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Abstract
This paper compares the continuum evolution for density equation modelling and the Gaus-
sian mixture model on the 2D phase space long-term density propagation problem in the
context of high-altitude and high area-to-mass ratio satellite long-term propagation. The
density evolution equation, a pure numerical and pointwise method for the density propa-
gation, is formulated under the influence of solar radiation pressure and Earth’s oblateness
using semi-analytical methods. Different from the density evolution equation and Monte
Carlo techniques, for the Gaussian mixture model, the analytical calculation of the density
is accessible from the first two statistical moments (i.e. the mean and the covariance matrix)
corresponding to each sub-Gaussian distribution for an initial Gaussian density distribution.
An insight is given into the phase space long-term density propagation problem subject to
nonlinear dynamics. The efficiency and validity of the density propagation are demonstrated
and compared between the density evolution equation and the Gaussian mixture model with
respect to standard Monte Carlo techniques.

Keywords Density propagation · Density evolution equation · Gaussian mixture model ·
Semi-analytical equation · Solar radiation pressure · Planetary oblateness

1 Introduction

The possibility to exploit passive devices for the end-of-life disposal of high-altitude and high
area-to-mass ratio satellites has been studied (Krivov and Getino 1997; Lücking et al. 2011a,
b; Skoulidou et al. 2019). These satellites are usually small in size, restricted on the storage of
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on-board propellant and featured with little fuel left at the end of the mission, and are mainly
perturbed by Solar Radiation Pressure (SRP) and Earth’s oblateness (J2) (Krivov and Getino
1997; Lücking et al. 2011a, b; Colombo andMcInnes 2011a; Colombo et al. 2012; Skoulidou
et al. 2019; Gkolias et al. 2020). As an example, the H2020 ReDSHIFT (Revolutionary
Design of Spacecraft through Holistic Integration of Future Technologies) project boosted
the research into passive end-of-life disposal, aiming at finding passive means to mitigate the
proliferation of space debris ranging from Low Earth Orbit (LEO) to Geostationary Earth
Orbit (GEO) (Rossi et al. 2018).

For the long-term dynamical evolution in the context of passive end-of-life disposal,
the influence of orbit perturbations is essential to understand the motion of high-altitude
and high area-to-mass ratio satellites and predict their disposal. To study the preliminary
dynamical evolution, semi-analytical methods provide an efficient way to analyse the effect
of orbit perturbations, since they filter out the short periodic terms of the disturbing function,
retaining only long-term and secular terms. On the one hand, the numerical integration can
be performed with a larger integration step, leading to a lighter computational effort. On the
other hand, an insight into the dynamical characteristics is obtained as the periodic variation
of the dynamics over one orbit revolution is averaged out. At the same time, for long-term
propagation, an accuracy satisfying typical problem requirements is maintained (Colombo
et al. 2012; Wittig et al. 2017; Rossi et al. 2018).

The problem of the long-term evolution of the density, both the probability density and
uncertainty, was studied in several applications: the evolution of the interplanetary dust
(Gor’kavyi et al. 1997a, b), the dynamics of nanosatellite constellations (McInnes 2000), high
area-to-mass ratio spacecraft (Colombo and McInnes 2011b), the global debris population
(Nazarenko 1997; Smirnov et al. 2001), and the evolution of debris cloud (Letizia et al. 2015;
Letizia et al. 2016a, b; Frey 2020). The Density Evolution Equation (DEE) or continuity
equation is a general method applied to the aforementioned long-term density propagation
problemswithin different research domains. Itsmain idea is to consider the probability density
as a fluid with continuous properties, which changes under the dynamics under consideration
and can be obtained together with the propagation of the state variables. Thus, given the initial
condition of the density distribution and the specific perturbation terms to be considered, the
evolution of the density can be obtained with low computational effort. For the long-term
phase space density propagation problem studied in this paper, Differential Algebra (DA) is
another tool promising for the propagation of clouds of initial conditions in any sufficiently
smooth dynamical system (Armellin et al. 2010; Wittig et al. 2017). Different from DEE, it
can accomplish the density propagation with a single integration since it allows computation
of a high-order polynomial expansion of the final density state as a function of the initial
density state (Valli et al. 2013). In (Wittig et al. 2017), the authors introduce and combine
for the first time the two techniques of semi-analytical methods and DA to allow efficient
long-term evolution of a cloud of high area-to-mass ratio objects in Medium Earth Orbit
(MEO).

The uncertainty propagation problem has been analysed in many research directions in
astrodynamics, such as orbit determination (Lopez-Jimenez et al. 2020; Jia and Xin 2020),
relative motion (Yang et al. 2018), planetary re-entry (Halder and Bhattacharya 2011; Jiang
and Li 2019; Trisolini and Colombo 2021). A review of uncertainty propagation methods in
orbit mechanics is given in Luo and Yang (2017). Apart from the traditional method ofMonte
Carlo (MC), which is used to provide reliable density propagation results with a large num-
ber of scattered samples, multiple nonlinear uncertainty propagation methods are available,
such as Unscented Transformation (UT) (Julier et al. 1995, 2000; Julier and Uhlmann 2002,
2004), State Transition Tensor (STT) (Park and Scheeres 2006, 2007), Gaussian Mixture
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Model (GMM) (Vittaldev et al. 2016; Frey 2020), Arbitrary Polynomial Chaos (APC) (Jia
and Xin 2020), and the hybrid methods of Gaussian Mixture Model–Unscented Transfor-
mation (GMM-UT), Gaussian Mixture Model–State Transition Tensor (GMM-STT) (Yang
et al. 2018), etc. Both UT and APC are sample-based uncertainty methods as MC, requiring
the generation of a specific number of quasi-random samples. This is challenging when the
uncertainty space dimension is high. The main idea of GMM is to approximate an arbitrary
Probability Density Function (PDF) by a finite sum of weighted sub-Gaussian PDFs. Theo-
retically, the combined PDF can represent the real PDFwith a large number of sub-Gaussians.
For high-dimensional and nonlinear problems, as shown by Wittig et al. (2015), Jia and Xin
(2020), Feng et al. (2021), the methodology of domain splitting can improve the accuracy of
the uncertainty propagation.

The long-term density propagation problem has been dealt with in several aforemen-
tioned directions. However, to the authors’ knowledge, few studies have been published on
the long-term phase space density propagation problem.Wittig et al. 2017 focus on the differ-
ential algebra and semi-analytical method for the long-term phase space density propagation
problem, but the application of a pure numerical and pointwise method retaining nonlinear
characteristics during density propagation is not presented. Different from their research
works, this paper compares density evolution equation (featuring density calculation from a
pure numerical view) andGaussianmixturemodel (allowing analytical calculation of the den-
sity) with respect to MC on the 2D phase space long-term density propagation problem. The
density evolution equation is formulated under the influence of solar radiation pressure and
Earth’s oblateness using the semi-analytical method (Colombo and McInnes 2011b). The
technique of linear interpolation is introduced for accurate density calculation with DEE.
Unscented transformation is used to nonlinearly propagate the first two statistical moments
with GMM.

The paper is organised as follows: Sect. 2 gives the problem formulation and analysis,
including the semi-analytical equation (focusing onHamiltonian phase space) and the formu-
lation of the density evolution equation. Section 3 presents detailed method description, and
the density propagation methods and techniques of MC, DEE and GMM-UT, respectively.
Section 4 presents the simulation setup. In Sect. 5, density evolution results are presented for
the 2D phase space. Discussion is given on the comparison of the density evolution results
within nonlinear phase space domains and on the comparison of the computational accu-
racy and efficiency of DEE and GMM-UT with respect to MC. Section 6 presents some
conclusions.

