
Celestial Mechanics and Dynamical Astronomy (2022) 134:29
https://doi.org/10.1007/s10569-022-10075-7

ORIG INAL ART ICLE

A stochastic optimization algorithm for analyzing planar
central and balanced configurations in the n-body problem

Alexandru Doicu1 · Lei Zhao1 · Adrian Doicu2

Received: 24 July 2021 / Revised: 6 March 2022 / Accepted: 14 March 2022 /
Published online: 3 June 2022
© The Author(s) 2022

Abstract
A stochastic optimization algorithm for analyzing planar central and balanced configurations
in the n-body problem is presented. We find a comprehensive list of equal mass central
configurations satisfying theMorse equality up ton = 12.We showsomeexemplary balanced
configurations in the case n = 5, as well as some balanced configurations without any axis
of symmetry in the cases n = 4 and n = 10.

Keywords Central configuration · Balanced configuration · Stochastic optimization · Morse
equality · Krawczyk operator

1 Introduction

The n-body problem is the problem of predicting motions of a group of celestial objects
interacting with each other gravitationally. A central configuration is an initial configuration
such that if the particles were all released with zero velocity, they would all collapse toward
the center of mass at the same time. In the planar case, central configurations serve as
initial positions for periodic solutions which preserve the shape of the configuration. More
generally, a balanced configuration leads to (periodic or quasi-periodic) relative equilibria in
higher-dimensional Euclidean spaces.

Several fundamental studies have addressed the questions of existence, finiteness, and
classification of central configurations. In this context, it should be pointed out that the
finiteness problem was included by Smale (1998) in his list of problems for this century. In
the case n = 3, all central configurations are known to Euler (1767) and Lagrange (1772).
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In chronological order, we mention the following non-exhaustive list of results concerning
enumeration of central configurations:

1. Xia (1991) made an exact count on the number of central configurations for the n-body
problem with many small masses,

2. Moeckel (2001) showed a generic finiteness of (n−2)-dimensional central configurations
of n bodies,

3. Hampton and Moeckel (2006) proved the finiteness for all positive masses in the case
n = 4,

4. Hampton (2019) strengthened the result of Moeckel (2001) in the case n = 5, and
5. Albouy and Kaloshin (2012) established a generic finiteness of planar central configura-

tions in the case n = 5.

An excellent concise survey on this topic can be found in Moeckel (2014b).
Aside from theoretical studies, numerical approaches for analyzing central configurations

are relevant in practice as they give an instructive picture on this matter. Themain ambition of
a numerical method is to find all (approximating) central configurations for a given number n
of fixed positive masses. In this context, the following contributions deserve to be mentioned.

1. Moeckel (1989) found a list of central configurations of n equalmasses by using a stochas-
tic algorithm based on the Multistart method, i.e., by repeatedly applying the steepest
descent Newton’s method with randomly chosen initial conditions.

2. Using a similar solution method (but with a root-finding routine taken from the SLATEC
library), Ferrario (2002) approximately computed all planar central configurations with
equal masses for n ≤ 9 and found 64 central configurations in the case n = 10.

3. Lee and Santoprete (2009) computed all isolated1 central configurations of the five-body
problem with equal masses. This was accomplished by using the polyhedral homotopy
method to approximate all the isolated solutions of the Albouy–Chenciner equations. The
existence of exact solutions, in a neighborhood of the approximated ones, was verified by
using the Krawczyk operator method.

4. Moczurad and Zgliczynski (2019) computed all planar central configurations with equal
masses for n ≤ 7. Standard interval arithmetic tools were used in conjunction with the
Krawczyk operatormethod to establish the existence and local uniqueness of the solutions.
As in Lee and Santoprete (2009), they also show that there exists non-symmetric central
configurations for n = 7, 8, 9. In a subsequent paper, Moczurad and Zgliczynski (Moczu-
rad and Zgliczynski 2020) presented a complete list of spatial central configurations with
equal masses for n = 5, 6 and provided their Euclidean symmetries.

Adopting the solution method proposed by Moeckel (1989) and Ferrario (2002), we develop
a stochastic optimization algorithm to analyze planar central and balanced configurations.
The paper is organized as follows. A succinct mathematical description of planar central
and balanced configurations is provided in Sect. 2. In Sect. 3, the stochastic optimization
algorithm is presented, while in Sect. 4, several approaches for testing the solutions are
described. Numerical results are given in Sect. 5, and some conclusions are summarized in
Sect. 6.

1 Actually all these configurations are isolated, as has been confirmed by the study ofMoczurad and Zgliczyn-
ski (2019).
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2 Planar central and balanced configurations

Consider n point massesm1, . . . ,mn > 0 with positions q1, . . . ,qn , where qi = (xi , yi )T ∈
R
2. The vector

q =
⎛
⎜⎝
q1
...

qn

⎞
⎟⎠ ∈ R

N

with N = 2n will be called a configuration. Let � be the subspace of RN consisting of
collisions, i.e.,

� = {q = (qT1 , . . . ,qTn )T | qi = q j for some i �= j}.
The Newtonian force function (negative of the Newtonian potential) Un(q) for the configu-
ration q ∈ R

N\� is defined by

Un(q) =
∑

1≤i< j≤n

mim j

||q j − qi || ,

where || · || is the Euclidean norm inR2, and for i ∈ {1, . . . , n}, we denote by ∇iUn(q) ∈ R
2

the derivative of Un with respect to the coordinates of qi , i.e.,

∇iUn(q) =

⎛
⎜⎜⎝

∂Un

∂xi
(q)

∂Un

∂ yi
(q)

⎞
⎟⎟⎠ =

n∑
j=1
j �=i

mim j

||q j − qi ||3 (q j − qi ).

Let

c =
( n∑
i=1

mi

)−1 n∑
i=1

miqi

be the center of mass of the configuration and S ∈ R
2×2 a positive definite symmetric matrix.

Definition 1 A configuration q = (qT1 , . . . ,qTn )T ∈ R
N\� is said to form a balanced con-

figuration with respect to the matrix S (in short BC(S)) if there exists a λ ∈ R\{0} such that
the equations

∇iUn(q) + miλS(qi − c) = 0, (1)

are satisfied for all i = 1, . . . , n. A configuration q = (qT1 , . . . ,qTn )T ∈ R
N\� is said to

form a central configuration (in short CC) if there exists a λ ∈ R\{0} for which Eqs. (1) are
satisfied with S = I2×2.

As such, central configurations are special cases of balanced configurations. As described
by Albouy and Chenciner (1998), balanced configurations are those configurations which
admit (in general quasi-periodic) relative equilibrium motions of the n-body problem in
some Euclidean space of dimension high enough. Central configurations are those balanced
configurations for which the corresponding relative equilibrium motions are periodic.
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Consider the diagonal action of O(2) on R
N , defined by

O(2) × R
N\� → R

N\�
(O,q) �→ Oq, (2)

where

Oq =
⎛
⎜⎝
Oq1

...

