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Abstract
Proper elements are quasi-invariants of a Hamiltonian system, obtained through a normaliza-
tion procedure. Proper elements have been successfully used to identify families of asteroids,
sharing the same dynamical properties.We show that proper elements can also be used within
space debris dynamics to identify groups of fragments associated to the same break-up event.
The proposed method allows to reconstruct the evolutionary history and possibly to associate
the fragments to a parent body. The procedure relies on different steps: (i) the development
of a model for an approximate, though accurate, description of the dynamics of the space
debris; (ii) the construction of a normalization procedure to determine the proper elements;
(iii) the production of fragments through a simulated break-up event. We consider a model
that includes the Keplerian part, an approximation of the geopotential, and the gravitational
influence of Sun andMoon. We also evaluate the contribution of Solar radiation pressure and
the effect of noise on the orbital elements.We implement a Lie series normalization procedure
to compute the proper elements associated to semi-major axis, eccentricity and inclination.
Based upon a wide range of samples, we conclude that the distribution of the proper elements
in simulated break-up events (either collisions and explosions) shows an impressive connec-
tion with the dynamics observed immediately after the catastrophic event. The results are
corroborated by a statistical data analysis based on the check of the Kolmogorov-Smirnov
test and the computation of the Pearson correlation coefficient.
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1 Introduction

Over the centuries perturbation theoryhas beenused in different contexts ofCelestialMechan-
ics, from the computation of the ephemerides of the Moon to the determination of the orbits
of artificial satellites.

In the domain of nearly-integrable Hamiltonian systems, perturbation theory consists in
a normalization procedure that implements a canonical change of coordinates so that the
transformed system becomes integrable up to a remainder function. The integrable part of
the transformed Hamiltonian admits integrals of motion, which are indeed quasi-integrals
for the Hamiltonian system that includes the remainder. The normalization procedure is
constructive in the sense that it allows us to determine the explicit expression of the new
integrable part and, hence, of the quasi-integrals.

This procedure has been successfully used to compute the so-called proper elements,
which are quasi-invariants of the dynamics, staying nearly constant over very long times.
Proper elements found a striking application in the context of the grouping of asteroids to
form families. We refer to Knežević (2016) for a thorough review of the history of asteroid
family identification. The idea at the basis of such computation is that objects with nearby
proper elements might have been physically close in the past. One can even conjecture
that such asteroids might be fragments of an ancestor parent body. Being obtained through
the averaging method over short-period angles followed by a normal form procedure that
averages out the long-period perturbations, proper elements retain the essential features of
the original family formation, which can be lost when using the osculating elements at the
present time.

Proper elements were used in 1918 by Hirayama (1918), who noticed many asteroids with
similar semi-major axes forming ring-shaped clusters in projections on the planes of non-
singular equinoctial orbital elements; the radius of the ring represents a proper element. Later,
Brouwer (1951) computed proper elements using an improved theory of planetary motion,
while Williams (1969) developed a semianalytic theory of asteroid secular perturbations.
Using Yuasa theory (1973), Kozai identified asteroid families formed by high-inclination
asteroids (Kozai 1979; Lemaitre and Morbidelli 1994; Novaković et al. 2011). Proper ele-
ments for celestial bodies in resonance, e.g. Trojan asteroids, were considered by Schubart
(Schubart 1991, see also Morbidelli 1993). A number of relevant works that included an
extension of Yuasa theory were developed by Knežević and Milani (see, e.g., Milani and
Knežević 1990; Milani and Knežević 1994, see also Lemaitre 1992). The latter authors
widely discussed also an alternative method to compute the proper elements, based on a
so-called synthetic theory, which uses a numerical integration, a digital filtering of the short-
period terms and a Fourier analysis (Knežević et al. 2003; Knežević and Milani 2000, 2003,
2019).

Inspired by the results of the computation of proper elements for asteroids, in this work we
aim at computing and testing proper elements for the space debris problem. The increasing
number of space debris surrounding the Earth has become a serious threat for the safeguard of
operative satellites and for spacemissions.Many efforts are concentrated to track and prevent
catastrophic events involving space debris, which are normally hardly observable and have
high velocities. Here, we develop a method to classify the space debris into families, such
that one can recover useful information about their evolution.

The procedure can be split into the following main steps: (i) the development of a model
that, in a given region, provides a good approximation of the dynamics of the space debris; (ii)
using Lie series, the explicit construction of an iterative normalization procedure to determine
the proper elements; (iii) the production of fragments through a simulated break-up event and
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Fig. 1 LEO: 90–2000 km, MEO: 2000–30000 km, GEO: > 30000 km

their analysis by means of a comparison between initial osculating elements, mean elements
after a given period of time, and proper elements computed using the mean elements.

We provide below some details of the above three steps.

1.1 Themodel

To study the dynamics around the Earth, it is convenient to split the region surrounding our
planet into three main parts: Low-Earth-Orbits (LEO) between 90 and 2000 km of altitude,
Medium-Earth-Orbits (MEO) between 2000 and 30000 km of altitude, Geosynchronous
Earth’s Orbits (GEO) above 30000 km of altitude (see Fig. 1).

The motion in LEO-MEO-GEO is mainly governed by the gravitational field of the Earth,
that must include also the fact that the shape of our planet is non spherical; in LEO it is
important to consider the dissipative effect due to the atmospheric drag, while in MEO and
GEO the gravitational influence of Moon and Sun, as well as the Solar radiation pressure
(hereafter, SRP), play a very important role (see, e.g., Casanova et al. 2015; Celletti and
Galeş 2018; Celletti et al. 2020; Gkolias and Colombo 2019; Lhotka et al. 2016; Schettino
et al. 2019; Skoulidou et al. 2018). We will limit our study to MEO and GEO, in which the
dynamics is governed by a conservative model. The computation of quasi-invariants in GEO
has been also approached in Celletti et al. (2017), Gachet et al. (2017).

In this work, we introduce a Hamiltonian function describing an approximation of the
contribution of the sum of the Keplerian part, an expansion of the geopotential, and the
gravitational influence ofMoon and Sun. The resulting Hamiltonian depends upon the orbital
elements of the debris, Moon, Sun and on the sidereal time accounting for the rotation of the
Earth. Hence, the Hamiltonian depends upon a set of angular variables, that can be ordered
hierarchically as fast, semi-fast and slowvariables, since their rates change over days,months,
years.We also investigate the effect of Solar radiation pressure, providing details on a specific
sample.

The model is described in Sect. 2.

1.2 Normal forms

The normalization procedure is based upon the following strategy.We first average the model
Hamiltonian over the fast and semi-fast angles; as a consequence of such averaging, the semi-
major axis is constant and becomes the first proper element. As a result, we obtain a two
degrees of freedomHamiltonian, which depends on time, due to the variation of the longitude
of the ascending node of the Moon. After the introduction of the extended Hamiltonian, we
make an expansion around reference values of the action variables. Next, we proceed to

123



11 Page 4 of 37 A. Celletti et al.

implement a Lie series normalization to first order that allows us to determine two more
proper elements, corresponding to eccentricity and inclination.

The normalization procedure is presented in Sect. 3.

1.3 Analysis of fragments’ clusters

To analyze groups of fragments originated from the same parent body, we use a simulator
of break-up events based upon the program developed in Apetrii et al. (2021). We generate
fragments from explosions or collisions of two satellites and we consider fragments with size
greater than 12 cm. We consider break-up events occurring in three regions with different
semi-major axis a: moderate altitude orbits (a = 15600 km and a = 20600 km), andmedium
altitude orbits (a = 33600 km).