2 Problem formulation and analysis

2.1 Semi-analytical equation

To study the dynamical evolution under the influence of SRP and J2, a semi-analyticalmethod
is used in this paper (Krivov and Getino 1997; Lücking et al. 2011a, 2011b).

The semi-analytical equations of motion for the eccentricity e and the solar angle φ (see
detailed geometrical representation of the problem in "Appendix A"), initially derived in
studies of circumplanetary dust dynamics in (Hamilton 1993) and (Hamilton and Krivov
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1996), are as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

de

dt
= nsun

(
C

√
1 − e2 sin φ

)

dφ

dt
= nsun

(

C

√
1 − e2

e
cosφ + W

(
1 − e2

)2 − 1

)

,

(1)

whereC andW represent the dimensionless radiative and oblateness parameters, respectively,
and nsun is the mean motion of the sun. The definitions of C andW are (Hamilton and Krivov
1996; Colombo et al. 2012)
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(2)

where ns is the mean motion of the satellite, J2 and RE are the second-order zonal harmonic
coefficient and the equatorial radius of the Earth, respectively, and σ is the ratio of radiative
force to Earth’s gravity, σ=F�a2τ /(μc), where F� is the solar flux at 1 AU, μ is the gravi-
tational parameter of the Earth, c is the speed of light in vacuum, and τ is the area-to-mass
ratio of the satellite.

The quasi-canonical form of Eq. (1) can be written as follows (Hamilton 1993; Hamilton
and Krivov 1996),

⎧
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(3)

where H is the phase space Hamiltonian, H = √
1 − e2 + Ce cosφ+W

3

(
1 − e2

)−3/2
. H(φ,

e) = constant, i.e. for the phase space variable pair (φ, e) defined at time t, the phase space
evolution is along a constant Hamiltonian contour line.

To determine the phase space structure and evolution properties, the stationary points of
the Hamiltonian H are calculated by solving for ∂ H/∂φ = ∂ H/∂ e = 0. Summarised results
of stationary points constrained to the planar problem are given in (Krivov and Getino 1997),
while solutions extended to non-planar orbits can be found by referring to thework of Gkolias
et al. 2020.

With the planar semi-analytical equations and solutions of stationary points, particular
attention is paid to the application of the passive end-of-life disposal in the works of Krivov
andGetino 1997 andLücking et al. 2011a. InKrivov andGetino 1997, a detailed classification
of the phase portraits is given.Without imposing restrictions on eccentricity and area-to-mass
ratio, in (Krivov and Getino 1997) the authors present the evolution of the eccentricity and
apse line for a satellite with varying area-to-mass ratios and geocentric distances. Figure 1
showsone phase portrait of type III (Krivov andGetino 1997), includingfive stationary points,
obtained with the initial conditions of a = 2.5 RE ,W = 0.409, C = 0.15, similar to Fig. 2f in
(Krivov and Getino 1997). The horizontal line marks the critical eccentricity ecri = 0.6 for
Earth re-entry at the Earth surface. In this phase portrait, phase space bifurcation is detected
at the stationary point P4. The Hamiltonian phase space is divided into three sub-domains
departed by the contour lines passing by the stationary points P1 and P4. As shown in Fig. 1,
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Fig. 1 Phase portrait of type III; Divided sub-phase space domains (a = 2.5 RE ,W = 0.409, C = 0.15, critical
eccentricity ecri = 0.6 for Earth re-entry)

Fig. 2 Phase space evolution for Scenario 1 within SubD1, Nsam = 961 vs. Nsam = 1E5 (critical eccentricity
ecri = 0.6 for Earth re-entry)

we define the three sub-domains as SubDi, i ∈{1,2,3}, residing between the Hamiltonian
contour lines HP5 and HP1 , HP1 and HP4 , HP4 and HP3 , respectively. Since the dynamical
characteristics change quickly and greatly near the bifurcation point, it is of great interest to
understand how the phase space evolves with time when density information is considered
(i.e. understand how the phase space and its associated density evolve with time) within each
sub-domain. It should be noted that only the intermediate zone (2RE ≤ a ≤ 3RE) (Krivov
and Getino 1997) best applies the semi-analytical model under the influence of SRP and J2.
For satellites with a ≥ 3 RE (i.e., with altitudes larger than 13,000 km), the model using
only SRP and J2 is no longer adequate due to the significant lunisolar perturbations. In this
case, the coupling SRP and lunisolar perturbation problem should be examined (Hamilton
and Krivov 1996). For satellite orbits with both high apogees and low perigees, the effects
of the solar apsidal resonance (due to the interplays of the lunisolar perturbation, Earth’s
oblateness, and air drag) on orbital evolution should be considered (Wang and Gurfil 2017).
In this paper, we analyse the evolution of the phase space density to study the reliability and
robustness of passive end-of-life disposal solutions for high-altitude and high area-to-mass
ratio satellites within the intermediate zone (2RE ≤ a ≤ 3RE) under the influence of SRP
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and J2 only. The focus of this paper is on the comparison of the density evolution equation
and Gaussian mixture model for long-term density propagation. It is true that adding the
effect of lunisolar perturbation would improve the accuracy of the results, but this would not
change the outcome of the work which aims at comparing different uncertainty propagation
techniques applied to a semi-analytical dynamics. The coupling with the solar gravitational
perturbation that can occur at higher altitudes (and for a low perigee, the coupling terms from
the air drag) will be given into an insight in the future work.

2.2 Density evolution equation

To study the density evolution in the phase space, we rely on a continuum method, which
propagates the density evolution equation together with the semi-analytical equations of
motion.

Assuming that n is the density to be solved for a specific problem, the density evolution
equation (Gor’kavyi et al. 1997a; McInnes 2000; Frey 2020) can be written as,

∂n

∂t
+ ∇ · f = ṅ+ − ṅ−, (4)

where ∇ · f represents the continuous acceleration terms to be considered for the dynamical
system, such as the perturbation of Earth’s oblateness in this paper, and ṅ+ − ṅ− represents
the discontinuous terms to be considered, such as the injection of new fragments due to
launches on the topic of debris population evolution.

Givenm generic variablesαi, i∈{1, ···,m}, and assuming that the density n is differentiable
with respect to all αi everywhere (Letizia et al. 2016a, b), Eq. (4) can be rewritten in generic
coordinates as follows.

∂n

∂t
+ ∂n

∂α1
vα1 + · · · + ∂n

∂αm
vαm +

[
∂vα1

∂α1
+ · · ·+∂vαm

∂αm

]

n = ṅ+ − ṅ−. (5)

In this paper, ṅ+ − ṅ− = 0. In this way, by applying the method of characteristics (Evans
1998), the following Ordinary Differential Equations (ODEs) are obtained (Letizia et al.
2016a, b),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dt

ds
= 1

dα1

ds
= vα1(α1, · · ·, αm)

...

dαm

ds
= vαm (α1, · · ·, αm)

dn

ds
= −

[
∂vα1

∂α1

+ . . . + ∂vαm

∂αm

]

n(α1, . . . , αm, t),

(6)

where s represents a parameterisation of the characteristic lines. It can be seen that given
the specific formulation of the problem, i.e. given the actual expressions of vαi , the result of
the density n(α1, ···, αm, t) can be obtained by numerical integration together with the state
variables αi. Apart from the numerical way to solve the density evolution equation (Trisolini
and Colombo 2021), analytical solutions can be found for specific problems (McInnes 2000;
Colombo and McInnes 2011b; Letizia et al. 2015).
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For the case in examination, to avoid singularities during numerical integration, we rewrite
the equations of motion of Eq. (3) as a function of two new variables x1 = e·sin(φ) and x2 =
e·cos(φ) as follows:

⎧
⎪⎨

⎪⎩

dx1
dt

= de

dt
sin(φ) + e cos(φ)

dφ

dt
dx2
dt

= de

dt
cos(φ) − e sin(φ)

dφ

dt
.