Oqn

⎞
⎟⎠

Lemma 2 Let q ∈ R
N\� be a BC(S) and O ∈ O(2) an orthogonal matrix. Then, Oq is a

BC(OSOT ).

Proof ForO ∈ O(2) and every i ∈ {1, . . . , n}, we define a new configuration q̂i by q̂i = Oqi .
Taking into account that q solves the system of equations

n∑
j=1
j �=i

mim j

||q j − qi ||3 (q j − qi ) + miλS(qi − c) = 0, i = 1, . . . , N , (3)

for some λ ∈ R\{0}, we multiply each equation from the left by O and obtain

0 =
n∑
j=1
j �=i

mim j

||̂q j − q̂i ||3 (̂q j − q̂i ) + miλOS(qi − c)

=
n∑
j=1
j �=i

mim j

||̂q j − q̂i ||3 (̂q j − q̂i ) + miλOSOT (̂qi − ĉ), i = 1, . . . , N ,

where ĉ, defined by ĉ = Oc, is the center of mass of q̂. Thus, if q forms a BC(S), then
q̂ = (̂qT1 , . . . , q̂Tn )T forms a BC(OSOT ). �	
Remark 3 The following comments can be made here.

1. If q ∈ R
N\� forms a central configuration and O ∈ O(2) is an orthogonal matrix, then

by Lemma 2, Oq is also a central configuration.
2. From Lemma 2, we may assume that the positive definite 2×2 matrix S is diagonal, i.e.,

S =
(

σx 0
0 σy

)
(4)

with σx , σy > 0. Indeed, if q is a BC(S) andO ∈ O(2) is an orthogonal matrix such that
OSOT = diag(σx , σy), then Oq is a BC(OSOT ) = BC(diag(σx , σy)). It is obvious that
the converse result also holds. Thus, the set of BC(S) in R

N\� corresponds one to one
with the set of BC(diag(σx , σy)). This bijection is given by the action defined in (2).

Remark 4 Lemma 2 only treats rotations and reflexions of balanced configurations. It is also
possible to dilate a balanced configuration. Let q be a configuration that forms a BC(S)

with respect to some λ ∈ R\{0} and let ς > 0 be some positive real number. Then, ςq =
(ςqT1 , . . . , ςqTn )T also forms a BC(S) with respect to ς−3λ.
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Thanks to Remark 3, we may assume that the matrix S is diagonal, i.e., S is as in Eq.
(4) with σx , σy > 0. In the following, we use the results established by Moeckel (2014a)
to introduce a Morse theoretical approach to Eq. (1) and a notion of non-degeneracy for
balanced configurations.

For ξ , η ∈ R
2, we define their inner product with respect to the positive definite diagonal

matrix S by
〈
ξ , η

〉
S := ξ T Sη ||ξ ||2S = ξ T Sξ ,

and accordingly, the S-weighted moment of inertia by

IS(q) =
n∑
j=1

m j (q j − c)T S(q j − c) =
n∑
j=1

m j ||q j − c||2S.

Remark 5 Assume that the configuration q is a BC(S). By taking the inner product of Eq. (1)
with qi − c and summing up over all i = 1, . . . , n , we obtain

n∑
i=1

(qi − c)T∇iUn(q) + λIS(q) = 0.

Thus,

λ = − 1

IS(q)

n∑
i=1

(qi − c)T∇iUn(q) = Un(q)

IS(q)
> 0.

The last equality follows from the translation invariance of Un and Euler’s homogeneous
function theorem. From this result, it is apparent that in the definition of balanced configu-
rations, the parameter λ cannot be chosen arbitrary; it depends on q and S.

We define the S-normalized configuration space N (S) as

N (S) = {q ∈ R
N\� | c(q) = 0, IS(q) = 1} ⊂ R

N .

Remark 6 Starting from a BC(S), it is possible to normalize this configuration so that the
new configuration is a BC(S) inN (S). Indeed, assume that q is a BC(S) with center of mass
c, i.e., the equation

n∑
j=1
j �=i

mim j

||q j − qi ||3 (q j − qi )

︸ ︷︷ ︸
=∇iUn(q)

+miλS(qi − c) = 0,

is satisfied for all i = 1, . . . , n. The configuration q can be normalized to q̃ ∈ N (S) by
means of the following procedure. Setting q̃i = √

1/IS(q)(qi − c), we find

∇iUn (̃q) = IS(q)∇iUn(q).

Consequently, we obtain

0 = IS(q)[∇iUn(q) + miλS(qi − c)] = ∇iUn (̃q) + mi IS(q)
3
2 λ︸ ︷︷ ︸

=̃λ(̃q)=̃λ

S̃qi ,
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and further,

Un (̃q)

IS(̃q)
= λ̃ = IS(q)

3
2 λ = IS(q)

1
2Un(q).

On the other hand, we have

c̃ =
( n∑
j=1

m j

)−1( n∑
j=1

m j q̃ j

)

=
( n∑
j=1

m j

)−1( n∑
j=1

m j

√
1

IS(q)
(q j − c)

)

=
√

1

IS(q)

( n∑
j=1

m j

)−1 ( n∑
j=1

m j (q j − c)
)

︸ ︷︷ ︸
=0

= 0,

and

IS(̃q) =
n∑
j=1

m j q̃Tj S̃q j = 1

IS(q)

n∑
j=1

m j (q j − c)T S(q j − c) = 1.

Thus, q̃ is a BC(S) with the parameter λ̃ = Un (̃q) > 0, and has the center of mass c̃ = 0 and
the S-weighted moment of inertia IS(̃q) = 1. Therefore, q̃ ∈ N (S). Explicitly this means,

n∑
j=1
j �=i

m j

||̃q j − q̃i ||3 (̃q j − q̃i ) +Un (̃q)S̃qi = 0, (5)

for i = 1, . . . , n, and

n∑
j=1

m j q̃Tj S̃q j = 1. (6)

Let V : N (S) → R be the restriction ofUn to the manifoldN (S). FromMoeckel (2014a),
we have the following result.

Proposition 7 Assume that S is a positive definite symmetric 2 × 2 matrix. Then, a configu-
ration q is a BC(S) if and only if its corresponding normalized configuration q̃ ∈ N (S) (as
in Remark 6) is a critical point of Ũn = Un |N (S) : N (S) → R.

Proposition 7 enlightens the fact that the dilation freedom of finding balanced configura-
tions, discussed in Remark 4, can be suppressed by looking for balanced configurations as
critical points ofUn on themanifoldN (S). However, the solutions of balanced configurations
(or central configurations) on N (S) may not be isolated. In this case, we introduce a notion
of non-degenerate critical point.