Our results consist in a comparison of the three sets of data providing semi-major axis,
eccentricity and inclination, obtained as follows: we consider the elements just after break-
up, after a propagation over 150 years, and we compute the proper elements based on the
data propagated after 150 years. The results are presented in Sect. 4, which shows also some
results obtained propagating the fragments to times less than 150 years. The distribution of
the proper elements is analyzed by making the computations at different propagation times
and this is supported by statistical data analysis by drawing histograms, by performing the
Kolmogorov-Smirnov test and by computing the Pearson correlation coefficient.

This analysis is performed in non-resonant regions, but also resonant regions might be
interesting as well. To this end, we introduce the definition of tesseral resonance, which
corresponds to a commensurability involving the rate of variation of the mean anomaly of
the debris and the rotation of the Earth. In Sect. 5, we extend the computation to the study
of objects in the vicinity of resonant regions, precisely the 1:1 and 2:1 tesseral resonances.
Finally, we complement the results by providing a sample in which we add the effect of noise
to the initial mean elements.

From the results obtained in the non-resonant and resonant regions, we can draw the
following conclusions: in several cases, the proper elements allow us to reconstruct a cluster
structure, very similar to that which is formed just after the break-up. In particular, in the non-
resonant case, the proper elements are an efficient tool to reconstruct the initial distribution.
It is worth mentioning that some cases might be affected by lunisolar resonances (Breiter
2001; Celletti et al. 2016; Celletti and Galeş 2016; Ely and Howell 1997; Hughes 1980) and
therefore the cluster configuration can show anomalies in the distribution of the fragments.

The method presented in this paper represents an important tool for the classification of
space debris into families; it is clear that such result has a major impact in many directions of
paramount importance in space debris dynamics, most notably the identification of the space
debris parent body.

Some further conclusions and perspectives of this work are given in Sect. 7.

2 Themodel

In this section we introduce a model for the description of the dynamics of space debris,
that takes into account four main contributions: the gravitational potential of the Earth, the
attraction of the Moon, the attraction of the Sun, and the Solar radiation pressure. The model
has been described in full detail in Celletti et al. (2017), Celletti and Galeş (2014), starting
from the Cartesian equations of motion and using the expansion in orbital elements.
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With reference to Celletti et al. (2017), Celletti and Galeş (2014), we consider a Hamilto-
nian function composed by the following parts:

H = HKep + HE + HM + HS + HSRP ,

where HKep denotes the Keplerian part due to the interaction with a spherical Earth, HE

is the contribution due to the non-spherical Earth, HM and HS denote, respectively, the
Hamiltonian parts describing the attractions of Moon and Sun, HSRP denotes the effect of
Solar radiation pressure.

The Keplerian part takes a simple form, while the Hamiltonian functions HE , HM , HS ,
HSRP have more complex expressions.

2.1 Keplerian Hamiltonian

The Keplerian Hamiltonian can be written in the form

HKep(a) = −μE

2a
,

where a denotes the semi-major axis, μE = GmE with G the gravitational constant and mE

the mass of the Earth.

2.2 Gravitational field of the Earth

Following Celletti et al. (2017), Celletti andGaleş (2014), Kaula (1966), the Hamiltonian part
corresponding to the geopotential perturbation—assuming that the Earth is not spherical—
can be written as an expansion in the orbital elements (a, e, i, M, ω,�) of the space object
and depending on the sidereal time θ , which takes into account the rotation of the Earth.

In a quasi-inertial reference frame (see Appendix A for more details), the Hamiltonian
function can be written as

HE(a, e, i, M, ω,�, θ) = −μE

a

∞∑

n=2

n∑

m=0

(
RE

a

)n n∑

p=0

Fnmp(i)

×
∞∑

q=−∞
Gnpq(e)Snmpq(M, ω,�, θ), (2.1)

where RE is the Earth’s radius and the functions Fnmp(i) and Gnmp(e) are given by

Fnmp(i) =
min(p,K )∑

w=0

(2n − 2w)!
w!(n − w)!(n − m − 2w)!22n−2w sinn−m−2w(i)

m∑

s=0

(
m

s

)
coss(i)

×
n∑

c=0

(
n − m − 2w + s

c

)(
m − s

p − w − c

)
(−1)c−K ,

Gnmp(e) = (−1)|q|(1 + β2)nβ |q|
∞∑

k=0

Pnpqk Qnpqkβ
2k (2.2)
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Table 1 Values of Jnm (in units
of 10−6) and λnm from Earth
Gravitational Model (2008)

n m Jnm λnm

2 0 − 1082.2626 0

2 1 0.001807 − 81◦· 5116
2 2 1.81559 75◦· 0715
3 0 − 2.53241 0

3 1 2.20947 186◦· 9692
3 2 0.37445 72◦· 8111
3 3 0.22139 80◦· 9928

with K = [(n − m)/2] and β, Pnpqk , Qnpqk being functions of the eccentricity:

β = e

1 + √
1 − e2

Pnpqk =
h∑

r=0

(
2p′ − 2n

h − r

)
(−1)r

r !
(

(n − 2p′ + 2q ′)e
2β

)r

,

{
h = k + q ′, q ′ > 0

h = k, q ′ < 0

Qnpqk =
h∑

r=0

(−2p′

h − r

)
1

r !
(

(n − 2p′ + 2q ′)e
2β

)r

,

{
h = k, q ′ > 0

h = k − q ′, q ′ < 0 ,

while p′ = p and q ′ = q when p ≤ n/2, p′ = n − p and q ′ = −q when p > n/2.
The quantity Snmpq in (2.1) is given by

Snmpq =
{

−Jnm cos(�nmpq), mod (n − m, 2) = 0

−Jnm sin(�nmpq), mod (n − m, 2) = 1 ,

where
�nmpq = (n − 2p)ω + (n − 2p + q)M + m(� − θ) − mλnm (2.3)

for some constants λnm , while Jnm are related to the spherical harmonic coefficients of the
geopotential (Kaula 1962). According to a standard notation, we define Jn ≡ Jn0.We remark
that among the coefficients Jnm of the Earth the biggest one is J2 = −1.082 ·10−3; the values
of the first few coefficients Jnm and λnm are listed in Table 1.

Instead of the full expansion (2.1), we will consider only the secular part by averaging
over the fast angles M and θ ; this amounts to choose in (2.3) the terms with indexes m = 0
and n−2p+q = 0. The explicit expansions ofHE up to order n = 2 or n = 3, and including
only the J2 term, take the following form:

HJ2
E = μER

2
E J2

1 + 3 cos(2i)

8a3
(
1 − e2

)3/2 ,

while including both J2 and J3 terms, one obtains

HJ3
E = μER2

E

a3
J2

(
3

4
sin2 i − 1

2

)
1

(1 − e2)
3
2

+μER3
E

a4
J3

(
15

8
sin3 i − 3

2
sin i

)
e sinω

1

(1 − e2)
5
2

. (2.4)
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We give now the following definition of tesseral resonance, which plays an important role
both in theoretical investigations and practical applications to Earth’s satellites.

Definition 1 A tesseral resonance of order j :l with j, l ∈ Z\{0} occurs whenever the fol-
lowing relation is satisfied

l Ṁ − j θ̇ + j�̇ + lω̇ = 0 .