(7)

Substituting Eq. (1) into Eq. (7) and expressing all terms concerned with e and φ in x1
and x2, i.e., e = (x1 + x2)1/2, sin(φ) = x1/e, cos(φ) = x2/e, the expressions of vαi in Eq. (6)
are derived. In this way, the differential equation controlling the density evolution becomes,

dn

dt
= −

(
∂

∂x1

(
dx1
dt

)

+ ∂

∂x2

(
dx2
dt

))

n = nsun · x1 · C
(−x21 − x22 + 1

)1/2 n. (8)

From Eq. (8), we can see that the density evolution under the influence of solar radia-
tion pressure and Earth’s oblateness is independent of the oblateness parameter W , i.e. the
existence of the influence of Earth’s oblateness alone does not change the density with time,
which is consistent with the analysed result of the case of Earth’s oblateness only in (Letizia
et al. 2016a, b).

3 Density propagationmethods and techniques

Given an initial state and the corresponding density distribution, the main idea of density
evolution is to obtain the density distribution corresponding to the final state. Both MC and
DEE give an insight into intrinsic nonlinear characteristics of the dynamical system during
the density evolution. Different from MC and DEE, for GMM-UT, analytical calculation of
the density can be achieved with the propagated first two statistical moments corresponding
to each sub-Gaussian. To analyse different methods, detailed method description and density
calculation techniques are given as follows for MC, DEE and GMM-UT, respectively.

3.1 Monte Carlo

In this paper, the MC method is used as a reference to validate and compare the performance
of DEE and GMM-UT. For MC, it is enforced to generate and propagate a large number
of random samples. The number of samples varies depending on multiple aspects, such as
the nonlinearity of the dynamics, the dimension of the studied state space and the specified
confidence interval (Wilson 1927; Jehn 2015; Wallace 2015; Letizia et al. 2016a, b; Romano
2020). To obtain the joint and marginal density for the case in examination for MC, a binning
approach is used.

3.1.1 Binning approach

Assume a generic 2D problem defined in two independent variables xi, i ∈{1,2}, and the total
number of the propagated samples at a specific time instant t is Nsam. The main idea of the
binning approach is to partition values in x1 and x2 into the 2D uniformly divided bins, with
defined number of bins, Nbi, and the bin edges in each dimension, Edgesi. The minimum and
maximum values of the bin edges, LEi and UEi, of Edgesi, are determined by the minimum
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and maximum value of xi. Thus, the bin width for each dimension is widi = (UEi-LEi)/Nbi,
and the element set of Edgesi is determined, i.e. Edgesi(ct) = LEi + widi·(ct-1), ct ∈{1,···,
Nbi + 1}.

3.1.2 Joint andmarginal density calculation

With the defined 2D bins, the number of samples in each bin cpk , p ∈{1,···, Nb1}, k ∈{1,···,
Nb2}, is counted. Then, the 2D joint density of MC is obtained as follows,

fMC−pk(x1, x2, t) = cpk
/(

Nsam · Apk
)
, (9)

where Apk is the area of each bin. As shown in Eq. (9), the joint density of MC represents
the frequency of samples per bin area.

The marginal density for one dimension can be obtained by integrating the joint density
throughout the whole domain of the other dimension. Here the calculation formulation of the
marginal density with respect to the first dimension is presented.

fMC−1−p(x1, t) =
Apk ·

UE2∑

x2=LE2

fMC−pk(x1, x2, t)

wid1
, p = {1, . . . , Nb1}. (10)

As indicated in Eq. (10), themarginal density in terms of xi ofMC represents the frequency
of samples per bin width of widi, i ∈{1,2}.

3.2 Density evolution equation

Four steps are required to obtain the density with DEE. First, generate initial random samples
in the 2D phase space subject to the defined initial density distribution with a predefined
sample number. Second, calculate the initial probability density weights corresponding to
the samples. Thus, initial samples given in the 2D phase space (φ, e) and their associated
density weights are obtained in the 3D state space (φ, e, n). Third, integrate the density
evolution equation together with the semi-analytical equations of motion to obtain final
samples and their corresponding density weights in the 3D state space. Fourth, calculate the
density by processing the final samples and density weights in a statistical way. In this paper,
the technique of linear interpolation is used to calculate the density together with the binning
approach.

3.2.1 Linear interpolation

For the specific 2D problem, the linear interpolation method based on Delaunay triangulation
(Preparata and Shamos 1985) is adopted. The main advantage of this method lies in the
capability of retaining the scattered sample data at the nodes of the triangulation. From this,
it can be preliminarily concluded that with a larger number of scattered sample data, the
quality of the linearly interpolated results may be better. Note that for the linear interpolation
method based on Delaunay triangulation, the interpolation is done within the whole convex
hull of the scattered sample data.

Give the sample data and their corresponding density weights at a specific time instant t in
the vectors (x10(t), x20(t), n0(x10, x20, t)) and assume the grid number ofNgridi, i ∈{1,2}, for
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each dimension. The fundamental of linear interpolation is summarised with the following
mapping relationship.

n(x1, x2, t) = Linear Interpolation(x10, x20, n0, Ngrid1, Ngrid2), (11)

where (x1, x2) are the query points specified to return the linearly interpolated results.

3.2.2 Binning approach

With the interpolated results in the vectors (x1(t), x2(t), n(x1, x2, t)) at the specific time instant
t, the binning approach same as that presented for MC is introduced. However, for DEE, the
binning approach is utilised to partition values in the density weights n(x1, x2, t) into the 2D
uniformly divided bins in the vectors (x1(t), x2(t)).

3.2.3 Joint andmarginal density calculation

With the defined 2D bins, the mean value of the density weights n(x1, x2, t) in each bin Npk ,
p ∈{1, ···, Nb1}, k ∈{1, ···, Nb2}, is calculated. Then, the 2D joint density of DEE is obtained
as follows,

fDEE−pk(x1, x2, t) = Npk
/
Apk

Nb1∑

p=1

Nb2∑

k=1
Npk

, (12)

where Apk is the area of each bin, andNbi, i ∈{1,2}, is the number of bins for each dimension.
As shown in Eq. (12), the joint density of DEE represents the weighted mean of the density
weights per bin area.

Similar to MC, the marginal density for one dimension can be obtained by integrating
the joint density throughout the whole domain of the other dimension. Here the calculation
formulation of the marginal density with respect to the first dimension is presented.

fDEE−1−p(x1, t) =
Apk ·

UE2∑

x2=LE2

fDEE−pk(x1, x2, t)

wid1
, p = {1, . . . , Nb1}. (13)

As indicated in Eq. (13), themarginal density in terms of xi ofDEE represents theweighted
mean of the density weights per bin width of widi, i ∈{1,2}.

3.3 Gaussianmixturemodel-unscented transformation

For GMM-UT, four steps are required to obtain the density. First, split an initial Gaussian
density distribution into N1d sub-Gaussians. Second, obtain initial sigma points of UT and
propagate them in the 2D phase space. Third, calculate the transformed first two statistical
moments corresponding to each sub-Gaussian with the propagated sigma points using UT.
Then, get the combined joint and marginal density with the weighted sum of the propagated
first two statistical moments corresponding to each sub-Gaussian.