For q̃ ∈ Crit(Ũn), there exists a Hessian quadratic form on T̃qN (S) given locally by a
symmetric matrix H(̃q) = vT D2Ũn (̃q)v for v ∈ T̃qN (S). The nullity at a critical point
is defined as null(̃q) := dim(ker(H (̃q))). Instead of working in local coordinates on the
manifold N (S), we represent the Hessian by a N × N matrix (also called H(̃q)), whose
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restriction to T̃qN (S) gives the correct values. From Moeckel (2014a), the Hessian of Ũn :
N (S) → R at a critical point q̃ ∈ Crit(Ũn) is given by H(̃q)v = vTH(̃q)v, where

H(̃q) = D2Un (̃q) +Un (̃q)̂SM (7)

and

Ŝ =
⎛
⎜⎝
S · · · 0
...

. . .
...

0 · · · S

⎞
⎟⎠

︸ ︷︷ ︸
n blocks

, M =

⎛
⎜⎜⎜⎜⎜⎝

m1

m1 0
. . .

0 mn

mn

⎞
⎟⎟⎟⎟⎟⎠

.

If σx = σy , the normalized configuration spaceN (S) carries an O(2)-action. Hence, since
Ũn is O(2)-invariant, it descends to a function Ûn : N (S)/O(2) → R. For q̃ ∈ N (S), we
have

T[̃q] (N (S)/O(2)) ∼= T̃qN (S)/T̃q(O(2)̃q),

where [̃q] ∈ N (S)/O(2) represents the equivalence class of q̃. If q̃ ∈ N (S) is a critical
point of Ũn , then null(̃q) ≥ 1 and the equivalence class [̃q] ∈ N (S)/O(2) is a critical point
of Ûn . Then, the Hessian Ĥ([̂q]) of Ûn at [̃q] is obtained by descending H(̃q) to the space
T[̃q] (N (S)/O(2)). More precisely, if [v], [w] ∈ T[̃q] (N (S)/O(2)), where v,w ∈ T̃qN (S),
then Ĥ([̃q])([v], [w]) = H(̃q)(v,w).

The non-degeneracy of a critical point is defined as follows.

Definition 8 Let q be a BC(S) with S = diag(σx , σy). The configuration q is called non-
degenerate if one of the following cases holds.

Case 1: If σx = σy , then the Hessian Ĥ([̃q]) is non-degenerate, where q̃ represents the
corresponding normalized configuration of q.

Case 2: If σx �= σy , then the Hessian H(̃q) is non-degenerate, where q̃ represents the corre-
sponding normalized configuration of q.

It should be pointed out that if q̃ = (̃qT1 , . . . , q̃Tn )T is a (normalized) central configuration,
then the mutual distances Ri j = ||̃q j − q̃i || satisfy the Albouy–Chenciner equations (Albouy
and Chenciner 1998),

fi j (R) :=
n∑

k=1

mk[Sik(R2
jk − R2

ik − R2
i j ) + S jk(R

2
ik − R2

jk − R2
i j )] = 0, (8)

for all 1 ≤ i < j ≤ n, where R = (R12, R13, . . . , Rn−1.n)
T and

Si j =
{
1/R3

i j + λ′,
0,

i �= j
i = j

, (9)

λ′ = −Un (̃q)/

n∑
k=1

mk . (10)

Conversely, if the quantities Ri j are the mutual distances of some configuration q̃ and they
satisfy Eq. (8), then the configuration is central (Albouy and Chenciner 1998). For a detailed
derivation of the Albouy–Chenciner equations, we refer to Albouy and Chenciner (1998),
and Hampton and Moeckel (2006).

In the forthcoming analysis,wewill consider only normalized configurations and renounce
on the tilde character (∼).
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3 Stochastic optimization algorithm

Consider the system of nonlinear equations

f(q) = 0 (11)

withq ∈ B = [a1, b1]×[a2, b2] . . .×[aN , bN ] ⊂ R
N , f(q) = ( f1(q), f2(q), . . . , fM (q))T ∈

R
M , M ≥ N , and fi : B → R being continuous functions. The system of Eqs. (11) can be

transformed into a nonlinear least-squares problem by defining the objective function

F(q) = 1

2
||f(q)||2.

Since by construction, F(q) ≥ 0, we infer that a global minimum q� of F(q) satisfies
F(q�) = 0 and consequently f(q�) = 0; thus, q� is a root of the corresponding system of
equations. Finding all (global) minima q� with F(q�) = 0 corresponds to locating all the
roots of the system. If some local minima of F(q) will have function value greater than zero,
they will be discarded since they do not correspond to the roots of the system.

The task of locating all local minima of a multidimensional continuous differentiable
function F : B ⊂ R

N → R may be defined as follows: Find all q�
i ∈ B ⊂ R

N that satisfy

q�
i = arg min

q∈Bi
F(q), Bi = B ∩ {q | |q − q�

i | < ε}.

Among several methods dealing with this problem, stochastic methods are the most popular
due to their effectiveness and implementation simplicity. The widely used stochastic method
is Multistart. In Multistart, a point is sampled uniformly from the feasible region, and sub-
sequently a local search is started from it. The weakness of this algorithm is that the same
local minima can be repeatedly found, wasting so computational resources. For this reason,
clustering methods that attempt to avoid this drawback have been developed (Becker et al.
1970; Törn 1978; Boender et al. 1982; Kan and Timmer 1987a, b). A cluster is defined as a
set of points that are assumed to belong to the region of attraction of the same minimum, and
so, only one local search is required to locate it. The region of attraction of a local minimum
q� is defined as

A(q�) = {q | q ∈ B ⊂ R
N , L(q) = q�},

whereL(q) is the point where the local search procedureL terminates when started at point q.
Here, L is a deterministic local optimization method such as BFGS (Fletcher 1970), steepest
descent, and modified Newton. Representative for clustering techniques is the Minfinder
method of Tsoulos et al. (2006). This method, which is illustrated in Algorithm 1, relies on
the Topographical Multilevel Single Linkage of Ali and Storey (1994) and is the heart of
our stochastic optimization method. However, the method has some additional features that
serve our purpose. The following key elements are apparent in Algorithm 1:

1. the selection of a starting point for the local search,
2. the generation of sampling points,
3. the local optimization method,
4. the specification of the set of distinct solutions, and
5. the stopping rule.

Their description is laid out in the following subsections.
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Before proceeding, we note that in our case, the dimensions of the optimization problem
are M = N = 2n, where n is the number of masses. The vector q stands for a configuration;
that is, q includes the Cartesian coordinates of the point masses,

q = ((x1, y1), . . . , (xn, yn))
T ∈ R

N\�.