2.3 Moon’s perturbation

The perturbation of the space object due to the Moon’s attraction can be written as an
expansion in the orbital elements of the Moon and the object, using the following formula
(see Celletti et al. 2017; Kaula 1962):

HM = −GmM

∑

l≥2

l∑

m=0

l∑

p=0

l∑

s=0

l∑

q=0

∞∑

j=−∞

∞∑

r=−∞
(−1)m+s(−1)[m/2] εmεs

2aM

(l − s)!
(l + m)!

(
a

aM

)l

×Flmp(i)Flsq(iM )Hlpj (e)Glqr (eM ){(−1)t(m+s−1)+1Um,−s
l cos(φlmpj

+φ′
lsqr − ysπ) + (−1)t(m+s)Um,−s

l cos(φlmpj − φ′
lsqr − ysπ)} , (2.5)

where ys = 0, if s mod 2=0, ys = 1
2 , if s mod 2= 1, t = (l − 1) mod 2, and

εm =
{
1, m = 0

2, m ∈ Z\{0}
φlmpj = (l − 2p)ω + (l − 2p + j)M + m�

φ′
lsqr = (l − 2q)ωM + (l − 2q + r)MM + s(�M − π

2
) .

The functions Flmp(i), Flsq(iM ) and Glqr (eM ) have been introduced in (2.2), Hlpj (e) are
the Hansen coefficients and the function Um,s

l has the following form

Um,s
l =

min(l−s,l−m)∑

r=max(0,−(m+s))

(−1)l−m−r
(

l + m

m + s + r

)(
l − m

r

)
cosm+s+2r

×(
ε

2
) sin−m−s+2(l−r)(

ε

2
),

where ε = 23◦26′21.406′′ is the Earth’s obliquity.
We specify since now that later wewill limit ourselves to consider (2.5) expanded to l = 2.

2.4 Sun’s perturbation and Solar radiation pressure

As regards the Sun, we proceed with an expansion similar to that of the Moon, now involving
the orbital elements of the Sun and the space object. Precisely, we obtain thatHS is given by
(see Celletti et al. 2017; Kaula 1962)

HS = −GmS

∑

l≥2

l∑

m=0

l∑

p=0

l∑

h=0

∞∑

q=−∞

∞∑

j=−∞

al

al+1
S

εm
(l − m)!
(l + m)!

Flmp(i)Flmh(iS)Hlpq(e)Glhj (eS) cos(φlmphq j ), (2.6)
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where

φlmphq j = (l − 2p)ω + (l − 2p + q)M − (l − 2h)ωS − (l − 2h + j)MS + m(� − �S).

As for the Moon, later we will limit ourselves to consider (2.6) expanded to l = 2.
The contribution to the Hamiltonian due to Solar radiation pressure is given by:

HSRP = Cr Pr
A

m
a2S

1∑

l=1

l∑

s=0

l∑

p=0

l∑

h=0

∞∑

q=−∞

∞∑

j=−∞

al

al+1
S

εs
(l − s)!
(l + s)!

Flsp(i)Flsh(iS)Hlpq(e)Glhj (eS) cos(φlsphq j ) , (2.7)

where A/m is the area-to-mass ratio of the object, Cr is the reflectivity coefficient, and Pr is
the radiation pressure for an object located at 1AU .

2.5 Validation of themodel

We conclude this section with a validation of the Hamiltonian model in two different cases:
a non-resonant motion and a motion close to a 2:1 tesseral resonance. For each case, we
perform two numerical integrations: the first one using the Cartesian equations of motion
(described by the equations in Appendix A), the second one using Hamilton’s equations for
the Hamiltonian function in which the contribution of the Earth is limited to the J2 term and
to the resonant one denoted by H2:1

E :

H = HJ2
E + H2:1

E + HS + HM . (2.8)

To define the term H2:1
E we proceed as follows. If one studies a region where the evolution

of the space object is in resonance with the rotation of the Earth, which means a commensu-
rability between the angles M and θ as in Definition 1, we can select in (2.1) only the terms
that correspond to that specific resonance. For example, for the 2:1 tesseral resonance, we
retain only the terms with m 
= 0 and 2(n − 2p + q) = m, thus obtaining the following
expression:

H2:1
E = μER2

E

a3

(
9

8
eJ22

(
2 − 2 cos2(i)

)
cos (M + 2(� − θ) − 2λ22)

)

−μE R2
E

a3

(
3

8
eJ22

(
cos2(i) + 2 cos(i) + 1

)
cos (M + 2ω + 2(� − θ) − 2λ22)

)
.

In (2.8), we assume that the Hamiltonian function for the Moon (see (2.5)) is expanded
up to order l = 2 and we take the orbital elements as in Table 2. Similarly, the Hamiltonian
function for the Sun (see (2.6)) is expanded up to order l = 2 and we take the orbital elements
as in Table 2.

Figure 2 shows the evolution over 150 years of eccentricity, inclination and resonant angle
for two different orbits: the upper one in a 2:1 resonance and the lower one in a non-resonant
region. In each case we plot two solutions, one obtained integrating the Cartesian equations
and the other one obtained integrating Hamilton’s equations associated to (2.8). The results
confirm that the Hamiltonian (2.8) is already accurate enough. This motivates our choice to
use a truncated expansion to order l = 2 within the normalization procedure described in
Sect. 3 and implemented in Sect. 4.
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Table 2 Orbital elements of Sun
and Moon

Sun Moon

Mean daily motion 1◦/day 13.06◦/day
Semi-major axis 1.496 × 108 km 384478 km

Eccentricity 0.0167 0.0549

Inclination 23◦26′21.406′′ 5◦15′
ω̇S/M 282.94◦/day 0.164◦/day
�̇S/M 0◦/day − 0.0529918◦/day

Fig. 2 Hamilton’s integration (red lines) versus Cartesian Integration (blue lines). Top: a = 26520 km,
e = 0.05122, i = 56◦, ω = 190◦, � = 140◦. Bottom: a = 36700 km, e = 0.02, i = 45◦, ω = 100◦,
� = 30◦. Left: eccentricity. Middle: inclination. Right: resonant angle 2ω + �

3 Normalization algorithm

The normalization algorithm is an iterative procedure that transforms aHamiltonian function,
using canonical coordinates changes, so that the transformed Hamiltonian takes a prescribed
form, for example that it is integrable up to a remainder term. The normalization algorithm
can be iterated with the goal to reduce the size of the remainder term, although we must
be aware that the procedure is not converging in general (Poincaré 1892-1899) and that the
computational complexity increases as the number of normalization steps becomes higher.

We adopt a normalization algorithm based on the use of Lie series (see, e.g., Efthymiopou-
los 2011); although it is a standard procedure, we briefly recall the normal form algorithm,
since it is at the basis of the computation of the proper elements.

Let H = H(I , ϕ) be a Hamiltonian function defined in terms of action-angle variables
(I , ϕ) ∈ B × T

n , where B ⊂ R
n is an open set and n denotes the number of degrees of

freedom. We write the Hamiltonian as

H(I , ϕ) = H0(I ) + εH1(I , ϕ) , (3.1)

123



11 Page 10 of 37 A. Celletti et al.

whereH0(I ) represents the integrable part,H1(I , ϕ) is the perturbing term and ε represents
a small parameter. We assume that H1 is the sum of products between functions depending
on actions and cosines of different combinations of angles; hence, H1 can be expanded in
Fourier series as

H1(I , ϕ) =
∑

k∈K
bk(I ) exp(ik · ϕ) , (3.2)

where K ⊆ Z
n and bk denote functions with real coefficients.