To obtain the joint and marginal density of GMM-UT, the techniques of Gaussian mixture
model and unscented transformation are introduced.
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3.3.1 Gaussian mixture model

AGaussianmixturemodel is aweighted sumofGaussianPDFs (DeMars et al. 2013;Vittaldev
et al. 2016; Vittaldev and Russell 2016; Sun and Kumar 2016; Yang et al. 2018),

fc(x, t;mc, Pc) =
N1d∑

i=1

ωi fgi (x, t;msi , P si ), (14)

where f c(x, t;mc, Pc) is the combined PDF, x is the state vector,mc and Pc are the combined
mean vector and covariance matrix, respectively, f gi(x, t; msi, Psi), msi, Psi and ωi are the
PDF, mean vector, covariance matrix and weight corresponding to the ith sub-Gaussian,

respectively, and
N1d∑

i=1
ωi = 1, ωi ∈(0,1]. The weight ωi can be calculated by minimising the

difference between the combined PDF f c(x, t; mc, Pc) and the initial Gaussian PDF f t(x, t;
mt , Pt). Theoretically, with a large number of sub-Gaussians (in the L1 norm sense) (Alspach
and Sorenson 1972), the combined GMM can approximate the initial Gaussian PDF. Since
a Gaussian distribution can be completely determined by the mean and covariance matrix,
only the first two statistical moments need to be propagated. Multiple nonlinear methods are
available for nonlinear propagation of the first two statistical moments, such as UT, STT and
Fourier–Hermite series (Mikulevicius and Rozovskii 2000; Sarmavuori and Sarkka 2011).

Before splitting an initial Gaussian density distribution, an univariate GMM library of the
1D standardGaussian distribution is formed (Huber et al. 2008; Horwood et al. 2011; DeMars
et al. 2013; Vittaldev and Russell 2013; Vittaldev et al. 2016), which is computed only once
and is stored in terms of the means, weights and standard deviations. Univariate Gaussian
splitting libraries splitted within three rules for odd number of splits up to 39 are provided in
(Vittaldev and Russell 2016), in terms of the parameter set of the splitting number, means,
weights and standard deviations, {N1d ,mi1d ,ωi1d , σ}, i ∈{1, ···,N1d}. Note that the standard
deviation for each sub-Gaussian is the same here.

Given the initial Gaussian distribution f t(x, t; mt , Pt) subject to a specific dynamical
problem, to apply the univariate Gaussian splitting library in (Vittaldev and Russell 2016),
a splitting direction is determined along the most nonlinear one of the dynamical system.
Assume that the jth direction of the state vector x is selected for splitting. For the ith sub-
Gaussian, i ∈{1, ···, N1d}, the mean msi and covariance matrix Psi are calculated as follows
(DeMars et al. 2013),

{
ωi = ωi1d , msi = mt + √

λ jmi1dv j , P si = V�iV T

�i = diag
{
λ1, λ2, . . . , σ

2λ j , . . . , λNvar
}
, P t = V�V T

, (15)

where Λi is a diagonal matrix made up of the diagonal elements of Λ and the standard
deviation σ of univariate splitting, Λ=diag{λ1, λ2, ···, λNvar}, V=[v1, v2,···, vNvar], and Nvar
is the state space dimension. Note that the only difference of Λi from Λ is the content of the
jth diagonal element. Λ and V are the eigenvalue matrix and the eigenvector matrix of Pt ,
respectively.

With the obtainedN1d sub-Gaussians, {ωi,msi,Psi}, i∈{1, ···,N1d}, the nonlinearmethods
such as UT, STT and Fourier–Hermite series are used to propagate the mean and covariance
matrix, {msi, Psi}, of each sub-Gaussian. The combined non-Gaussian PDF, f c(x, t;mc, Pc),
is calculated with Eq. (14), and the combined mean and covariance matrix, {mc, Pc}, are
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calculated as follows (DeMars et al. 2013).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

mc =
N1d∑

i=1

ωi

ωm
msi , ωm =

N1d∑

i=1

ωi

Pc =
N1d∑

i=1

ωi

ωm

(
P si + msimT

si

)
− mcmT

c .

(16)

In this paper, the weights are set to be constant in the long-term density propagation,
and the splitting is done only at the initial time along the more nonlinear direction of the
solar angle. The choice of splitting in the solar angle direction only is determined by the
nonlinearity measure formula of Eq. (5) given in (Vittaldev and Russell 2016). The technique
of unscented transformation is used to nonlinearly propagate the first two statistical moments
of each sub-Gaussian.

3.3.2 Unscented transformation

The main idea of unscented transformation is that approximating the probability distribution
is less complicated than approximating the nonlinear transformation (Julier et al. 1995),
which means by deterministically choosing and integrating a few samples, the probability
distribution at a specific time can be approximated with the transformed probability moments
calculated with the few propagated samples.

In this paper, the symmetric extended set (Julier and Uhlmann 2004) is employed for
the determination of the initial Ns sigma points, where Ns = (2·Nvar + 1). Three steps are
required to calculate the transformed first two statistical moments corresponding to each
sub-Gaussian. First, the set of initial weighted sigma points, xsk (t0), k ∈{0, 1, 2, ···, 2·Nvar},
is deterministically chosen such that the true meanms(t0) and covariance matrix Ps(t0) at the
initial time t0 for each sub-Gaussian are precisely captured. Here the initial Ns sigma points
are defined as follows,

⎧
⎪⎪⎨

⎪⎪⎩

xs0 = ms(t0)

xsi = ms(t0) + Ssi · √
Nvar+ς

xs(2i) = ms(t0) − Ss(2i) · √
Nvar+ς, i ∈ {1, 2, . . . , Nvar},

(17)

where Ss is the square root matrix of the covariance matrix Ps(t0), i.e., Ps(t0) = SsSsT , Ssi
is the ith column of Ss, ζ = α2(Nvar + β) –Nvar, and α and β are two parameters that
determine the distribution of sigma points around the mean value. In this paper, α = 0.8 and
β = 0 are assumed. Second, propagate the initial selected sigma points through the nonlinear
dynamical equations to obtain the nonlinearly transformed sigma points at a specific time
instant t, xsk (t), k ∈{0, 1, 2, ···, 2·Nvar}. Then, the transformed mean and covariance matrix
are calculated as follows (Julier and Uhlmann 2004),

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ms(t) =
Ns−1∑

k=0

wm
k xsk(t)

P s(t) =
Ns−1∑

k=0

wP
k [xsk(t) − ms(t)][xsk(t) − ms(t)]

T ,

(18)
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where wm
k and wP

k are the weights for calculating the transformed mean and covariance
matrix with the kth propagated sigma point, respectively, k ∈{0, 1, 2, ···, 2·Nvar}. The specific
weights for the Ns sigma points are given as follows,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wm
0 = ς

Nvar+ς
,k= 0

wP
0 = ς

Nvar+ς
+ (

1 − α2 + η
)
,k= 0

wm
k = wP

k = ς

2(Nvar+ς)
,k = {1, 2, . . . , 2 · Nvar},

(19)

where η is a scale parameter introduced to determine the distribution of sigma points around
the covariance matrix. In this paper, η=2 is assumed.

3.3.3 Joint andmarginal density calculation

For the case in examination, given an initial Gaussian distribution f t(x, t; mt , Pt), with the
initially splitted N1d sub-Gaussians given by Eq. (15) and the propagated first two statistical
moments of each sub-Gaussian given by Eq. (18) using UT, the combined joint density
f GMM-UT (x1, x2, t) is determined with Eq. (14) by calculating the weighted sum of the joint
density corresponding to each sub-Gaussian.

Since the first two statistical moments corresponding to each sub-Gaussian are given by
Eq. (18), the marginal density is determined by calculating the weighted sum of the 1D
Gaussian PDFs using the means and standard deviations corresponding to sub-Gaussians
along the desired direction.