For simplicity, we restrict ourselves to the case of equal masses, i.e., mi = m for all i =
1, . . . , n. According to Eq. (5) and for S = diag(σx , σy), the functions fi (q) that determine
the objective function F(q) are

f2i−1(q) =
n∑
j=1
j �=i

m
x j − xi
R3
i j

+Un(q)σx xi , (12)

f2i (q) =
n∑
j=1
j �=i

m
y j − yi
R3
i j

+Un(q)σy yi , (13)

for i = 1, . . . , n, where Un
(
q
) = ∑

1≤i< j≤n m
2/Ri j with Ri j = ||qi − q j ||. In view of Eq.

(6), that is,

n∑
i=1

m
(
σx x

2
i + σy y

2
i

) = 1, (14)

the following simple bounds on the variables

− 1√
mσx

≤ xi ≤ 1√
mσx

, (15)

− 1√
mσy

≤ yi ≤ 1√
mσy

(16)

are imposed. Thus, we are faced with the solution of a nonlinear least-squares problem with
simple bounds on the variables.

3.1 Selection of a starting point

In theMinfinder algorithm, a point is considered to be a start point if it is not too close to some
already located minimum or another sample, whereby the closeness with a local minimum or
some other sample is guided through the so-called typical distance and the gradient criterion.
In our implementation, we disregard the gradient criterion because we intend to capture as
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many solutions as possible. In this regard, according to Tsoulos et al. (2006), a point s is
considered as start point if none of the following conditions holds.

1. There is an already located minimum q ∈ Q that satisfies the condition

C1 : ||s − q|| < dmin(Q), dmin(Q) = min
i, j;i �= j

||qi − q j ||, qi ,q j ∈ Q. (17)

2. s is near to another sample point s′ ∈ S that satisfies the condition

C2 : ||s − s′|| < rt. (18)

In Eq. (18), rt is a typical distance defined by

rt = 1

L
Rt, Rt =

L∑
i=1

||si − L(si )||, (19)

where si are starting points for the local search procedureL, and L is the number of performed
local searches. Themain idea behind Eq. (19) is that after a number of iterations and a number
of local searches, the quantity rt will be a reasonable approximation for the mean radius of
the regions of attraction.

3.2 Generation of sampling points

A powerful sampling method should create data that accurately represents the underlying
function preserving the statistical characteristics of the complete dataset. The following
sampling methods are implemented in our algorithm.

1. Pseudo-Random Number Generators (Marsaglia and Tsang 2000; Matsumoto and
Nishimura 1998). These methods attempt to generate statistically uniform random num-
bers within the given range. They are fast and simple to use, but the samples are not
distributed uniformly enough especially for the cases of a low number of sampling points
and/or large number of dimensions.

2. Chaotic Methods (Dong et al. 2012; Gao and Wang 2007; Gao and Liu 2012). Theo-
retically, chaotic motion can traverse every state in a certain region. As compared to
pseudo-random number generators, chaotic initialization methods can form better distri-
butions in the search space due to the randomness and non-repetitivity of chaos.

3. Low Discrepancy Methods. These methods have the support of theoretical upper bounds
on discrepancy (i.e., non-uniformity) and belong to the category of deterministic methods.
(No randomness is involved in their algorithms.) Uniform populations are created using
quasi-random or sub-random sequences that cover the input space quickly and evenly,
while the uniformity and coverage improve continually asmore data points are added to the
sequence. Halton, Sobol, Niederreiter, Hammersley, and Faure are well-known sequences
from this category. These work well in low dimensions, but they lose uniformity in high
dimensions.

4. Latin Hypercube (McKay et al. 1979). Latin hypercube sampling partitions the input
space into bins of equal probability and distributes the samples in such a way that only
one sample is located in each axis-aligned hyperplane. The method is useful when the
underlying function has a loworder distribution but produces clustering of sampling points
at high dimensions.

5. Quasi-Oppositional Differential Evolution (Rahnamayan et al. 2006, 2008). The method
can be regarded as a two-step method. The algorithm (1) generates a random original
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population, (2) determines the opposition points of the original population, (3) merges
both populations into one big population, and finally, (4) selects the best individuals
according to the lowest values of the objective function.

6. Centroidal Voronoi Tessellation (Du et al. 2010). Centroidal Voronoi tessellation produces
sample points located at the mass center of each Voronoi cell covering the input space.
Actually, the algorithm starts with an initial partition and then iteratively updates the
estimate of the centroids of the corresponding Voronoi subregions. The initial population
can be generated, for example, by pseudo-random number generators or low discrepancy
methods. One drawback of the method lies in being computationally demanding for high-
dimensional spaces.

3.3 Local optimizationmethods

There is an impressive number of optimization software packages for nonlinear least squares
and general function minimization. [For a survey, we refer to the monograph by More and
Wright (1993).] The following optimization algorithms are implemented in our computer
code.

1. The BFGS algorithm of Byrd et al. (1995). The algorithm relies on the gradient projection
method to determine a set of active constraints at each iteration and uses a line search
procedure to compute the step length, as well as, a limited memory BFGS matrix to
approximate the Hessian of the objective function.

2. The TOLMIN algorithm of Powel (1989). The algorithm includes (1) quadratic approxi-
mations of the objective function whose second derivative matrices are updated by means
of the BFGS formula, (2) active sets technique, and (3) a primal–dual quadratic program-
ming procedure for calculation of the search direction. Each search direction is calculated
so that it does not intersect the boundary of any inequality constraint that is satisfied and
that has a “small” residual at the beginning of the line search.

3. TheDQED algorithm due toHanson andKrogh (1992). The algorithm is based on approx-
imating the nonlinear functions using the quadratic-tensor model proposed by Schnabel
and Frank (1984). The objective function is allowed to increase at intermediate steps, as
long as a predictor indicates that a new set of best values exists in a trust region (defined
by a box containing the current values of the unknowns).

4. The optimization algorithms implemented in the Portable, Outstanding, Reliable and
Tested (PORT) library. The algorithms use a trust-region method in conjunction with
a Gauss–Newton and a quasi-Newton model to compute the trial step (Dennis et al.
1981a, b). When the first trial steps fail, the alternate model gets a chance to make a
trial step with the same trust-region radius. If the alternate model fails to suggest a more
successful step, then the current model is maintained for the duration of the present
iteration step. The trust-region radius is then decreased until the new iterate is determined
or the algorithm fails. In particular, the routine DRN2GB for nonlinear least squares
and working in reverse communication is used in our applications. Note that reverse-
communication drivers return to their caller (e.g., the main program) whenever they need
to know f(q) and/or ∂f(q)/∂q at a new q. The calling routine must then compute the
necessary information and call the reverse-communication driver again, passing it the
information it wants.
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In some applications, the computation of the Jacobian matrix ∂f(q)/∂q is more time con-
suming than the computation of f(q). To reduce the number of calls to the derivative routine,
the above deterministic optimization algorithms are used in conjunction with some stochastic
solvers, as, for example, (1) evolutionary strategy, (2) genetic algorithms, and (3) simulated
annealing. Essentially, the algorithm is organized so that the output delivered by a stochastic
algorithm is the input (initial guess) of a deterministic algorithm. It should be point out that
the user has the option to use the stochastic algorithms in a stand-alone mode.