We look for a canonical transformation with generating function χ that allows us to
perform the change of variables from (I , ϕ) to (I ′, ϕ′) defined through the expressions

I = Sε
χ I

′ , ϕ = Sε
χϕ′ , (3.3)

where the operator Sε
χF is defined by

Sε
χF := F +

∞∑

i=1

εi

i ! {{. . . {F, χ}, . . . }, χ} ,

and {·, ·} is the Poisson bracket operator, such that {F, χ} = ∑n
j=1

∂F
∂ϕ j

∂χ
∂ I j

− ∂F
∂ I j

∂χ
∂ϕ j

.

The function Sε
χ must be chosen so that the transformed Hamiltonian H(1) = Sε

χH takes
the following expression:

H(1)(I ′, ϕ′) = H0(I
′) + εH1(I

′) + ε2H2(I
′, ϕ′) , (3.4)

whereH0 + εH1 is the new integrable Hamiltonian (depending just on the new actions) and
H2 is the remainder term (the overbar denotes the average with respect to the angles).

Inserting the transformation (3.3) into (3.1), and expanding in Taylor series in the param-
eter ε, one obtains that the transformed Hamiltonian is given by

H(1)(I ′, ϕ′) = H0(I
′) + εH1(I

′, ϕ′) + ε{H0(I
′), χ(I ′, ϕ′)} + ε2{H1(I

′, ϕ′), χ(I ′, ϕ′)}

+ ε2

2
{{H0(I

′), χ(I ′, ϕ′)}, χ(I ′, ϕ′)} + . . . (3.5)

To obtain a Hamiltonian function of the form (3.4), we must impose that the function in (3.5),
that contains only terms of first order in ε, does not depend on the angles. This allows us to
determine the generating function χ as the solution of the following homological equation:

H1(I
′, ϕ′) + {H0(I

′), χ(I ′, ϕ′)} = H1(I
′) . (3.6)

Taking into account the expression (3.2) for H1, we look for a generating function of the
form

χ(I ′, ϕ′) =
∑

k∈Zn\{0}
ck(I

′) exp(ik · ϕ′) , (3.7)

where the coefficients ck will be determined through (3.6). In fact, denoting by ω0 = ∂H0
∂ I ′ ,

we obtain
{H0(I

′), χ(ϕ′, I ′)} = −i
∑

k∈Zn\{0}
ck(I

′) k · ω0 exp(ik · ϕ′) . (3.8)

Then, equation (3.6) is satisfied provided the coefficients ck are defined as

ck(I
′) = −i

bk(I ′)
k · ω0

, k 
= 0 . (3.9)
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Hence, the generating function takes the form

χ(I ′, ϕ′) = −
∑

k∈Zn\{0}
i
bk(I ′)
k · ω0

exp(ik · ϕ′) . (3.10)

As a consequence, the new Hamiltonian takes the form (3.4). If one discards the terms of
order ε2, the normal form is integrable up to orders of ε2.

If, instead, we keep the terms of order ε2, we can iterate the procedure to higher orders to
improve the accuracy of the Hamiltonian normal form. In this case, the new integrable part is
given byH0(I ′)+ εH1(I ′) and the perturbation is the reminder ε2H2(I ′, ϕ′). The algorithm
will provide a new generating function that can be constructed explicitly, using a procedure
similar to that leading to (3.10).

4 Proper elements in a non-resonant region

In this section, we apply the normalization algorithm described in Sect. 3 and we compute
the proper elements for several samples of space debris in a non-resonant region of the phase
space; we remind that the proper elements are the quasi-integrals of the Hamiltonian function
describing the dynamics of the space debris. More precisely, we will compute exact integrals
of the non-resonant normal form (namely, of the integrable part) which, when expressed in
terms of the original elements, are almost conserved quantities up to order εN+1, where N
is the normalization order.

After describing the computation of the proper elements in Sect. 4.1, we consider three
different samples at increasing altitudes (see Sects. 4.3, 4.4); these samples are composed
by a number of fragments generated after a break-up event, which is obtained through the
simulator briefly described in Sect. 4.2 and developed in Apetrii et al. (2021), using the
procedure presented in Johnson et al. (2001).

The distribution of the proper elements at different times of the evolution of the propagation
of the fragments will be presented later in Sect. 6.4.

4.1 Computation of the proper elements

We consider objects belonging to regions not affected by tesseral resonances, so that the
normalization procedure described in Sect. 3 applies straightforwardly. For the elements of
Sun andMoon, wewill use the data given in Table 2. The results of this section concern break-
up events and their propagation obtained by considering themodel including the geopotential,
Sun and Moon. Hence, in this section the normalization procedure does not include SRP,
which will be discussed in Sect. 6.2, where we will mention the modifications needed in the
normalization to include the effect of SRP.

The first step consists in averaging the expansions (2.1), (2.5), (2.6) (truncated to order
l = 2) over the fast and semi-fast angles, namely the mean anomalies M , MS , MM , and the
sidereal time θ . As a consequence of the averaging over M , the semi-major axis is constant
for the approximate averaged Hamiltonian and becomes the first proper element.

Due to the fact that the quantity �M depends on time with constant rate �̇M =
−0.0529918◦/day (as shown in Table 2), after averaging we end-up with the following
Hamiltonian function:
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H(e, i, ω,�, t) = Hsec
E (e, i, ω,�) + HS(e, i, ω,�) + HM (e, i, ω,�, t) ,

where Hsec
E is given by (2.4) and includes terms depending on J2 and J3.

Let us introduce the Delaunay action variables defined as

L = √
μEa , G = L

√
1 − e2 , H = G cos i ;

the conjugated angle variables are M , ω, �. In terms of such variables, we get a two degrees
of freedom, time-dependent Hamiltonian of the form:

H(G, H , ω,�, t) = Hsec
E (G, H , ω,�) + HS(G, H , ω,�) + HM (G, H , ω,�, t) .

In the light of the theory presented in Sect. 3, it is convenient to transform the Hamiltonian
so that it becomes autonomous. To do this, we premise that our unit of time is one sidereal day
over 2π and that the angles are measured in radians; since in Table 2 the rate of variation of
the longitude of the ascending node is given in degrees/synodic day, we transform such value
as −0.0529918 · 365.242196/(366.242196 · 360), which gives the value of −0.000146798
rad/(sidereal day). This motivates the introduction of an angle variable defined as �M =
−0.000146798 t , which represents the linear evolution of the node of the Moon in our time
units; we denote by HM its conjugated action variable. Then, the extended Hamiltonian is
given by

Hext (G, H , HM , ω,�,�M ) = Hsec
E (G, H , ω,�) + HS(G, H , ω,�)

+ HM (G, H , ω,�,�M ) − 0.000146798 HM .

Next, we make a linear (canonical) change of coordinates to consider the dynamics around
fixed reference values of G and H , say G0 and H0. Thus, the transformation of coordinates
(G, H) → (P + G0, Q + H0) leads to introduce new variables (P, Q), which are close to
zero. To keep a consistent notation, we use (QM , p, q, qM ) instead of (HM , ω,�,�M ). In
this notation, in the neighborhood of G0, H0, the Hamiltonian function can be written as

Hext (P + G0, Q + H0, QM , p, q, qM )

= Hsec
E (P + G0, Q + H0, p, q) + HS(P + G0, Q + H0, p, q)

+HM (P + G0, Q + H0, p, q, qM ) − 0.000146798 QM ,

that we expand in power series around P = 0 and Q = 0 up to order 3 in P and Q, separately.
We call H the expanded Hamiltonian.