4 Simulation setup

4.1 Definition of initial conditions and case content

To understand how the phase space and its associated density evolve with time in each sub-
phase space domain shown in Fig. 1, three scenarios are considered (Table 1). Each scenario
defines a different initial condition in terms of a Gaussian density distribution. φ0 and e0
represent the mean of the Gaussian distribution in the (φ, e) phase space, while  φ and e
specify the covariance matrix P0 = [( φ/2)2 0;0 (e/2)2], to make sure of the realisation of
the long-term density propagation within each sub-phase space domain. TU is the simulation
time and dt represents the time interval between two consecutive snapshots.

For each scenario, four cases are considered to validate the feasibility of the formulated
density evolution equation and compare the performance of DEE and GMM-UTwith MC. A

Table 1 Definition of initial conditions for the three test case scenarios (a = 2.5 RE )

Scenario φ 0, rad e0  φ, rad e TU , yr dt, yr

1 2.2069 0.145 π /8 0.05 2 0.5

2 0.5419 0.095 π /40 0.01 3 0.5

3 0.3004 0.23 π /32 0.02 2 0.5
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Table 2 Definition of the four cases for each scenario

Case 1 2 3 4

Identifier MC DEE-961 DEE-1E5 GMM-UT

Nsam 1E5 961 1E5 –

N1d – – – 39

Ngrid – 1E3 5E3 –

detailed description for the four cases is given in Table 2, whereNsam andN1d are the number
of initial samples for MC and DEE, and the splitting number of the initial Gaussian density
distribution for GMM-UT, respectively. Ngrid defines the grid number to perform linear
interpolation in two phase space dimensions for both Case 2 and Case 3 for DEE. The number
of MC random samples is set to be 1E5. The same sample number Nsam=1E5 as that of MC
and a larger grid number Ngrid=5E3 for Case 3 are set to compare the accuracy of DEE with
MC. Themuch smaller sample numberNsam=961 andmuch smaller gird numberNgrid=1E3
of Case 2 compared with that of Case 3 are set to compare the accuracy and efficiency of DEE
with MC and GMM-UT. The smaller sample number Nsam=961 is determined to make sure
of the accuracy of the density calculated using the linear interpolation method, accounting
for about 1% of the larger sample number Nsam=1E5. The splitting number of GMM-UT is
set to be 39 using the univariate splitting library of the maximum splitting number provided
by (Vittaldev and Russell 2016), and the more nonlinear direction of the solar angle is set as
the splitting direction.

4.2 Definition of computational effort

To compare the computational effort of DEE and GMM-UT with MC, the main contribution
of the computational effort is analysed for the three methods and the main parts of the
computational effort are defined.

The main computational effort of MC includes two aspects. First, generate initial random
samples at t = 0 and propagate them in the 2D phase space. Second, calculate the joint and
marginal density using the binning approach. For DEE, the main computational effort covers
two aspects. The first is the generation of initial random samples at t = 0 and propagation of
the samples in the 3D state space (φ, e, n). Second, calculate the joint and marginal density
with techniques of linear interpolation and binning approach. The main contribution of the
computational effort of GMM-UT also includes two parts. First, split the initial Gaussian
distribution into N1d sub-Gaussians, obtain initial N1d ·(2·Nvar + 1) sigma points of UT at t
= 0 and propagate them in the 2D phase space. Second, according to the propagated sigma
points, analytically calculate the combined joint and marginal density with the means and
covariance matrices propagated using UT.

Based on the computational effort analysis, the main contribution of the computational
effort is divided into two parts for each method. The first part is defined as ‘Propagation’
effort, referring to the propagation of dynamical equations. The second part is defined as
‘1/0 Interpolation’, referring to the data processing and calculation for obtaining the joint
and marginal density, and corresponding to the binning effort (0 Interpolation) of MC, or
the interpolation and binning effort of DEE (1 Interpolation), or the computational effort of
analytically calculating the combined joint and marginal density of GMM-UT (0 Interpo-
lation). The computational effort analysis will be performed in terms of the computational
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time of the ‘Propagation’ part, tprop, and the ‘1/0 Interpolation’ part, t1/0int , the total com-
putational time of each case defined as the sum of the considered two-part computational
effort, tcal (tcal=tprop+t1/0int), the computational effort ratio of each method for the defined
two-part computational effort, Rt2p (Rt2p=[tprop/tcal; t1/0int /tcal]), and the normalised com-
putational time of DEE and GMM-UT with respect to that of MC, tcal/tcal-MC , respectively.
The simulation is done on a standard laptop with a 1.80 GHz Intel Core i7 processor and
8GB RAM.

5 Results and discussion

5.1 Scenario 1 within SubD1

In this section, the results in terms of the phase space evolution, joint density,marginal density
and computational effort are presented for the test case scenarios presented in Tables 1 and 2.
To assess the quality of the density propagation with DEE and GMM-UT, the relative errors
of the predicted mean and standard deviation are also compared with MC. Note that detailed
results and analyses are given for Scenario 1, while for Scenario 2 and Scenario 3, only the
results in terms of the joint density, marginal density, relative errors of the mean and standard
deviation are presented in "Appendices B and C", respectively, for parallel comparison with
Scenario 1 to give an insight into density evolution results within each sub-phase space
domain.

5.1.1 Phase space evolution

Figure 2 shows the phase space evolution results for the first test case scenario with initial
961 and 1E5 Gaussian-distributed random samples depicted at times t={0, 0.5, 1, 1.5, 2}
yrs. The two gray closed loop arcs denote the minimum (the inner one) and the maximum
Hamiltonian contour line corresponding to the phase space random samples. It is shown that
the phase space evolution results are within the sub-phase space domain of SubD1 defined in
Fig. 1. The results ofNsam=961 capture the characteristics of the phase space deformation and
elongation with time well compared with that of the larger sample number of 1E5. Note that
this is a significant requirement to ensure the performance of DEE with linear interpolation
for density evolution, due to the dependence of the technique of linear interpolation on the
quality of the samples to characterise the true distribution of phase space and density space.
As seen in Fig. 2, for the case of an initial Gaussian density distribution under the influence
of SRP and J2, the deformation of phase space distribution increases with time and differs
for different domains of the eccentricity. It is shown that at times t={1, 2} yrs, the phase
space distribution appears much more elongated and deformed in the direction of the solar
angle compared with that of the cases at times t={0.5, 1.5} yrs. This is mainly due to the
higher nonlinearity of the dynamical system with respect to the specific eccentricity domain,
either larger than the critical eccentricity ecri=0.6 (shown in Fig. 1 and defined in Sect. 2.1)
or approaching the zero eccentricity.

5.1.2 Joint density

Tocompare the joint density evolution results forMC,DEEandGMM-UT, detailed results are
shown together and separately at times t={0, 0.5, 1, 1.5, 2} yrs in Figs. 3 and 4, respectively,
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Fig. 3 Integrated joint density for the four cases of Scenario 1 (critical eccentricity ecri = 0.6 for Earth re-entry)

Fig. 4 Separate joint density for the four cases of Scenario 1 at times t = {0, 0.5, 1, 1.5, 2}yrs

for the four cases of Scenario 1 (defined in Table 2). It is shown that the joint density evolution
results are in the form of transformed non-Gaussian density distribution, but still featuring
an obvious density core value like that of a Gaussian density distribution.