3.4 Set of distinct solutions

For a central configuration (σx = σy), if

q = ((x1, y1), . . . , (xn, yn))
T

is a solution, then any (i) permuted solution

Pq = ((xσ(1), yσ(1)), . . . , (xσ(n), yσ(n)))
T ,

(ii) rotated solution

Rαq = ((x ′
1, y

′
1), . . . , (x

′
n, y

′
n))

T with

(
x ′
i
y′
i

)
= R(α)

(
xi
yi

)
,

where R(α) is a rotation matrix of angle α, (iii) conjugated solution Cq, where Cq stands for
the reflected solutions with respect to the x- and y-axis, i.e.,

Cxq = ((x1,−y1), . . . , (xn,−yn))
T ,

and

Cyq = ((−x1, y1), . . . , (−xn, yn))
T

, respectively, are also solutions. For a balanced configuration, if q is a solution, then (1)
any permuted solution, (2) a solution rotated by α = π , and (3) any conjugated solution are
also solutions. Taking these results into account, we define the set of distinct solutions Q as
follows. First, we consider the set of all solutions

Q0 = {q ∈ R
N\� | q solves the optimization problem}.

Then, for central configurations, we introduce an equivalence relation according to which
two elements q1,q2 ∈ Q0 are called equivalent (in notation q1 ∼ q2) if and only if one of
the following conditions are satisfied: (i) There exists a permutation P such that q1 = Pq2,
and (ii) there exists an angle α such that q1 = Rαq2, (iii) q1 = Cxq2, and (iv) q1 = Cyq2.
For balanced configurations, the equivalence relation is: q1 ∼ q2, where q1,q2 ∈ Q0, if and
only if one of the following conditions are satisfied: (i) There exists a permutation P such
that q1 = Pq2, (ii) q1 = Rπq2, (iii) q1 = Cxq2, and (iv) q1 = Cyq2. In both cases, the set
of distinct solutions Q is Q = Q0/ ∼.
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An important step of the algorithm is to test if a solution q, computed by means of a local
optimization method, i.e., q ∈ Q0, belongs to the set of (distinct) solutions Q = {qi }Nsol

i=1 ;
otherwise, q will be included in Q. For doing this, we use the following procedure: If (1)
the objective function at q is smaller than a prescribed tolerance and (2) the ordered set of
mutual distances {Ri j } corresponding to q does not coincide with the ordered set of mutual
distances {R′

i j } corresponding to any q′ ∈ Q, then q is inserted in the set of solutions Q.

3.5 Stopping rules

A reliable stopping rule should terminate the iterative process when all minima have been
collected with certainty. Several Bayesian stopping rules make use (1) of estimates of the
fraction of the uncovered space (Zieliński 1981) and the number of local minima (Boender
and Kan 1987), or (2) on the probability that all local minima have been observed (Boender
and Romeijn 1995). For functions with many local minima, these stopping rules are not
very efficient, because, for example, in some cases, the number of local searches must be
greater than the square of the located minima. More effective termination criteria based on
asymptotic considerations have been designed by Lagaris and Tsoulos (2008). These include
(1) the Double-Box stopping rule, which uses a Monte Carlo-based model that enables the
determination of the coverage of the bounded search domain, (2) the Observables stopping
rule, which relies on a comparison between the expectation values of observable quantities to
the actually measured ones, and (3) the Expected Minimizers stopping rule, which is based
on estimating the expected number of local minima in the specified domain.

The Double-Box stopping rule can be summarized as follows. Choose the integers K and
N 0
s . Let B2 be a larger box that contains B such that μ(B2) = 2μ(B), where μ(B) is the

measure of B. At every iteration k, where 1 ≤ k ≤ K , sample B2 uniformly until N 0
s points

fall in B. After k iterations, let Mk be the accumulated (total) number of points from B2.
Then, the quantity δk = kN 0

s /Mk has an expectation value
〈
δ
〉
(k) = (1/k)

∑k
i=1 δi that tends

to μ(B)/μ(B2) = 1/2 as k → ∞, while the variance σ 2
(k)(δ) = (1/k)

∑k
i=1(δi − 〈

δ
〉
(k))

2

tends to zero as k → ∞. The variance is a smoother quantity than the expectation and is
better suited for a termination criterion. Actually, the iterative process is stopped when the
variance σ 2

(k)(δ) is below a prescribed tolerance.
From the above discussion, it is apparent that the Double-Box stopping rule requires a

specific sampling. In order to implement all samplingmethods into a common framework, we
generate a set S = {si }Ns

i=1 of Ns = K N 0
s sample points in the box B, where K is the number

of disjoint subsets in which the set S is split, i.e., S = ∪K
k=1Sk , and N 0

s the number of sample
points in each subset Sk . Because in some applications, the requirement of finding as many
solutions as possible asks for a very small tolerance of the Double-Box stopping rule (and so,
for a large number of iterations), we use an alternative termination criterion: If the number
of solutions Nsol(k) does not change within k� ≤ K iteration steps, i.e., Nsol(k) = Nsol(l)
for all l = k − k� + 1, . . . , k − 1, the algorithm stops. Algorithm 2 illustrates the main steps
of the stochastic optimization method used in this work.
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4 Testing solutions

In the post-processing step, it is straightforward to check

1. if for any configuration q = (qT1 , ...,qTn )T , the center of mass of the configuration is
located at the vertex (0, 0), that is, if the condition

∑n
i=1 miqi = 0 is satisfied,

2. if for any configuration q = (qT1 , ...,qTn )T , the S-weighted moment of inertia is normal-
ized to one, that is, if the condition

∑n
j=1 m jqTj Sq j = 1 is satisfied, and
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3. if for any central configuration q = (qT1 , ...,qTn )T , the residual of the Albouy–Chenciner
equations defined as

� =
√ ∑

1≤i< j≤n

f 2i j (R),

where (cf. Eq.8)

fi j (R) = m
n∑

k=1

[Sik(R2
jk − R2

ik − R2
i j ) + S jk(R

2
ik − R2

jk − R2
i j )], 1 ≤ i < j ≤ n

and Ri j = ||qi − q j ||, is sufficiently small.