The linear part in the action variables of the Hamiltonian, that we denote by Z0, can be
expressed in the form:

Z0(P, Q, QM ) = νP P + νQ Q + νQM QM ,

where the ‘frequencies’ νP , νQ , νQM are functions of L0, G0, H0. The explicit expressions
for the frequencies are the following:

νP (L0,G0, H0) = 0.92 · 10−4H2
0

G6
0L

3
0

− 0.18 · 10−4

G4
0L

3
0

+ 0.33 · 10−4H2
0 L

4
0

G3
0

−0.67 · 10−4G0L
2
0 ,

νQ(L0,G0, H0) = −0.37 · 10−4H0

G5
0L

3
0

− 0.33 · 10−4H0L4
0

G2
0

+ 0.20 · 10−4H0L
2
0 ,

νQM = −1.46798 · 10−4 .
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We remind that the units of length and time are normalized by setting the geostationary
distance of 42164.1696 km equal to one and the period of Earth’s rotation equal to 2π ; this
choice implies μE = 1.

Next, we split the Hamiltonian into two parts, namely Z0 and a remainder R0. In this way
we end up with a Hamiltonian of the form (3.1), namely

H(P, Q, QM , p, q, qM ) = Z0(P, Q, QM ) + R0(P, Q, QM , p, q, qM ) . (4.1)

Given that the Hamiltonian in (4.1) is obtained as the sum of two contributions with the
norm of R0 typically (much) smaller than the norm of Z0, following Efthymiopoulos (2011),
we introduce a book-keeping parameter λ in front of R0. More precisely, the book-keeping
parameter is introduced to label the part of the Hamiltonian which has to be removed by the
normalization algorithm. Therefore, following the procedure described in Sect. 3, at each
normalization step we split the remainder into two parts, the first one depending just on the
actions and the second one depending on all variables. Performing the steps (3.6)-(3.9), we
compute the generating function and the transformed Hamiltonian.

If we stop the iteration of the normalization procedure, we retain the Hamiltonian parts
containing only the terms independent on λ and the terms linear in λ. Since the introduction
of the book-keeping was fictitious, at the end we restore its value to λ = 1.

If, instead, we decide to perform another normalization step, the terms of second order
in λ are used to label the remainder and the normalization method is then iterated. Once we
finish the iteration, we use the generating functions computed at each normalization step to
find the other two proper elements, namely the proper eccentricity and the proper inclination.

To bemore specific, let us denote by N the number of steps of the normalization procedure
(in practical computations we will take N = 1). Denoting with a prime the variables after
the normalizing transformation, we end-up with a Hamiltonian of the form

H(N )(P ′, Q′, Q′
M , p′, q ′, q ′

M ) = Z (N )(P ′, Q′, Q′
M ) + R(N )(P ′, Q′, Q′

M , p′, q ′, q ′
M )

(4.2)
where Z (N ) = Z0(P ′, Q′, Q′

M )+λZ1(P ′, Q′, Q′
M )+· · ·+λN ZN (P ′, Q′, Q′

M ) is the nor-
mal format order N , depending just on the actions, and R(N ) = λN+1RN (P ′, Q′, Q′

M , p′, q ′,
q ′
M ) is the remainder; again, λ denotes the book-keeping parameter, that will be set equal to

one at the end of the procedure. If we disregard R(N ), we obtain that P ′, Q′, Q′
M are constants

of motion for the Hamiltonian H(N )
0 = Z (N )(P ′, Q′, Q′

M ), while p′, q ′, q ′
M evolve linearly

in time. Hence, we can write the solution of Hamilton’s equations associated to H(N )
0 as

P ′(t) = P ′
0

Q′(t) = Q′
0

Q′
M (t) = Q′

M,0

p′(t) = p′
0 + ∂Z (N )

∂P ′ (P ′
0, Q

′
0, Q

′
M,0) t

q ′(t) = q ′
0 + ∂Z (N )

∂Q′ (P ′
0, Q

′
0, Q

′
M,0) t

q ′
M (t) = q ′

M,0 + ∂Z (N )

∂Q′
M

(P ′
0, Q

′
0, Q

′
M,0) t ,
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where P ′
0, Q

′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0 denote the initial conditions. To compute the original

variables as a function of the new variables, we use the generating functions that led to (4.2)
and that we denote as χ(N ), χ(N−1), . . . , χ(1) (Deprit and Rom 1970). Hence, we obtain

P(P ′(t), Q′(t), Q′
M (t), p′(t), q ′(t), q ′

M (t)) =Sλ
χ(1) ◦ · · · ◦ Sλ

χ(N ) P
′,

Q(P ′(t), Q′(t), Q′
M (t), p′(t), q ′(t), q ′

M (t)) =Sλ
χ(1) ◦ · · · ◦ Sλ

χ(N ) Q
′,

QM (P ′(t), Q′(t), Q′
M (t), p′(t), q ′(t), q ′

M (t)) =Sλ
χ(1) ◦ · · · ◦ Sλ

χ(N ) Q
′
M ,

p(P ′(t), Q′(t), Q′
M (t), p′(t), q ′(t), q ′

M (t)) =Sλ
χ(1) ◦ · · · ◦ Sλ

χ(N ) p
′,

q(P ′(t), Q′(t), Q′
M (t), p′(t), q ′(t), q ′

M (t)) =Sλ
χ(1) ◦ · · · ◦ Sλ

χ(N )q
′,

qM (P ′(t), Q′(t), Q′
M (t), p′(t), q ′(t), q ′

M (t)) =Sλ
χ(1) ◦ · · · ◦ Sλ

χ(N )q
′
M ,

which implies that we can express the original variables as

P(P ′(t), Q′(t), Q′
M (t), p′(t), q ′(t), q ′

M (t)) =P̃(P ′
0, Q

′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0, t),

Q(P ′(t), Q′(t), Q′
M (t), p′(t), q ′(t), q ′

M (t)) =Q̃(P ′
0, Q

′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0, t),

QM (P ′(t), Q′(t), Q′
M (t), p′(t), q ′(t), q ′

M (t)) =Q̃M (P ′
0, Q

′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0, t),

p(P ′(t), Q′(t), Q′
M (t), p′(t), q ′(t), q ′

M (t)) = p̃(P ′
0, Q

′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0, t),

q(P ′(t), Q′(t), Q′
M (t), p′(t), q ′(t), q ′

M (t)) =q̃(P ′
0, Q

′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0, t),

qM (P ′(t), Q′(t), Q′
M (t), p′(t), q ′(t), q ′

M (t)) =q̃M (P ′
0, Q

′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0, t) ,

(4.3)

where, by using the solutions of the normal form equations, the functions P̃ , Q̃, Q̃M , p̃,
q̃ , q̃M are explicit functions of time. To compute P ′

0, Q
′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0, we have two

possibilities. One is to compute the inverse transformation by exploiting the generating func-
tions; however, for a low order normalization, this procedure is usually not very accurate.
On the other hand, an appropriate method to compute the initial conditions is to solve the
following system of equations:

P̃(P ′
0, Q

′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0, 0) =P0,

Q̃(P ′
0, Q

′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0, 0) =Q0,

Q̃M (P ′
0, Q

′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0, 0) =QM,0,

p̃(P ′
0, Q

′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0, 0) =p0,

q̃(P ′
0, Q

′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0, 0) =q0,

q̃M (P ′
0, Q

′
0, Q

′
M,0, p

′
0, q

′
0, q

′
M,0, 0) =qM,0 ,

which we insert in (4.3) to obtain the analytic solution in the original variables. Finally, from
P(t), Q(t), we go back to G(t), H(t) and hence to e(t), i(t). As a last step, we define the
proper eccentricity ep and the proper inclination i p as the averages over a given time interval,
say [t0, T ]:

ep(T ) = 1

T − t0

∫ T

t0
e(t)dt, i p(T ) = 1

T − t0

∫ T

t0
i(t)dt .