For MC in Figs. 3 and 4, higher joint density peaks are obtained at times t = {0.5, 1, 1.5}
yrs than that at times t = {0, 2} yrs. In Fig. 3, this can be seen by the colour contrast for each
time instant, while in Fig. 4, this can be seen by the maximum colour data of the colourmap
for each time instant. The maximum and minimum joint density peak are found at t = 1 yr
with (φ, e)= (1.1618π, 0.7965) and at t = 2 yrs with (φ, e)= (1.1141π, 0.105), respectively.
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For the accuracy of the joint density calculated by DEE and GMM-UT compared with
MC, the following conclusions can be drawn from Figs. 3 and 4. First, for DEE-961, DEE-
1E5 and GMM-UT (defined in Table 2), comparable and accurate joint density is obtained
compared with that of MC in terms of the joint density distribution characteristics (in terms
of the core value and the changing characteristics) shown in the integrated results for each
time instant in Fig. 3, and the results presented separately in Fig. 4. Second, the joint density
of DEE-1E5 is much more consistent with that of MC than that of DEE-961 and GMM-UT.
This is mainly due to the same large number of samples as that of MC and a larger grid
number Ngrid=5E3 to obtain linearly interpolated density. Third, for DEE-961, the joint
density obtained using linear interpolation is highly consistent with that of MC, excluding
the case of the underestimated result at t=1 yr. This is mainly due to the highly deformed
and elongated phase space distribution that leads to worse interpolated density within the
whole convex hull. Fourth, for GMM-UT, the joint density obtained is highly consistent with
that of MC as shown in Figs. 3 and 4, except the overall underestimated result at t=2 yrs
in terms of the core value. This is mainly due to the sensibility of GMM-UT to the highly
nonlinear phase space dynamics when it approaches the zero eccentricity, and the operation
in this paper of performing splitting only at the initial time t=0 along the direction of the
solar angle.

It can be preliminarily concluded that for the case of less deformed and elongated phase
space distribution, such as the cases of t<2 yrs in Figs. 3 and 4, GMM-UT outperforms
DEE with linear interpolation in terms of the accuracy of the joint density. (Sect. 3.2 gives
explanation of the technique of linear interpolation in terms of the calculation of density
together with density evolution equation and binning approach techniques.) The performance
of DEE is mainly constrained by the performance of the linear interpolation and the number
of initial samples. The problem of obtaining better linearly interpolated results for the case of
highly deformed and elongated phase space distribution (Trisolini and Colombo 2021) will
be given into a deeper insight in the future work. For GMM-UT, the splitting of the initial
Gaussian distribution is performed at the initial time along the solar angle direction. With
time evolution, the splitted sub-Gaussians extend along the solar angle direction. This can
be seen by referring to the last-column figures in Fig. 4 depicted at times t={0, 0.5, 1, 1.5,
2} yrs. Overall, there is an 80% probability that GMM-UT outperforms DEE in terms of
capturing the core characteristic of the joint density. For example, at times t={0, 0.5, 1, 1.5}
yrs, GMM-UT obtains a more continuous estimation of the joint density than that of MC.
However, it fails to capture the elongated joint density characteristic when it approaches the
singularity at zero eccentricity, such as the case of t=2 yrs.

5.1.3 Marginal density

To compare the marginal density evolution results of DEE and GMM-UT with MC, the
results of DEE-961, DEE-1E5 and GMM-UT are shown in Fig. 5, together with that of MC,
in terms of four comparison pairs of MC vs. DEE-961, MC vs. DEE-1E5, MC vs. GMM-UT
and MC vs. DEE vs. GMM-UT.

For MC, the marginal density evolution histogram is represented in sequential blue colour
and the marginal density evolution curve is given with a red line. It is shown that with time
evolution, the marginal density distribution loses its initial Gaussian structure, especially for
the cases at times t = {1, 2} yrs for both solar angle and eccentricity. The maximum and
minimum marginal density peak of the solar angle are obtained at φ = 0.3019π rad at t =
0.5 yr (marginal density value, f MC-1-p = 5.564; unit of the marginal density of the solar
angle: frequency of samples per bin width wid1 (defined in Eq. (10))) and at φ = 0.7703π
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Fig. 5 Marginal density of MC versus DEE-961, MC versus DEE-1E5, MC versus GMM-UT and MC versus
DEE versus GMM-UT for Scenario 1

rad at t = 2 yrs (f MC-1-p = 0.4367), respectively. Note that two local marginal density peaks
exist at t = 2 yrs within the solar angle domain [0.4832π, 1.7312π]. Another local marginal
density peak is at φ = 1.3207π rad (f MC-1-p = 0.3449) at t = 2 yrs. Meanwhile, highly
non-Gaussian characteristic appears at t = 1 yr in terms of the marginal density of the solar
angle within the domain [0.3988π, 1.5352π], where one peak is observed at φ = 1.2366π rad
(f MC-1-p = 0.7436). Overall, with the time evolution, the marginal density peak of the solar
angle first increases until t = 0.5 yr and then drops after t = 1 yr. For the marginal density of
the eccentricity, two maximum marginal density peaks are reached at e = 0.8029 at t = 1 yr
(marginal density value, f MC-2-p = 101.6; unit of the marginal density of the eccentricity:
frequency of samples per bin width wid2) and at e = 0.1072 at t = 2 yrs (f MC-2-p = 22.44),
respectively. This is consistent with the aforementioned higher nonlinearity characteristics
of the dynamics when approaching an eccentricity value larger than the critical eccentricity
ecri or equal to zero. The most non-Gaussian distribution characteristic is captured at t =
1 yr within the eccentricity domain [0.6796, 0.8057]. The minimummarginal density peak is
obtained at e= 0.5051 at t = 1.5 yrs (f MC-2-p = 8.909), indicating the minimum nonlinearity
in the direction of the eccentricity at t = 1.5 yrs. Little discrepancy is shown for the marginal
density distribution of the eccentricity at times t= {0, 0.5} yr.Overall,with the time evolution,
the marginal density peak of the eccentricity increases and the nonlinearity (or steepness) of
the marginal density distribution increases when it approaches the eccentricity domain larger
than the critical eccentricity or approaches the zero eccentricity.

As shown in Fig. 5, the marginal density in terms of the solar angle and eccentricity for
DEE-961 appears non-smooth at times t={1, 2} yrs. This ismainly due to the highly deformed
phase space distribution, which complicates the linear interpolation of the density compared
with the cases of the less deformed phase space at times t={0, 0.5, 1.5} yrs. Overall, the
marginal density in terms of the solar angle and eccentricity is well captured compared with
that of MC.

For DEE-1E5, the marginal density in terms of the solar angle and eccentricity shows a
better consistency with respect to that of MC, since in this case the larger number of samples
allows smoother marginal density. Note that the maximum value of the marginal density in
terms of the eccentricity is overestimated compared with that of MC at t=2 yrs. As expected,
a larger sample size generates a smoother and more consistent prediction of the uncertainty
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distribution as it improves the results of the linear interpolation. However, overestimation
of the density peak may exist. This is due to the limitation of the linear interpolation to the
convex hull of the scattered samples, which neglects parts of the distribution. Although these
parts are associated with low density values, discarding them can lead to an overestimation
of the peaks.

For the comparison between the MC method and the GMM-UT method, we can see that
the marginal density obtained by GMM-UT in terms of both solar angle and eccentricity is
well consistentwith that ofMC, except in correspondence of t=2 yrs. In this case, themarginal
density of the eccentricity is underestimated, and the slope and skewness information are
barely captured. Similar to the result of the underestimation of the joint density of GMM-UT
at t=2 yrs shown in Fig. 4, this is mainly due to the higher nonlinearity of the phase space
dynamics in the direction of the eccentricity when it approaches zero. Additionally, it has
been considered that in this paper, the splitting of GMM is only performed at t=0 along the
direction of the solar angle without considering splitting during the phase space propagation.

