0)

D6 0.624 G D26 (π, 0, π, π, 0)

D7 0.728 F D7 ( 3π2 , 3π
2 , π, π, π

2 )

The critical values, e∗0 and i∗0 , where resonant angles change, are indicated in the last column. The symbols
D, R stand for direct or retrograde orbits respectively. For the prograde families φ is the 2D prograde
angle while for the retrograde families it is the 2D retrograde angle, φ	. For this resonance φ	 = φ when
ω = 0, π/2, π, 3π/2

order to have a high contrast between the regular and chaotic regions. The symbols in the
maps indicate:

– x (libration of Kozai angle)
– circle, square, up triangle, down triangle: libration of angles with k = q − p (prograde

2D), k = q − p + 2, k = q − p + 4, k = p + q (retrograde 2D)

Moreover, black symbols indicate libration amplitudes smaller than 50 degrees, gray
symbols indicate larger amplitudes, while overlap of black symbols indicates a resonant
periodic orbit (all resonant angles, φk , and argument of pericenter, ω, are fixed). Quasi-
periodic motion may occur in: the vicinity of POs; small eccentricity regions such that there
is no intersection with Neptune’s orbit; associated with libration of a single resonant angle
φk ; or due to the Kozai resonance.

We set the 2D prograde resonant angle to φ = 0, π and the argument of pericenter to
ω = 0, π

2 , π, 3π
2 to construct the dynamical stability maps. In all cases we set Ω = 0.

The maps with ω = 0 and ω = π/2 are in general similar to those with ω = π and
ω = 3π/2, respectively. Therefore, we present only 4maps for each resonance.We produced
an additional set of maps corresponding exactly to the initial conditions in Tables 2, 3, 4 and
5, whose features are essentially the same as the maps presented in this article. This confirms
that the important dynamical variables are the initial values of φ and ω. Note that the 2D
retrograde and prograde resonant angles are related by φ	 = φ − 2 p ω hence for a p/q
mean motion resonance φ	 = φ when ω = 0, π (p even or odd) or when ω = π/2, 3π/2
(p even), and φ	 = φ + π when ω = π/2, 3π/2 (p odd).
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(a)

(b) (c)

Fig. 7 The 4/5 resonance: a Projection of the families of retrograde symmetric periodic orbits in the 3D circular
RTBP on the plane (e0 − i0). Blue (red) colour indicates stability (instability). Time evolution of the resonant
angles φ(k = 9) and φz = φ(k = 0) for b a stable retrograde periodic orbit belonging to the family R1 and c
for an unstable retrograde periodic orbit from the family R2 at the same energy level h = 0.425069635. Black
(blue) colour indicates the resonant angle φ (φz )

5.3 The 4/5 MMR

In Table 2 and in Fig. 7 we present the bifurcations to the 3-D model and the characteristic
curves of spatial 4/5 resonant families, respectively. As far as the retrograde orbits is con-
cerned, there are three v.c.o. on the planar families from which spatial families bifurcate. The
first one is located on the family of circular orbits RC (e = 0.0) and the other two ones are
lying on the family segment RI Ic. There exist four families of 3-D retrograde periodic orbits.
Three families (R0,F , R0,G , R1) are connected with the families of three-dimensional direct
periodic orbits forming bridges between retrograde and prograde families of planar orbits.
Family R2 terminates to a collision orbit with Sun.
In Fig. 8wepresentMEGNOstabilitymaps. The regions of quasiperiodicmotion surrounding
stable branches of the retrograde family R1 and the prograde families D1 and D7 may be
seen in Fig. 8d, while the region around the stable branch of the prograde family D4 is
seen in Fig. 8c. However, the region of quasiperiodic motion surrounding the stable branch
of family R0,G in Fig. 8b is barely visible. There are also regions of quasiperiodic motion
associated with libration of the prograde angle φ = φ1(identified by circles), the retrograde
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(a) (b)

(c) (d)