Two additional tests related to the fulfillment of the Morse equality and the uniqueness of
the solutions are listed below.

4.1 Morse equality

A drawback of the algorithm is that there is no guarantee that in a finite number of steps, all
solutions are found. Some hope that the set Q, at least for small n, is complete, that comes
from the Morse equality: If Ûn : N (S)/SO(2) → R is a Morse function, we have

∑
k

(−1)kνk = χ(N (S)/SO(2)) = (−1)n(n − 2)!, (20)

where νk are the number of critical points of index k and χ(N (S)/SO(2)) is the Euler
characteristic ofN (S)/SO(2) (Ferrario 2002). Each central configuration q = (qT1 , ...,qTn )T

gives rise to central configurations (qTσ(1), ...,q
T
σ(n))

T for all σ ∈ Sn , where Sn is the group
of permutations of n elements. When the configuration has an axis of symmetry, there are
n!/ j(q) many distinct critical points, where j(q) is the size of the isotropy group of the
central configuration q. Otherwise, when the configuration has no axis of symmetry, there
are n!/ j(q) many distinct critical points, as well as their reflections with respect to an axis in
the plane; hence, there are 2n!/ j(q) distinct critical points. Let i(q) = j(q) when q has an
axis of symmetry and i(q) = j(q)/2 when q has no axis of symmetry. Furthermore, let h(q)

be the Morse index of q. Then, for central configurations, the Morse equality (20) becomes

Nsol∑
i=1

(−1)h(qi )

i(qi )
= (−1)n

n(n − 1)
. (21)

The quantities in Eq. (21) are computed as follows.

1. For a non-degenerate solution q, the Morse index is given by the number of negative
eigenvalues of the Hessian matrix (cf. Eq. 7)

H(q) = D2Un(q) +Un(q)SM, (22)

where D2Un(q) is computed as

D2Un(q) = (Di j )
n
i, j=1 ∈ R

2n×2n,

Di j = m2

R3
i j

(I2×2 − 3ui juTi j ) ∈ R
2×2, i �= j,
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Di i = −
n∑
j=1
j �=i

Di j ,

ui j = (qi − q j )/Ri j .

2. The isotropy index is computed as in Ferrario (2002): We count all configurations that
are O(2) invariant; that is, for a configuration q, we compute the isotropy index i(q).
Specifically, for any collinear configuration, we take i(q) = 2, while for any non-collinear
configuration, we take into account that this type of configuration can have (1) as isotropy
subgroup, a dihedral group or the cyclic group of order 2, in which case i(q) is the number
of reflection lines of polar angle α0 (with 0 ≤ α0 < 180circ), or (2) no reflection axis, in
which case i(q) = 1/2, i.e., the configuration contributes to the sum in Eq. (21) twice.
A reflection line can be (1) a ray passing through the vertex at (0, 0) and a point mass
or (2) the bisector of the angle with the vertex at (0, 0) and the rays passing through two
neighboring points.

4.2 Uniqueness of the solutions

To test if in a small neighborhood of each numerical solution there is a unique exact solution,
we use an approach based on the Krawczyk operator method (Lee and Santoprete 2009;
Moczurad and Zgliczynski 2019, 2020). This approach, that works hand in hand with the
optimization method used, is summarized below.

Consider an overdetermined system of nonlinear equations f(q) = 0 with q ∈ R
N ,

f(q) = ( f1(q), f2(q), . . . , fM (q))T ∈ R
M , M ≥ N , and the objective function

F(q) = (1/2)||f(q)||2. In the Gauss–Newton method for solving the least-squares problem
minq F(q), the search direction pk = qk+1 − qk satisfies the equation JTf (qk)J f (qk)p =
−JTf (qk)f(qk), where J f (q) = Df(q) ∈ R

M×N is the Jacobian matrix of f . In other words,
the new iterate is computed as

qk+1 = qk − [JTf (qk)J f (qk)]−1JTf (qk)f(qk). (23)

An equivalent interpretation of the iteration formula (23) can be given by taking into account
that the gradient and the Gauss–Newton approximation to the Hessian of F(q) are given by
g(q) = DF(q) = JTf (q)f(q) and Jg(q) = Dg(q) = D2F(q) ≈ JTf (q)J f (q), respectively.
The first-order necessary condition for optimality requires that g(q) = 0. If this equation is
solved by means of the Newton method we are led to the iteration formula

qk+1 = qk − [Jg(qk)]−1g(qk), (24)

which coincides with that given by Eq. (23). In order to test the uniqueness, we use the
interval arithmetic library INTLIB (Kearfott et al. 1994), and let [q]r ⊂ R

N be an interval
set centered at a numerical solution q with radius r sufficiently small (e.g., r = 10−8). The
procedure involves two steps.

Step 1. Check if global minima of F exist in [q]r , that is, if 0 ∈ f([q]r ).
Step 2. Check if there exists a unique stationary point of F in [q]r , that is, if there exists a

unique zero of the first-order optimality equation g(q) = 0. For this purpose, we define
the Krawczyk operator by

K (q, [q]r , g) = q − Cg(q) + [IN×N − CJg([q]r )]([q]r − q),
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where C ∈ R
N×N is a preconditioning matrix which is sufficiently close to [Jg(q)]−1, and

IN×N is the identity matrix. A property of the Krawczyk operator, which provides a method
for proving the existence of a unique zero in a given interval set, states that if K (q, [q]r , g) ⊂
int[q]r , then there exists a unique zero of g in [q]r . Following the recommendations of
Kearfoot (1996), the computational process is organized as follows:

1. compute the matrices m(Jg([q]r ) and �Jg([q]r ) according to the decomposition
Jg([q]r ) = m(Jg([q]r ) + �Jg([q]r ), where m(Jg([q]r ) is the center matrix of the inter-
val matrix Jg([q]r ) (the center matrix of an interval matrix is defined componentwise
according to the rule m([x, x]) = (x + x)/2);

2. choose the preconditioning matrix C as the inverse of m(Jg([q]r ), that is, C =
[m(Jg([q]r )]−1;

3. to account for rounding errors in the calculation of g(q), compute instead g([q]r ) by using
interval arithmetic;

4. calculate K (q, [q]r , g) by means of the relation

K (q, [q]r , g) = q − Cg([q]r ) − C�Jg([q]r )([q]r − q).

Because any global minimum satisfies the first-order optimality condition, we infer that if
both conditions 0 ∈ f([q]r ) and K (q, [q]r , g) ⊂ int[q]r are satisfied, then there exists a
unique global minimum of F in [q]r , and so, a unique solution of the system of nonlinear
equations f(q) = 0 in [q]r .