For the combined marginal density comparison results of MC vs. DEE vs. GMM-UT
given in Fig. 5, it is shown that DEE-1E5 outperforms DEE-961 and GMM-UT in terms of
the accuracy (including the slope and skewness information) of the marginal density of both
solar angle and eccentricity with respect to that ofMC.With a large number of initial samples
of DEE (such as 1E5 here), the marginal density obtained using linear interpolation can be
even smoother than the marginal density curve and density histogram obtained by MC.

5.1.4 Mean and standard deviation

To compare the accuracy of DEE and GMM-UT with MC for long-term density propagation
in terms of the first two statistical moments, both the mean and standard deviation of the

Table 3 Mean, standard deviation of the 2D phase space for the four cases of Scenario 1

t, yr t = 0 t = 0.5 t = 1 t = 1.5 t = 2

MC μφ , rad 2.2078 0.95229 3.57337 5.26674 3.32611

σφ , rad 0.19671 0.07561 0.58152 0.14873 0.86184

μe 0.14499 0.54399 0.78955 0.49021 0.14285

σ e 0.025 0.0246 0.01501 0.04534 0.04342

DEE-961 μφ , rad 2.20634 0.95963 3.66188 5.22771 3.23971

σφ , rad 0.19407 0.07559 0.5835 0.15942 0.73567

μe 0.14596 0.54736 0.77975 0.47897 0.1488

σ e 0.02583 0.02428 0.01942 0.04554 0.05303

DEE-1E5 μφ , rad 2.20692 0.95905 3.66475 5.23035 3.25211

σφ , rad 0.1964 0.07676 0.56539 0.16053 0.75818

μe 0.14501 0.54713 0.78676 0.47854 0.13386

σ e 0.02511 0.02431 0.01715 0.04593 0.03863

GMM-UT μφ , rad 2.20695 0.95208 3.57347 5.2672 3.33267

σφ , rad 0.19635 0.07583 0.58318 0.15021 0.87551

μe 0.145 0.54399 0.78966 0.49027 0.1426

σ e 0.025 0.02467 0.01517 0.04551 0.04525
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Fig. 6 Relative error of mean, standard deviation of the solar angle; relative error of mean, standard deviation
of the eccentricity (for Scenario 1)

2D phase space are given in Table 3 for the four cases of Scenario 1. The relative errors are
depicted in Fig. 6 for DEE-961, DEE-1E5 and GMM-UT with respect to that of MC.

As shown in Fig. 6, the relative errors in terms of the mean and standard deviation at
different time instants are all under 7% and 30%, respectively. GMM-UT outperforms DEE
with linear interpolation. Overall, DEE-1E5 obtains better consistency results than that of
DEE-961 with respect to that of MC.

5.1.5 Computational effort

Figure 7 shows the computational effort ratios for the four cases of Scenario 1 for the defined
two-part computational effort. Detailed results are given in Table 4 in terms of the parameter
set of {tprop, t1/0int , tcal , tcal/tcal-MC}(defined in Sect. 4.2).

As shown in Table 4, the computational effort of DEE-1E5 is the heaviest for the four
cases considered, over twice of that ofMC, while that of GMM-UT is the lightest, accounting
for only 0.42% of that of MC.

As depicted in Fig. 7, for MC, DEE-961 and DEE-1E5, the main contribution of the
computational effort is the propagation of samples in the 2D (φ, e) phase space and the 3D
(φ, e, n) state space, respectively, which is especially the case forMC and DEE-1E5. ForMC,
the minimum computational time of 0.41 s of the ‘1/0 Interpolation’ part is taken to obtain the

Fig. 7 Computational effort ratios
for the four cases of Scenario 1
for the defined two-part
computational effort

123



22 Page 20 of 30 P. Sun et al.

Table 4 Results of computational effort for the four cases of Scenario 1

Case 1 2 3 4

Identifier MC DEE-961 DEE-1E5 GMM-UT

tprop, s 4370.77 69.41 8712 7.95

t1/0int , s 0.41 31.64 1048.83 10.39

tcal , s 4371.17 101.05 9760.83 18.34

tcal / (tcal-MC ) 1 0.02312 2.233 0.0042

joint and marginal density since the calculation can be done with only binning approach. For
DEE-1E5, the computational effort for the ‘1/0 Interpolation’ part is the highest. In this case,
both the binning approach and the linear interpolation method withNgrid = 5E3 are applied.
For GMM-UT, the main contribution of the computational effort is the ‘1/0 Interpolation’
part. Also note that the computational effort for the ‘1/0 Interpolation’ part of GMM-UT is
less than that of DEE-961.

5.2 Discussion

In this section, some discussion is made on the results in terms of the comparison of the
density evolution results within sub-phase space domains and the comparison of MC, DEE
and GMM-UT in terms of computational accuracy and efficiency.

5.2.1 Density evolution result comparison within sub-phase space domains

Based on the density evolution results for the three test case scenarios (see Figs.3, 4,5 of
Scenario 1 in Sect. 5.1, Figs. 10, 11,12 of Scenario 2 in "Appendix B" and Figs. 14, 15,16 of
Scenario 3 in "Appendix C"), discussion is given on the comparison of the joint and marginal
density evolution results within sub-phase space domains.

The following two-aspect results are drawn by comparing the density within each sub-
phase space domain. First, considering the nonlinearity ranking of the phase space dynamics
within each sub-phase spacedomain, i.e., {SubD1, SubD2}>SubD3, a greater changing ampli-
tude is obtained for Scenario 1 in Fig. 3 and Scenario 2 in Fig. 10 than that of Scenario 3 in
Fig. 14 of the joint density peak shown in the integrated results. Also, weaker nonlinearity is
detected for Scenario 3 in Fig. 16 and Scenario 2 in Fig. 12 compared with that of Scenario
1 in Fig. 5 of the marginal density evolution results for both solar angle and eccentricity.
Second, note that the phase space distribution of Scenario 1 at t=1 yr in Fig. 2 and Scenario
2 at t=1.5 yrs in Fig. 10 are all highly deformed and elongated in the direction of the solar
angle within the eccentricity domain larger than the critical eccentricity, but different charac-
teristics of the joint density peak appear. For the former in Fig. 3, the maximum joint density
peak is found, while for the latter in Fig. 10, the minimum joint density peak is found. This
is mainly due to the fact that different dynamical characteristics are shown within each sub-
phase space domain. It also points out the significance of a detailed analysis of the density
evolution results within each sub-phase space domain.
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5.2.2 Accuracy comparison of DEE and GMM-UT

As shown in the detailed accuracy analysis of Scenario 1 in Sect. 5.1 and results of Scenarios
2-3 in "Appendices B, C" in terms of the joint density, marginal density, mean and standard
deviation for both DEE and GMM-UT compared with that of MC (see Figs. 3, 4, 5,6 of
Scenario 1, Figs.10, 11, 12,13 of Scenario 2 and Figs.14, 15, 16,17 of Scenario 3), overall,
both methods work well for long-term density propagation within each sub-phase space
domain.

For the joint or marginal density evolution, for cases where dynamical nonlinearity is high,
such as Scenario 1 within SubD1, the DEE with linear interpolation using a large number of
initial samples Nsam=1E5 outperforms GMM-UT and obtains highly consistent density with
respect to that ofMC (but with amuch higher computational load compared with GMM-UT).
Note that the slightly worse performance of GMM-UT here for the case exhibiting higher
dynamical nonlinearity is probably due to the operation in this paper of performing Gaussian
splitting only at the initial time along the solar angle direction. For cases where the dynamical
nonlinearity is lower, such as Scenario 2 and Scenario 3, the performance of GMM-UT is
comparable to that of DEE-1E5 (but with amuch lower computational load). For the accuracy
of the propagation of the first two statistical moments, GMM-UT outperforms DEE.