Weremark thatwe could have also computed the proper elements in the transformedvariables,
without the need of using the analytic solution to compute the proper elements in terms of
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the original variables. Having in mind concrete applications, we believe that our procedure
is more appropriate, beside being suitable for different purposes, like the propagation of the
solution. However, it must be admitted that the direct determination of the proper elements
in the transformed variables is computationally simpler and it provides results quite similar
to our original procedure.

4.2 A simulator for generating fragments

In the following sections,wewill compute the proper elements associated to several fragments
generated by a break-up event. To this end, our results are obtained using a simulator of col-
lisions developed within the ongoing collaboration in Apetrii et al. (2021), which reproduces
the break-up model Evolve 4.0 provided by NASA (see Johnson et al. 2001; Klinkrad 2006;
AAVV 1998). This simulator, which has been validated for debris sizes greater than 1 cm,
allows us to determine the cross-sections, masses, and imparted velocities of the fragments
after an explosion or a collision.

The break-up model Evolve 4.0 includes:

– the size distribution of the fragments after collision or explosion,
– the fragments’ area-to-mass ratio,
– the fragments’ relative velocity distribution with respect to the parent body.

Due to the fact that the above parameters are not the same for all debris, it is necessary to
provide the distributions as a function of a given parameter, e.g. the mass or the character-
istic length. Besides, the simulations can be highly influenced by the initial conditions and
parameters of the break-up, for example the total mass of the parent body or the collision
velocity.

We remark that the explosion and collision rates, as well as the fragment size distribution,
affect the production rate of the debris particles. On the other hand, the area-to-mass ratio
and the relative velocity distribution affect how the debris evolve and eventually decay.

We refer to Johnson et al. (2001), Klinkrad (2006), AAVV (1998) for further details on
the break-up simulator that we reproduced in Apetrii et al. (2021) to obtain the fragments
generated by a collision or an explosion.

In the collision case, the simulator has as inputs the position of the parent body, the mass
of both parent and projectile bodies and the impact velocity. In the explosion case, the inputs
are just the position and type of the parent satellite (body).

Only fragments bigger than 12 cm are generated. The output that will be produced to
obtain the results of Sects. 4.3–4.5 is a combination of the simulator of break-up events, the
propagation of the fragments’ orbits, and the computation of the proper elements. Precisely,
we compute the following three sets of data:

(i) a set of instantaneous velocities after break-up, transformed to the orbital elements of
each fragment at the instant of time after the event. In thisway,we obtain the distribution
of the elements in the phase space of semi-major axis, eccentricity and inclination;

(i i) starting from the data after the break-up, we propagate each fragment for a given period
of time, typically up to 150 years. This result allows us to monitor how the distribution
evolves;

(i i i) we use the position of the fragments after the propagation up to a given interval of time
(e.g., 150 years) to compute the proper elements of each fragment. The distribution of
the proper elements is then compared to that of the elements at the initial time after the
break-up.
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Fig. 3 Distribution of a-i (left), i-e (right) with the parent body at the initial position a = 15100 km, e = 0.06,
i = 5◦, ω = 90◦, � = 10◦ after break-up (first row), after 150 years (second row), and proper elements
computed after 150 years (third row)

Among an extensive survey of cases we have analyzed, we select the three representative
samples at different altitudes described in Sects. 4.3, 4.4.

4.3 Moderate altitude orbits

In this section we present two samples obtained by simulating an explosion of a spacecraft
of Titan Transtage type and a collision between a 1200 kg parent body and 5 kg projectile at
the relative velocity of 4900 m/s.

The first sample is located at relatively low distance from the Earth; precisely, we consider
a simulated explosion that generates 356 fragments and having the following parameters of
the parent body: a = 15100 km, e = 0.06, i = 5◦, ω = 90◦, � = 10◦. The different panels
of Fig. 3 show the osculating elements immediately after the break-up (first row), the mean
elements (obtained by integrating the averaged Hamiltonian) propagated up to 150 years
(second row) and the proper elements computed from the evolution after 150 years (third
row). The reason for computing the proper elements after a time interval (say, 150 years)
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Fig. 4 Distribution of a-i (left), i-e (right) with the parent body at the initial position a = 20600 km, e = 0.01,
i = 15◦, ω = 10◦, � = 20◦ after break-up (first row), after 150 years (second row), and proper elements
computed after 150 years (third row)

relies on the fact that space debris catalogues, like the TLE (Two-Line-Elements) catalogue,
provide the values of the elements at a given epoch after the disruptive event and usually not
at the time at which the break-up takes place.

Figure 3 illustrates the results in the planes a-i , i-e, which show that the proper elements
give important information on the distribution of the fragments after the collision. Indeed,
after 150 years the debris are spread in phase space (second row), while in the proper element
phase space the fragments are restored in groups (third row), similar to those obtained just
after break-up (first row). We notice a small shift of the proper inclination, as it happens in
most of the examples described in the rest of the work; sometimes the shift occurs also in the
eccentricity.

The second sample concerns a collision that generates 767 fragments. The event occurs
at a moderate altitude of the parent body with a = 20600 km and with a relatively small
inclination and eccentricity, e = 0.01, i = 15◦; the other elements are fixed as ω = 10◦ and
� = 20◦.

Figure 4 gives the results in the planes a-i and i-e, where the scales have been fixed as
the minimum and the maximum values of the evolution of the elements after 150 years.
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Fig. 5 Proper values and evolution of eccentricity and inclination over 150 years of two random fragments
(a = 20600 km, e = 0.01, i = 15◦ , ω = 10◦, � = 20◦). The blue line is the evolution of the mean elements;
the purple line is the analytic solution computed every 6 months; the green line denotes the proper element
computed every 6 months

A comparison between the panels of the first and second row of Fig. 4 shows that the
fragments are moderately sparse after a propagation up to 150 years; on the other hand, the
proper elements plots look similar to the distribution after the break-up, thus allowing to
establish a connection with the fragments at the break-up event.

If we get a closer look at two random fragments as shown in Fig. 5, we find that the
proper values for the orbital elements are very close to the average values of the evolution
of the osculating elements. The evolution of the inclination shows that at a given time the
two fragments can be apart by about 1◦, while the proper elements (given by the average
inclinations of both fragments) are closer, but nearly constant.

4.4 Medium altitude orbits

Next case concerns a sample located in the GEO region, between the resonances 2:1 and 1:1.
The event has been simulated taking a parent body at a = 33600 km, e = 0.05, i = 20◦,
ω = 120◦, � = 60◦ and it consists of an explosion of a spacecraft of Titan Transtage type.
After break-up, a total of 356 fragments have been generated.