For balanced configurations, the test is used with M = N = 2n and f(q) =
( f1(q), f2(q), . . . , fN (q))T , where f2i−1(q) and f2i (q), i = 1, . . . , n are given by Eqs.
(12) and (13), respectively. For central configurations, we have to consider a system of non-
linear equations, in which continuous rotations are eliminated. This is accomplished, by
rotating the configuration q such that the point mass with the maximum radial distance is on
the x-axis. Let i0 be the index of this point mass and q′ the rotated configuration. In addition
to the functions f2i−1(q) and f2i (q), i = 1, . . . , n, we include the constraint

f2n+1(q) = yi0 (25)

in the objective function F(q) and apply the above test in the case M = 2n + 1 > N = 2n
for the interval set [q′]r ⊂ R

N centered at the rotated solution q′.
Another option for checking the uniqueness is to perform a random test. If the solution

q ∈ Q is a unique global minimum of F , that is, if (1) the gradient of F vanishes at q, and
(2) the Hessian of F is positive definite at q, then the quadratic approximation

F(pi ) ≈ 1

2
(pi − q)T D2F(q)(pi − q) (26)

should be valid at a set of sample points {pi }Nq
i=1 ⊂ [q]r with r sufficiently small (e.g.,

r = 10−3||q||). As before, we use the Gauss–Newton approximation to the Hessian matrix,
i.e., D2F(q) ≈ JTf (q)J f (q), and generate Nq = 104 sample points pi by using a pseudo-
random number generator. For central configurations, we either eliminate a sample p if it is
a rotated version of q or, as before, include the constraint f2n+1(q) = yi0 in the objective
function F(q). In practice, we test if the RMS of the relative quadratic approximation errors

RMS(q) =
√√√√

∑Nq
i=1 ε(q,pi )2

Nq
, (27)
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Table 1 The number of central
configurations Nsol

n Nsol N0
s K k� k0 Computational time

hours:min:sec

3 2 1000 1000 100 1 0:00:01

4 4 1000 1000 100 1 0:00:04

5 5 1000 1000 100 1 0:00:10

6 9 1000 1000 100 1 0:00:26

7 14 1000 1000 100 2 0:01:05

8 20 1000 1000 100 62 0:01:32

9 42 1000 1000 100 34 0:02:04

10 67 1000 1000 100 112 0:12:55

11 114 2000 2000 500 534 0:32:24

12 191 1000 1000 200 279 1:07:40

Here,n is the number ofmasses, K the number of disjoint sample subsets,
N0
s the number of sample points in each subset, k� the number of sample

subsetswithin Nsol does not change, and k0 the subsetwhen Nsol appears
for the first time. The samplingmethods are a Faure sequence in the cases
n �= 11 and a Chaotic Method in the case n = 11

Fig. 1 The three central configurations that complete the list of Ferrario (2002). Note that Configurations 2
and 3 do not coincide with the regular decagon. Moreover, they are very similar but not identical; the radial
distances are slightly different and when they are aligned with the maximum radial distance along the x-axis,
Configuration 2 has (only) the axes of symmetry α1 = 72◦ and α2 = 162◦, while Configuration 3 has the
axes of symmetry α = 0◦ and α2 = 90◦

where (cf. Eq.26)

ε(q,pi ) = F(pi ) − 1
2 ||J f (q)(pi − q)||2
F(pi )

for i = 1, . . . , Nq, is below a prescribed tolerance.

5 Numerical results

The performances of the algorithm, and in particular, the number of numerical solutions
found, depend on the selection of a set of control parameters. These are chosen as follows.

1. The configuration q is considered to be an approximate solution to the optimization
problem, if F(q) < 10−20.
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Table 2 The number of balanced
configurations Nsol for n = 5
masses

σy Nsol N0
s K k� k0 Computational time

hours:min:sec

0.1 10 1000 1000 500 5 0:00:35

0.2 11 1000 1000 500 5 0:00:57

0.3 12 1000 1000 500 8 0:00:58

0.4 15 1000 1000 500 20 0:01:34

0.5 12 1000 1000 500 32 0:01:42

0.6 12 1000 1000 500 32 0:02:04

0.7 10 1000 1000 500 55 0:03:05

0.8 10 1000 1000 500 62 0:05:05

Fig. 2 Balanced configurations for five masses in the case σx = 1.0 and σy = 0.1. The xi and yi coordinates
are normalized according to the rules: xi → √

mσx xi and yi → √
mσy yi , respectively

2. The set of distinct solutions Q contains only non-degenerate solutions. If λi are the
eigenvalues of theHessianmatrix (22) sorted in ascending order, i.e., |λ1| ≤ |λ2| ≤ . . . ≤
|λ2n |, the central configuration q is assumed to be an approximate degenerate solution
if |λ2(q)| < 10−15, while for balanced configurations, the criterion is |λ1(q)| < 10−15.
In this context, the Morse index of a central configuration q is given by the number of
negative eigenvalues λi of the Hessian matrix for all i ≥ 2.
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Fig. 3 The same as in Fig. 2 but for σy = 0.2

3. Theordered sets ofmutual distances Ri j = ||qi−q j || and R′
i j = ||q′

i−q′
j || corresponding

to the configurations q = (qT1 , ...,qTn )T and q′ = (q′T
1 , ...,q′T

n )T , respectively, are
considered to be approximately identical if |Ri j − R′

i j | ≤ 10−6[1 + max(|Ri j |, |R′
i j )]

for all 1 ≤ i < j ≤ n.

The results of our numerical analysis are available at the website: https://github.com/Alexan
druDoicu/Balanced-and-Central-Configurations. The simulations were performed on a com-
puter Intel Core i5-3340MCPU 2.70GHz with 8 GB RAM. The output file for each balanced
configuration contains: (1) the value of the objective function, (2) the Cartesian coordinates
of the point masses, (3) the residual of the normalization condition for the moment of inertia,
(4) the Cartesian coordinates of the center of mass, (5) the RMS of the relative quadratic
approximation error and the maximum quadratic approximation error, (6) a logical flag indi-
cating if global minima of F exist in a small box around the solution, as well as, a logical
flag indicating if there is a unique stationary point of F in the same box, and (7) the number
of degenerate solutions and the corresponding Cartesian coordinates of the point masses. For
central configurations, the output file contains in addition (1) the residual of the Albouy–
Chenciner equations, (2) the Morse and isotropy indices, and (3) the residual of the Morse
equation.

For n ≤ 12, the existence and local uniqueness of any central configuration were indepen-
dently tested byMoczurad and Zgliczynski using their code based on the Krawczyk operator
method (Moczurad and Zgliczynski 2019).
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Fig. 4 The same as in Fig. 2 but for σy = 0.3

5.1 Central configurations

The number of central configurations form = 0.1 and σx = σy = 1.0 is listed in Table 1. The
results correspond to a number of masses n ranging from 3 to 12. The following comments
can be made here.