The accuracy of DEE with linear interpolation mainly depends on the dynamical non-
linearity and the performance of linear interpolation. To improve the performance of linear
interpolation when the phase space is highly deformed and elongated, an improved linear
interpolation method considering alpha shape (Trisolini and Colombo 2021) can be studied
in the future work. The accuracy of GMM-UTmainly depends on the dynamical nonlinearity,
the splitting number of sub-Gaussians (i.e., theoretically, as the number of splitting increases,
a GMM can approach the true non-Gaussian density distribution), the splitting direction (i.e.,
whether the splitting is done along the most nonlinear direction of the dynamical system),
whether the splitting is donewithin various directions at the initial time (Vittaldev et al. 2016),
whether the splitting is done during the propagation by detecting the nonlinearity of the state
uncertainty (DeMars et al. 2013; Romano 2020), and the performance of UT for nonlinear
propagation of the first two statistical moments of each sub-Gaussian. These aspects need to
be given into an insight in the future work to improve the performance of GMM-UT.

5.2.3 Efficiency comparison of DEE and GMM-UT

Figure 8 shows a comparison of the normalised computational effort for the three test case
scenarios. It is shown that for all sub-phase space domains, the computational effort of DEE-
1E5 is the heaviest, which is often over twice of that of MC (except the case of Scenario 2),

Fig. 8 Comparison of normalised
computational effort for the four
cases of the three test case
scenarios
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while that of GMM-UT is the lightest. For DEE-1E5, this is due to the fact that the same large
number as that of MC of initial samples is propagated in the 3D state space (φ, e, n). The
linear interpolation method with Ngrid = 5E3 is applied to calculate the joint and marginal
density. For GMM-UT, this is due to the facts that only 195 (N1d ·(2·Nvar + 1), N1d = 39,
Nvar = 2) sigma points are propagated, the mean and covariance matrix corresponding to
each sub-Gaussian are calculatedwith explicit equations of unscented transformation, and the
joint and marginal density are analytically calculated using the weighted results of the mean
and covariance matrix of each sub-Gaussian. The computational effort of DEE-961 is 3.5 to
5 times of that of GMM-UT. This is mainly due to the computational effort of propagating
nearly five times the number of initial samples of that of GMM-UT in the 3D state space,
and the application of the linear interpolation method with Ngrid = 1E3 to obtain the joint
and marginal density.

6 Conclusion

This paper compares Density Evolution Equation (DEE) and Gaussian Mixture Model
(GMM) on the long-term 2D phase space density propagation problem in the context of high-
altitude and high area-to-mass ratio satellite long-term propagation. The density evolution
equation is formulated under the influence of solar radiation pressure and Earth’s oblateness
using the semi-analytical method. The linear interpolation method based on Delaunay
triangulation is integrated with density evolution equation for accurate density calculation.
Unscented Transformation (UT) is used to nonlinearly propagate the first two statistical
moments corresponding to each sub-Gaussian. An insight is given into the 2D phase space
long-term density propagation problemwithin three sub-phase space domains subject to non-
linear dynamics. For the propagation accuracy of the joint and marginal density, overall, both
DEE and GMM-UT work well within each sub-phase space domain. For cases with higher
dynamical nonlinearity, the DEE with linear interpolation using a great number of initial
samplesNsam=1E5 outperformsGMM-UT and obtains highly consistent densitywith respect
to that of MC (but with a much higher computational load compared with GMM-UT). For
cases with lower dynamical nonlinearity, the performance of GMM-UT is comparable to that
of DEE (but with a much lower computational load). For the propagation accuracy of the first
two statistical moments, GMM-UT outperforms DEE. Overall, GMM-UT is more suitable
for the long-term density propagation problem. Future work on improving the performance
of GMM-UT will provide a better solution for the long-term density propagation problem.
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Appendix A: Geometrical representation of the problem

Four orbital elements (semi-major axis a, eccentricity e, longitude of pericentre ω̃ and mean
anomalyM) are required to describe the planar problem. In this paper, the shadowing effects
are not considered, allowing to treat the semi-major axis a as constant (Allan 1962). Similar
to the works of (Krivov andGetino 1997) and (Lücking et al. 2011a), we replace the longitude
of pericentre ω̃ with the more physically meaningful variable of the solar angle φ. The two
variables are connected via the equation φ=ω̃−λsun , where λsun is the true longitude of
the sun. It represents the angular distance between the pericentre and the direction toward
the sun. In this paper, zero Earth orbital eccentricity is assumed, and thus, λsun is a linear
function of time t, i.e. λsun = nsun·t, where nsun is the mean motion of the sun. Figure 9 shows
a geometrical representation of the problem, where � direction targets at the vernal equinox.

Fig. 9 Planar Earth orbit in
rotating reference frame
(Lücking et al. 2011a)

Appendix B: Scenario 2 within SubD2

Figure 10 shows the joint density together at times t={0, 0.5, 1, 1.5, 2, 2.5, 3} yrs for the four
cases of Scenario 2 within sub-phase space domain SubD2. Figure 11 shows the joint density
separately at times t={0.5, 1, 1.5, 2, 2.5, 3} yrs. Detailed marginal density evolution results of
DEE-961, DEE-1E5 and GMM-UT are shown in Fig. 12, together with that of MC, in terms
of four comparison pairs of MC vs. DEE-961, MC vs. DEE-1E5, MC vs. GMM-UT and MC
vs. DEE vs. GMM-UT. The relative errors in terms of the mean and standard deviation for
DEE and GMM-UT with respect to MC are depicted in Fig. 13.

Fig. 10 Integrated joint density for the four cases of Scenario 2 (critical eccentricity ecri = 0.6 for Earth
re-entry)
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Fig. 11 Separate joint density for the four cases of Scenario 2 at times t = {0.5, 1, 1.5, 2, 2.5, 3}yrs
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Fig. 12 Marginal density of MC versus DEE-961, MC versus DEE-1E5, MC versus GMM-UT andMC versus
DEE versus GMM-UT for Scenario 2

Fig. 13 Relative error of mean, standard deviation of the solar angle; relative error of mean, standard deviation
of the eccentricity (for Scenario 2)

Appendix C: Scenario 3 within SubD3

Figure 14 shows the joint density together at times t={0, 0.5, 1, 1.5, 2} yrs for the four
cases of Scenario 3 within sub-phase space domain SubD3. Figure 15 shows the joint density
separately at times t={0.5, 1, 1.5, 2} yrs. Here the joint density is presented within the solar
angle domain [-π,π). Detailed marginal density evolution results of DEE-961, DEE-1E5 and
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Fig. 14 Integrated joint density for the four cases of Scenario 3 (critical eccentricity ecri = 0.6 for Earth
re-entry)

Fig. 15 Separate joint density for the four cases of Scenario 3 at times t = {0.5, 1, 1.5, 2}yrs

GMM-UT are shown in Fig. 16, together with that of MC, in terms of four comparison pairs
of MC vs. DEE-961, MC vs. DEE-1E5, MC vs. GMM-UT and MC vs. DEE vs. GMM-UT.
The relative errors in terms of the mean and standard deviation for DEE and GMM-UT with
respect to MC are depicted in Fig. 17.
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Fig. 16 Marginal density of MC versus DEE-961, MC versus DEE-1E5, MC versus GMM-UT andMC versus
DEE versus GMM-UT for Scenario 3

Fig. 17 Relative error of mean, standard deviation of the solar angle; relative error of mean, standard deviation
of the eccentricity (for Scenario 3)
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