Fig. 8 Resonance: 4/5. Stability maps for a φ = φ	 = 0, ω = 0, b φ = φ	 = π, ω = 0, c φ = φ	 =
0, ω = π

2 and d φ = φ	 = π, ω = π
2 . For all cases we set Ω = 0. Blue color stands for stable regions

and yellow color stands for unstable regions. The symbols in the maps indicate: x (libration of Kozai angle),
circle, square, up triangle, down triangle: libration of angles with k = q − p(prograde 2D), k = q − p + 2,
k = q − p + 4, k = p + q (retrograde 2D). Moreover, black symbols indicate libration amplitudes smaller
than 50 degrees, gray symbols indicate larger amplitudes, while overlap of black symbols indicates a resonant
periodic orbit (all initial values of resonant angles, φk , and argument of pericenter, ω, are fixed)

angle φ	 = φ9 (identified by down triangles), and large regions in Fig. 8b, c associated with
libration of the resonant angle φ3 (identified by squares). The Kozai resonance occurs at high
inclination and/or high eccentricity in panels (a), (b) and (c).

5.4 The 7/9 MMR

The spatial 7/9 resonant families are presented in Table 3 and in Fig. 9. Assuming planar
retrograde periodic motion, the periodic orbits included in family RI I cross vertically the
axis Ox (i.e. ẋ0 = 0) only for x < 0, while in family RI such a vertical cross occurs only for
x > 0. So, we have two v.c.o. at e ≈ 0.0 from which families of three-dimensional nearly
circular orbits bifuracate; they are called R̄01 and R̄02. A similar situation occurs at families of
direct periodic orbits where at families DI I and DI we have the v.c.o. D̄01 and D̄02 (Kotoulas
et al. 2022). The families starting from R̄0 j and D̄0 j ( j = 1, 2) join smoothly, consist of
doubly symmetric periodic orbits and can be computed as F − t ype orbits or G−type orbits.
Since along these families the eccentricity is almost zero, we present their characteristic
curves in the plane e0 − i0 as it is shown in Fig. 9a. At points indicated as P̄j along these
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Table 3 The critical 7/9 resonant orbits and the bifurcating families from the planar circular to the 3D circular
model

v.c.o (e0, i0) Type Family Name (ω, Ω, M, φ, φz ) B(e∗0 , i∗0 )

R̄01 (0.0, 180◦) G R01 (0, 0, 0, 0, 0)

D̄01 (0.0, 0.0) G D01 (π, 0, π, 0, 0) B(0.0, 13.8◦)
D̄01 (0.0, 0.0) G D01 (π, 0, π, 0, 0)

R̄02 (0.0, 180◦) G R02 (0, π, 0, π, π ) B(0.0, 138.6◦)
(π, π, π, π, π )

D̄02 (0.0, 0.0) G D02 (π, π, π, π, π )

P̄1 (0.0, 145.63◦) F H1 (π
2 , π

2 , 0, 0, 0)

D̄2 (0.179, 0.0◦) F H1 (π
2 , π

2 , 0, π, 0)

P̄2 (0.0, 144.15◦) G H2 (0, π, 0, π, π )

D̄7 (0.536, 0.0◦) G D7 (0, π, 0, π, π )

R̄1 (0.158, 180◦) G R1 (π, 0, π, 0, 0)

D̄4 (0.388, 0.0◦) G D4 (π, π, 0, 0, 0)

R̄2 (0.341, 180◦) F R2 (π
2 , 3π

2 , 0, π, π )

D̄3 (0.227, 0.0◦) F D3 (π
2 , 3π

2 , 0, 0, π )

R̄3 (0.446, 180◦) F R3 (π
2 , 3π

2 , 0, π, π )

D̄1 (0.175, 0.0◦) G D16 (0, π, 0, π, π )

D̄6 (0.470, 0.0◦) G D16 (0, π, 0, π, π )

D̄5 (0.394, 0.0◦) F D59 (π
2 , 3π

2 , 0, 0, π )

D̄9 (0.578, 0.0◦) F D59 (π
2 , 3π

2 , 0, 0, π )