The results providing the elements at break-up, the propagation after 150 years and the
proper elements computed using the data after 150 years are given in Fig. 6. The evolution
of the osculating elements after 150 years in the a-i plane seems to be located around a
fitting parabolic curve; instead, the fragments are definitely sparse in the i-e plane after 150
years, due to a growth of the inclination from about 15◦ to 22◦. On the contrary, the proper
elements in the a-i plane take a shape similar to the distribution at the break-up around the
value i = 20◦.

4.5 Identification through fragments’grouping

An important practical use of the proper elements computation might come from the clas-
sification of events taking place at nearby locations. To this end, we simulate in Fig. 7 two
separate explosions having all elements in common, except the inclination: one explosion
occurs at i = 20◦ and the other at i = 21◦. While the evolution after 150 years does not
permit to distinguish between the two groups belonging to the original parent bodies, the
computation of the proper elements allows us to distinguish two clear groups that closely
resemble the distribution of fragments after the break-up.
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Fig. 6 Distribution of a-i (left), i-e (right) with the parent body at the initial position a = 33600 km, e = 0.05,
i = 20◦, ω = 120◦, � = 60◦ after break-up (first row), after 150 years (second row), and proper elements
computed after 150 years (third row)

We also provide a simulation of three explosions occurring at three different inclinations,
precisely i = 20◦, i = 21◦, i = 22◦. Also in this case, see Fig. 8, the proper elements
computation allows us to get information on the existence of three different groups, which
correspond to the three different explosions.

These two simple examples confirm the validity of the computation of the proper elements
for space debris, as already witnessed by the results on the identification of asteroid families;
the formation of groups, as well as their resemblance with the dynamical plots after the
break-up, might be used to reconstruct the catastrophic event and to identify the origin of the
fragments.
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Fig. 7 Distribution of a-i (left), i-e (right) with the parent body at the initial position a = 24600 km, e = 0.02,
i = 20◦ and i = 21◦, ω = 110◦, � = 120◦ at break-up (first row), after 150 years (second row) and proper
elements computed from data after 150 years (third row)

5 Proper elements close to a tesseral resonance

In this section, we focus on break-up events taking place close to tesseral resonances. The
procedure to construct the normal form will be the same as in Sect. 4, since our aim is to see
if the computation of the proper eccentricity and the proper inclination can be still used to
reconstruct the initial distribution after the break-up event.

Tesseral resonances have a strong influence on the evolution of semi-major axis, while
their effect is less important for inclination and eccentricity. We include the effect of the
tesseral resonance in the computation of the evolution as described in the following sections.

5.1 Close to the 2:1 tesseral resonance

We start by analyzing the behavior close to the 2:1 tesseral resonance. We remind that the 2:1
tesseral resonance occurs whenever there is a commensurability relation between the mean
motion of the space debris, the sidereal time, the argument of perigee and the longitude of
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Fig. 8 Distribution of a-i (left), i-e (right) with the parent body at the initial position a = 24600 km, e = 0.02,
i = 20◦, i = 21◦, i = 22◦, ω = 110◦, � = 120◦ at break-up (first row), after 150 years (second row) and
proper elements computed from data after 150 years (third row)

the ascending node:

Ṁ − 2θ̇ + 2�̇ + ω̇ = 0 .

We remark that when J2 = 0, then ω̇ = �̇ = 0 and the resonance relation reduces to

Ṁ − 2θ̇ = 0 .

Amultiplet tesseral resonance (seeCelletti et al. 2020) occurswhenever the following relation
is satisfied for � ∈ Z\{0}:

Ṁ − 2θ̇ + 2�̇ + ω̇ + �ω̇ = 0 .

For the 2:1 resonance, we consider a Hamiltonian function composed by the following terms:
the Keplerian part, the resonant Hamiltonian limited to the most important terms, the secular
Hamiltonian, the contributions of Sun and Moon that we limit to the Hamiltonians averaged
over the corresponding satellite mean anomaly. With respect to the latter choice, we remark
that we could have inserted the complete Sun andMoonHamiltonians, but we noticed that the
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non-average terms do not contribute much to the dynamics, while they remarkably increase
the complexity of the normalization procedure. In summary, in the proximity of the 2:1
resonance, we consider the following Hamiltonian:

H(L,G, H , M, ω,�, θ, t)

= HKep(L) + Hres2:1
E (L,G, H , M, ω,�, θ) + Hsec

E (G, H , ω,�)

+HS(G, H , ω,�) + HM (G, H , ω,�, t) ,

where the expansion (in the Keplerian orbital elements) of the term Hres2:1
E up to order

n = m = 3 and second order in eccentricity (including multiplet resonant terms) is given by

Hres2:1
E = J22μE R2

E

a3

(
9

8
e
(
2 − 2 cos2(i)

)
cos (−2λ22 + 2� − 2θ + M)

− 3

8
e
(
cos2(i) + 2 cos(i) + 1

)
cos (−2λ22 + 2� − 2θ + M + 2ω)

)

+ J32μE R3
E

a4

(
165

64
e2 sin(i)

(
3 cos2(i) − 2 cos(i) − 1

)

× sin (−2λ32 + 2� − 2θ + M − ω)

+ 15

64
e2 sin(i)

(
cos2(i) + 2 cos(i) + 1

)
sin (−2λ32 + 2� − 2θ + M + 3ω)

+ 15

8

(
2e2 + 1

)
sin(i)

(−3 cos2(i) − 2 cos(i) + 1
)

× sin (−2λ32 + 2� − 2θ + M + ω)

)
. (5.1)

When the inclination is not too small, the largest term in (5.1) is the last one containing the
resonant angle, which appears with the J32 coefficient. On the other hand, as shown in Celletti
and Galeş (2014), there are other two terms, depending respectively on the combinations of
the angles M−2θ +2� and M−2θ +2�+2ω, which might be important for specific values
of eccentricity and inclination. This leads to retain, in the first approximation, only three terms
in the initial Hamiltonian Hres2:1

E . Hence, the Hamiltonian used for the computation of the
evolution of the elements is the following:

H(L,G, H , HM , l, g, h, hM , θ) = − μ2
E

2L2 + J2μ4
E R

2
E

(
G2 − 3H2

)

4G5L3
+ HS(G, H , g, h)

+HM (G, H , g, h, hM ) − 0.000146798HM + 3

64G2L10

(
5J32μ

5
E R

3
E

√

1 − H2

G2

(−8
(
G2 − 2GH − 3H2) (

2G2 − 3L2) sin (−2λ32 + 2h − 2θ + l + g)
)

+8L4 J22μ
4
E R

2
E

√

1 − G2

L2

(
6(G2 − H2) cos(−2λ22 + 2h − 2θ + l)

−(G + H)2 cos (−2λ22 + 2h − 2θ + l + 2g)
))

.

Figure 9 shows an experiment analyzing an explosion of a spacecraft of Titan Transtage
type orbiting at a = 26600 km, e = 0.07, i = 15◦, ω = 270◦, � = 120◦. The dynamics
around the 2:1 tesseral resonance is chaotic, as shown by the sinusoidal distribution in the a-i
plane and from the spreading of fragments in inclination in Fig. 9. On the other hand, looking
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Fig. 9 Distribution of a-i (left), i-e (right) with the parent body at the initial position a = 26600 km, e = 0.07,
i = 15◦, ω = 270◦, � = 120◦ after break-up (first row), after 150 years (second row), and proper elements
computed after 150 years (third row)

at the third row of Fig. 9, we notice a quite successful computation of proper elements for
almost all fragments. However, we are aware of the fact that we did not obtain an accurate
reconstruction of the initial distribution, due to the fact that some fragments could be very
close to the resonant region, either inside it. We believe that the computation of the proper
elements close to a resonance might be improved by using an appropriate resonant normal
form procedure.