1. In all cases, the Morse equality (21) is satisfied, the conditions 0 ∈ f([q]r ) and
K (q, [q]r , g) ⊂ int[q]r are fulfilled, and the RMS of the relative quadratic approxi-
mation errors (27) is smaller than 2 × 10−4.

2. For n ≤ 10, all tested sampling methods (Double-Box, Chaotic, Faure, Sobol, Latin
Hypercube, and Quasi-Oppositional Differential Evolution) yield the same results. For
n = 11, only a Chaotic Method leads to a set of central configurations for which the
Morse equality is satisfied, while for n = 12 both a ChaoticMethod and a Faure sequence
fulfill this desire. The case n = 11, requiring large values for N 0

s , K , and k�, is the most
challenging.

3. A Chaotic Method followed by a Faure sequence is the most efficient. The reason is that
the sets of starting points are much smaller than the sets corresponding to other sampling
methods.

4. All central configurations corresponding to n ≤ 9 are identical to those presented in
Ferrario (2002). In this work, only 64 central configurations that do not satisfy the Morse
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Fig. 5 The same as in Fig. 2 but for σy = 0.4.(continued on next page)

equality have been found in the case n = 10. The remaining configurations are illustrated
in Fig. 1.

5. As compared to other solvers described in the literature (Lee andSantoprete 2009;Moczu-
rad and Zgliczynski 2019), the stochastic optimization algorithm is extremely efficient.
However, it should be pointed out that the methods used in Moczurad and Zgliczynski
(2019), and Lee and Santoprete (2009) are rigorous, in the sense that the complete list of
central configurations is provided; in our approach, there is no guarantee that the list is
complete.

5.2 Balanced configurations

The number of balanced configurations for five identical masses m = 1 is listed in Table
2, while the corresponding configurations are illustrated in Figs. 2, 3, 4, 5, 6, 7, 8, and 9.
The sampling method was a Faure sequence. In these simulations, we took σx = 1.0 and

123



A stochastic optimization algorithm for analyzing planar... Page 23 of 29 29

Fig. 6 The same as in Fig. 2 but for σy = 0.5

changed σy from 0.1 to 0.8 in steps of 0.1. Thus, the ratio σy/σx varies from 0.1 to 0.8. For
a comparison, the central configuration (σx = σy = 1.0) for five masses is shown in Fig. 10.
From our numerical analysis, the following conclusions can be drawn:

1. In all cases, the collinear configurations along the x- and y-axis are present. Moreover,
the collinear configurations along the x-axis are identical (as they should).

2. Some configuration shapes appear in all test examples. This result suggests that the
balanced configurations can be classified according to the similarity of their shapes.

3. The shapes of the central configurations are also similar with, for example, the shapes of
the balanced configurations in the case σy = 0.8. (The shapes (1), (2), (3), (4), and (5)
are similar to the shapes (10), (7), (2), (5), and (9), respectively.)

For n < 8, all central configurations have at least one axis of symmetry. Although we did
not perform an exhaustive numerical analysis, we make some preliminary comments related
to balanced configurations without any axis of symmetry.

1. In Chenciner (2017), it was asked whether in the case n = 4, balanced configurations
without any axis of symmetry exist. Through a numerical analysis, we found that for
σx = 1.0 and some specific values of σy , such balanced configurations exist (Fig. 11).
These results together with those corresponding to σx = 1.0 and σy ranging from 0.1 to
0.8 in steps of 0.1 are provided at website https://github.com/AlexandruDoicu/Balanced-
and-Central-Configurations.
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Fig. 7 The same as in Fig. 2 but for σy = 0.6

2. In the case n = 5, examples of balanced configurations without any axis of symmetry
are: (4) in Fig. 4 for σy = 0.3, and (4) and (10) in Fig. 5 for σy = 0.4.

3. In the case n = 10, there are 67 central configurations from which 11 are without any
axis of symmetry. For the same number of point masses, there are much more balanced
configurations, and accordingly, muchmore asymmetrical configurations. As an example,
wemention that forn = 10,σx = 1.0 andσy = 0.3,we found 270 balanced configurations
from which 90 are without any axis of symmetry. Some examples are illustrated in Fig.
12. Note that these results were computed by using a Chaotic Method and the control
parameters N 0

s = K = 2000 and k� = 500; the computational time was 59 minutes and
45 seconds.

6 Conclusions

A stochastic optimization algorithm for analyzing planar central and balanced configurations
in the n-body problem has been developed. The algorithm has been designed around theMin-
finder method developed by Tsoulos et al. (2006) by including additional sampling and local
optimization methods. In the post-processing stage, several solution tests have been incor-
porated. These are related to the fulfillment of the normalization condition for the moment
of inertia, the Albouy–Chenciner equations, the Morse equality, and the uniqueness of the
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Fig. 8 The same as in Fig. 2 but for σy = 0.7

solutions. Through a numerical analysis, we found an extensive list of central configurations
satisfying the Morse equality up to n = 12. However, based on a random search, the algo-
rithm is able to find the complete list of central configurations (at least for n ≤ 9) with a low
computational time cost. For balanced configurations, we showed some exemplary results in
the case n = 5, and some configurations without any axis of symmetry in the cases n = 4
and n = 10.

The developed algorithm is versatile and has a wide range of application. In addition to
the Cartesian coordinates (xi , yi ), the masses mi and the standard deviations σx and σy can
be included in the inversion process. Actually, the unknown vector q is defined as

q = [(x1, y1), . . . , (xn, yn),m1, . . . ,mn, σx , σy]T ,

and a logical array specifies which components of the vector are considered in the optimiza-
tion process. Moreover, the algorithm can be directly extended to spatial configurations and
additional types of constraints, similar to that given by Eq. (25), can be taken into account.
With these enhancements, the algorithm can be used, for example, to analyze n-body cen-
tral configurations with a homogeneous potential (Hampton 2019), to compute the central
configurations for the n-body problem by solving the Albouy–Chenciner equations, to deter-
mine the central configurations for the (n + 1)-body problem or the so-called super central
configurations (Xie (2010)) for the n-body problem.
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Fig. 9 The same as in Fig. 2 but for σy = 0.8

Fig. 10 Central configurations (σx = σy = 1.0) for five masses. The xi and yi coordinates are normalized as
in Fig. 2
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Fig. 11 Balanced configurations for four equalmasseswithout any axis of symmetry. They seem to be centrally
symmetric. In these simulations, σx = 1.0 and σy is increased from 0.25 (panel 1) to 0.33 (panel 9) in steps
of 0.01

Fig. 12 Some balanced configurationswithout any symmetry for tenmasses in the case σx = 1.0 and σy = 0.3
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