D̄8 (0.560, 0.0◦) F D8 (π
2 , π

2 , 0, π, 0)

D̄10 (0.678, 0.0◦) F D10 (π
2 , 3π

2 , 0, 0, π )

The same notation is used as in Table 2

families the stability type changes providing bifurcations of new inclined elliptic families.
From the points P1 and P2 two new families of three-dimensional symmetric periodic orbits
are generated, i.e. H1,F and H2,G . These are connected with families of direct orbits and
are presented in Fig. 9b. In Fig. 9c we present the families of three-dimensional symmetric
periodic orbits which start from bifurcation points with e >0.0. We note here that two
families of 3D retrograde symmetric periodic orbits are connected with the families of the
corresponding direct periodic orbits and terminate to the bifurcation points of the planar
problem.
In Fig. 10 we present MEGNO stability maps. The retrogarde family H2,G can be seen in
Fig. 10b. The regions of quasiperiodic motion surrounding stable branches of the retrograde
families R2 and R3 may be seen in Fig. 10c while the prograde families D16, D59 and
D8 may be seen in Fig. 10b–d respectively and we identify family D10 in Fig. 10d. There
are also regions of quasiperiodic motion associated with libration of the prograde angle
φ = φ2(identified by circles), the retrograde angle φ	 = φ16 (identified by down triangles),
and regions in Fig. 10b, c associated with libration of the resonant angle φ4 (identified by
squares). The Kozai resonance occurs at high inclination and/or high eccentricity in panels
(a) and (b).
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(a) (b)

(c)

Fig. 9 Resonance: 7/9. Projection of the families of 3D symmetric periodic orbits (direct and retrogarde) on
the planes: a e0 − i0 for nearly circular orbits, b (e0 − i0) for elliptic orbits which bifurcate from the points
P1 and P2. c (e0 − i0) for direct and retrograde elliptic orbits. Blue (red) color indicates stability (instability).
The magenta color denotes double instability

5.5 The 5/8 resonance

The three-dimensional families of symmetric periodic orbits, direct or retrograde, in the
case of 5/8 resonance are presented in Table 4 and in Fig. 11. We note here that there exist
four families of 3D retrograde periodic orbits which are connected with the families of the
corresponding direct orbits forming bridges and terminate to the bifurcation points of the
planar problem. These are: R0,F − D0,F , R0,G − D10, R1 − D6, R2 − D5. The other two
families, R3 and R4, starting from high eccentricity values terminate to a collision orbit with
Sun having stable or unstable orbits respectively.
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(a) (b)

(c) (d)

Fig. 10 Resonance: 7/9. Stability maps for a φ = φ	 = 0, ω = 0, b φ = φ	 = π, ω = π , c φ = 0 (φ	 =
π), ω = π

2 and d φ = π (φ	 = 0), ω = π
2 . For all cases we set Ω = 0

In Fig. 12 we presentMEGNO stability maps. The regions of quasiperiodic motion surround-
ing stable branches of the retrograde families R2 and R3 may be seen in Fig. 12c. However,
the region of quasiperiodic motion surrounding the stable branch of family R0,G in Fig. 12a is
very small. The families of three-dimensional direct orbits can be identified in the following
figures: D6 in Fig. 12a, D38 in Fig. 12b, D5 in Fig. 12c and finally D7 and D9 in Fig. 12d.
There are also regions of quasiperiodic motion associated with libration of the prograde angle
φ = φ3(identified by circles), the retrograde angle φ	 = φ13 (identified by up triangles), and
large regions in Fig. 12b, c associated with libration of the resonant angle φ5 (identified by
squares). The Kozai resonance occurs at high inclination and/or high eccentricity in panels
(a), (b) and (d) and strongly unstable regions cover the biggest parts of the grid of initial
conditions (φ = π, ω = π

2 ).

5.6 The 8/13 resonance

The three-dimensional families of symmetric periodic orbits, direct or retrograde, in the
vicinity of 8/13 resonance are shown in Table 5 and in Fig. 13. We remark here that only
two families of 3D retrograde periodic orbits are connected with the families of the 3D direct
orbits forming bridges, i.e. R0,F − D0,F and R0,G − D0,G . There is another family starting
from the point R1 and terminates to the point R2. The last one, i.e. family R3, starts from
high eccentricity value and terminates to a collision orbit with Sun including stable orbits.
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Table 4 The critical 5/8 resonant orbits and the bifurcating families from the planar circular to the 3D circular
model

v.c.o (e0, i0) Type Family Name (ω, Ω, M, φ, φz ) B(e∗0 , i∗0 )

R̄0 (0.0, 180◦) F R0,F (π
2 , π

2 , 0, 0, π
2 ) B(0.0, 165.3◦)

( 3π2 , π
2 , π, π, π

2 )

D̄0 (0.0, 0.0) F D0,F ( 3π2 , π
2 , π, 0, π

2 )

R̄0 (0.0, 180◦) G R0,G (0, 0, 0, 0, 0) B(0.0, 159.3◦)
(π, 0, π, π, 0)

D̄10 (0.738, 0.0) G D10 (π, 0, π, π, 0)

R̄1 (0.274, 180◦) G R1 (π, π, π, 0, π )

D̄6 (0.558, 180◦) G D6 (π, π, π, 0, π )

R̄2 (0.454, 180◦) F R2 (π
2 , 3π

2 , 0, π, 3π
2 )

D̄5 (0.355, 180◦) F D5 (π
2 , 3π

2 , 0, 0, 3π
2 )

R̄3 (0.557, 180◦) F R3 (π
2 , 3π

2 , 0, π, 3π
2 )

R̄4 (0.668, 180◦) F R4 ( 3π2 , 3π
2 , π, 0, 3π

2 )

D̄0 (0.000, 0.0◦) G D02 (π, 0, π, π, 0)

D̄2 (0.065, 0.0◦) G D02 (π, 0, π, π, 0)

D̄1 (0.052, 0.0◦) F D14 ( 3π2 , 3π
2 , π, π, 3π

2 )

D̄4 (0.304, 0.0◦) F D14 ( 3π2 , 3π
2 , π, π, 3π

2 )

D̄3 (0.293, 0.0◦) G D38 (π, 0, π, π, 0)

D̄8 (0.639, 0.0◦) G D38 (π, 0, π, π, 0)

D̄7 (0.565, 0.0◦) F D7 ( 3π2 , 3π
2 , π, π, 3π

2 )

D̄9 (0.732, 0.0◦) F D9 ( 3π2 , 3π
2 , π, π, 3π

2 )

The same notation is used as in Table 2

Fig. 11 The 5/8 resonance:
projection of the families of
retrograde symmetric periodic
orbits in the 3D circular RTBP on
the plane (e0 − i0). Blue (red)
colour indicates stability
(instability)
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(a) (b)

(c) (d)

Fig. 12 The 5/8 resonance: Stability maps for a φ = φ	 = 0, ω = 0, b φ = φ	 = π, ω = 0, c
φ = 0 (φ	 = π), ω = π

2 and d φ = π (φ	 = 0), ω = π
2 . For all cases we set Ω = 0

Fig. 13 The 8/13 resonance:
Projection of the families of
retrograde symmetric periodic
orbits in the 3D circular RTBP on
the plane (e0 − i0). Blue (red)
colour indicates stability
(instability)

123



52 Page 20 of 25 T. Kotoulas et al.

Table 5 The critical 8/13 resonant orbits and the bifurcating families from the planar circular to the 3D circular
model

v.c.o (e0, i0) Type Family Name (ω, Ω, M, φ, φz ) B(e∗0 , i∗0 )

R̄0 (0.0, 180◦) F R0,F (π
2 , 3π

2 , 0, 0, π
2 ) B(0.0, 143.59◦)

( 3π2 , 3π
2 , π, π, π

2 )

D̄0 (0.0, 0.0) F D0,F ( 3π2 , 3π
2 , π, π, π

2 )

R̄0 (0.0, 180◦) G R0,G (0, π, 0, 0, 0) B(0.0, 144.95◦)
(π, π, π, π, 0)

D̄0 (0.0, 0.0) G D0,G (π, π, π, π, 0)

R̄1 (0.478, 180◦) G R12 ( 3π2 , 3π
2 , π, π, π

2 )

R̄2 (0.504, 180◦) F R12 ( 3π2 , 3π
2 , π, π, π

2 )

R̄3 (0.613, 180◦) F R3 (π
2 , 3π

2 , 0, 0, π
2 )

D̄1 (0.365, 0.0◦) F D13 (π
2 , 3π

2 , 0, 0, π
2 )

D̄3 (0.453, 0.0◦) F D13 (π
2 , 3π

2 , 0, 0, π
2 )

D̄2 (0.441, 0.0◦) G D2 (0, 0, 0, 0, 0)

D̄4 (0.598, 0.0◦) F D4 ( 3π2 , 3π
2 , π, π, π

2 )

The same notation is used as in Table 2

(a) (b)

(c) (d)

Fig. 14 The 8/13 resonance: Stability maps for a φ = φ	 = 0, ω = 0, b φ = φ	 = π, ω = 0, c
φ = φ	 = 0, ω = π

2 and d φ = φ	 = π, ω = π
2 . For all cases we set Ω = 0
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For the 8/13 mean motion resonance with Neptune, MEGNO stability maps are presented
in Fig. 14a–d. The region of quasiperiodic motion surrounding the stable branches of the
retrograde families R0,G and R3 may be seen in Fig. 14a, c. The family of retrograde periodic
orbits R0,F can also be seen in Fig. 14c. The families D2, D0,G , D13 and D4 of three-
dimensional direct orbits can be identified in Fig. 14a–d respectively. There are also regions
of quasiperiodic motion associated with libration of the prograde angle φ = φ5(identified by
circles), the retrograde angle φ	 = φ21 (identified by down triangles), and regions associated
with libration of the resonant angles φ7 and φ9 (identified by squares and up triangles). The
Kozai resonance occurs at high inclination and/or eccentricity in panels (a), (b) and (d).

6 Conclusions

In this paper, we computed families of two- and three-dimensional resonant symmetric ret-
rograde periodic orbits of the RTBP by considering μ = 5.15 × 10−5 (the normalized mass
of Neptune) and studied their stability type at higher order exterior mean motion resonances
withNeptune namely 4/5, 7/9, 5/8 and 8/13. Stable periodic orbits are surrounded by invariant
tori which correspond to quasiperiodic evolution and long-term stability (Siegel and Moser
1971; Contopoulos 2002). In more realistic models, such regions may not provide dynamical
stability for t → ∞ but long-term capture may occur.

For the circular planar model (Sect. 3), the retrograde circular periodic orbits of the
degenerate problem (μ =0) are continued for μ �= 0 forming the family RC . Contrary to
the circular family of direct orbits, along which gaps and instabilities occur, the family RC

has a smooth characteristic curve without gaps and consists of horizontally and vertically
stable periodic orbits. The resonant circular orbits of RC are bifurcation orbits for resonant
families of elliptic periodic orbits. All higher-order resonances which were examined here
have two families of retrograde elliptic periodic orbits: the family RI and the family RI I .
These families break in two segments at regions where close encounters between asteroid and
planet occur. Family RI starts from its bifurcation circular orbit with unstable orbits. Many
collison orbits appear along the family RI . The segments in higher eccentricities (RIb, .., RIe)
include mainly stable orbits (both horizontally and vertically). Bifurcation points from the
planar circular to planar elliptic problem and v.c.o. are located on these segments. On the
other hand, family RI I consists always of stable periodic orbits except for the case of R

5/8
I I a

which includes both unstable and stable periodic orbits. Unstable periodic orbits along the
family RI I are obtained only at close encounters.

For the elliptic model (0 < e′ < 1), we computed families of periodic orbits bifurcating
from families of the planar circular model at the critical points where T = 2kπ , k is an
integer. In the case of 4/5 resonance, there exist three pairs of families of periodic orbits; one
starting from the critical orbit of the circular family (family RE,0p is unstable and family
RE,0a , is stable) and the other two pairs bifurcate from points with e >0.0. For the 7/9 and
5/8 resonance, we computed eight families of retrograde periodic orbits. Some of them are
stable and the rest ones are unstable. In the case of 8/13 resonance we found ten families of
retrograde symmetric periodic orbits. The majority of them is unstable.

For the three-dimensional circular restricted 3-body problem, we found families of stable
three-dimensional retrograde periodic orbits in all cases of the examined MMRs. These
families bifurcate from v.c.o. and are connected with the families of direct orbits or terminate
to a collision orbit with Sun. For the 4/5 resonance, we found stable three-dimensional
retrograde periodic orbits along the family R1 instead of the direct ones in the same family,
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Fig. 15 Evolution of the orbital
elements of the TNO 2017QO33
including the gravitational effect
of the four giant planets (time
unit is years)

or equivalently in family D3, which are unstable. For the 7/9 resonance, we found stable
three-dimensional retrograde periodic orbits along the family R2 and especially in the interval
140◦ < i < 180◦. The families R1 and R3 also include segments with stable orbits and the
rest ones are unstable. Furthermore, families of stable direct orbits exist but the majority
of them are unstable. For the 5/8 resonance, we found stable three-dimensional retrograde
periodic orbits along the family R2 and especially in the interval 135◦ < i < 180◦. Stable
segments of orbits also exist along the families R0, R1 and R3. On the other side, themajority
of direct orbits is unstable. For the case of 8/13 resonance, segments of stable orbits exist
along all the families of three-dimensional retrograde symmetric periodic orbits; studying
the stability type of direct orbits, we found that many of them are unstable. In any case, stable
periodic orbits are surrounded by regions of initial conditions which correspond to librations
for all resonant angles φk .

Furthermore, we computed MEGNO stability maps for different initial values of the
argument of pericenterω and the prograde (retrograde) resonant angles φ (φ	) corresponding
to the periodic families. The stable branches of the periodic families may be seen in these
maps, as well as regions of quasiperiodic motion around these families. There are also stable
regions at small ecentricities (below Neptune’s collision line), due to the Kozai resonance
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or libration of a single resonant angle, φk . Therefore, the dynamical stability maps provide
information which is complementary to the computation of families of periodic orbits.

Morais and Namouni (2017) showed that TNO (471325) 2011 KT19, nicknamed Niku, is
currently in the 7/9 resonance with Neptune. The resonant argument φ4 librates around 180◦
and the current orbital elements approximately correspond to the region marked with square
symbols in Fig. 10b. Morais and Namouni (2017) also showed that TNO (528219) 2008
KV42, nicknamed Drac, is close to the 8/13 resonance with Neptune. Although there is no
libration of the associated resonant arguments for the nominal orbit, a clone with 3-σ increase
in semi-major axis exhibited libration of the resonant argument φ9 which corresponds to the
region marked with up triangles in Fig. 14b, d. According to the numerical integrations by Li
et al. (2019), TNO 2017 QO33 may be captured in the 4/5 resonance with Neptune. We show
in Fig. 15 an integration of the nominal orbit for±100,000 years which includes the timespan
investigated in Li et al. (2019). We see that libration in resonance is very short lived (less
than 20,000 years) due to frequent close encounters with the other giant planets which cause
a random walk in the semi-major axis. Since the argument of pericenter is approximately
constant during that time-interval there is apparent libration of all angles φk . In our CR3BP
model we would expect libration of the retrograde angle φ21 (region marked with down
triangles in Fig. 8b), however due to the orbit’s high eccentricity the effect of the other giant
planets (close encounters) cannot be neglected in this case.
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