5.2 Close to the 1:1 tesseral resonance

In this section, we shortly analyze the dynamics close to the 1:1 tesseral resonance, which
contains many resonant terms, but only a single dominant one, as described in Celletti and
Galeş (2014). The dominant term is given by the expression:
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Hres1:1
E = J22μE R

2
E

a3

× 3

4

(
1 − 5e2

2

) (
cos2(i) + 2 cos(i) + 1

)
cos (−2λ22 + 2� − 2θ + 2M + 2ω)

)
,

which leads to consider the following Hamiltonian:

H(L,G, H , l, g, h, θ, hM , HM )

= − μ2
E

2L2 + J2μ4
E R

2
E

(
G2 − 3H2

)

4G5L3
+ Hres1:1

E (L,G, H , l, g, h, θ)

+HSun(G, H , g, h) + HMoon(G, H , g, h, gM ) − 0.000146798 HM .

Using the same approach as for the 2:1 resonance, we make an experiment very close to
the 1:1 resonance, taking a = 40600 km, e = 0.01, i = 20◦, ω = 170◦, � = 210◦. In total,

Fig. 10 Distribution of a-i (left), i-e (right)with the parent body at the initial position a = 40600 km, e = 0.01,
i = 20◦, ω = 170◦, � = 210◦ after break-up (first row), after 150 years (second row), and proper elements
computed after 150 years (third row)
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815 fragments have been produced from a collision between a 1300 kg parent body and a 6
kg projectile at the relative velocity of 4900 m/s.

The distributions of proper eccentricity and proper inclination are closer to the original
distributions of the fragments, than the distributions obtained using the mean elements (Fig.
10). As we already mentioned for the 2:1 resonance, we believe that the whole procedure
requires more work and might be improved by using an appropriate resonant normal form
procedure.

6 Data analysis, SRP, noisy data, constancy over time

In this section, we aim at supporting the results obtained in the previous sections by analyzing
different aspects:

(i) we use statistical data analysis to quantify the similarities of the distributions of the
fragments (see Sect. 6.1);

(i i) we analyze the effect of Solar radiation pressure (see Sect. 6.2);
(i i i) we make some experiments to study how the distributions are affected by noise (see

Sect. 6.3);
(iv) we provide some experiments to see the dependence of the results on the propagation

time (see Sect. 6.4).

6.1 Data analysis of the results

In this section we implement statistical methods for data analysis (Brandt 2014; Cowan 1998)
to quantify the links between the distributions of osculating, mean and proper elements. As
in the previous sections, we compare the distributions of semimajor axis, eccentricity and
inclination at break-up, after 150 years, and by computing the proper elements after 150
years.

Our procedure relies on the following steps: (S1) we use histograms to check the distri-
butions of the data, (S2) we scan the datasets to find possible outliers, (S3) we perform the
Kolmogorov-Smirnov (K-S) test to compare the distributions, and finally (S4) we compute
the Pearson correlation coefficient between the datasets (see Appendix B for further details
on each step of the procedure and the relevant definitions).

Fig. 11 Histograms of e (left) and i (right) for a parent body with orbital elements a = 20600 km, e = 0.01,
i = 15◦, ω = 10◦, � = 20◦
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As an example, we take the case of moderate orbits presented in Fig. 4 and we implement
the above steps (S1)–(S4) to analyze the data. Since the semi-major axis is always constant,
we are interested just in the analysis of eccentricity and inclination.

In Fig. 11 we show the histograms of e and i (step (S1)) in three situations: initial distri-
bution, mean elements distribution (after 150 years), and proper elements distribution (after
150 years). The right plot of Fig. 11 shows the inclinations: the initial and proper inclina-
tions have the same shape and size, although they are shifted; the mean inclination curve has
instead different shape and size, thus underlining (once more) the different behavior of the
mean elements with respect to the initial ones. As for the eccentricity given in the left plot
of Fig. 11, all curves are almost overlapping, since the forces (geopotential, Sun and Moon)
do not affect too much the evolution of the eccentricity, since we are taking the initial data
in a stable region far from the tesseral and lunisolar resonances.

As for step (S2), while checking the outliers for this experiment, we found 2 anomalies in
the dataset of the initial semi-major axis; however, only one of them is preserved for the mean
and proper semi-major axes. As for the eccentricity, we found 4 outliers in the initial dataset;
3 of them are also found in the proper eccentricity set, while for the mean eccentricity we
found 3 more outliers. Concerning the inclination, we have 3 outliers in the initial data, 7 in
the final mean dataset, and 6 in the proper inclination set. The conclusion is that the number
of outliers is very small for each dataset and it does not affect the performance of the other
statistical tests (e.g., Pearson correlation and the K-S test).

The behaviour of the distributions is confirmed also by the K-S test (step (S3)), which
gives a small p-value equal to 0.0015 when checking the similarity between the initial dataset
and the mean elements after 150 years, while it gives a higher p-value equal to 0.5167 when
looking at the initial data and the proper elements (see Table 3).

Step (S4) provides evidence of the difference in inclination between the initial data and
the data after 150 years; this is obtained by computing the Pearson correlation coefficient
which turns out to be equal to 0.7423. Instead, a higher coefficient equal to 0.9720 is obtained
when comparing the initial and proper elements.

We summarize in Table 3 the results of the data analysis of the different samples studied
in the previous sections; the samples can be identified through the semi-major axis.

6.2 The effect of Solar radiation pressure (SRP)

Solar radiation pressure affects mostly the fragments with high area-to-mass (A/m) ratio.
Since the break-up simulator returns the A/m ratio for each fragment, we perform also a test
on the computation of the proper elements including SRP. Following Hughes (1980), we use
(2.7) to model SRP; the explicit expression is given in Appendix C.

Since the Hamiltonian in Appendix C depends also on the angle MS , we treat the new
angle as we did it for the ascending node of theMoon, namelywe introduce a dummy variable
associated to MS which gives a 5 degrees of freedomHamiltonian system. The normalization
algorithm then follows the same steps as described in Sect. 4.1.

The results provided in Fig. 12 reproduce those of Fig. 4 with the addition of SRP, which is
computed by the simulator for each fragment; the values of the area-to-mass ratio range from
A/m = 0.05 to A/m = 0.74. Since such values are not too large, there are not big differences
between Figs. 4 and 12. Indeed, we notice only a small difference in the computation of the
Pearson correlation coefficients between the initial andmean elements (0.742391), and initial
and proper elements (0.932413). For all other experiments described in the previous sections,
the values of the Pearson coefficient and the K-S test p-value are provided in Table 3.
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Fig. 12 Distribution of a-i (left), i-e (right) for a parent body with orbital elements a = 20600 km, e = 0.01,
i = 15◦, ω = 10◦, � = 20◦ after break-up (first row), after 150 years (second row), and proper elements
computed after 150 years (third row). Additional effect: SRP

6.3 Proper elements and random noise

To complement the previous results, we add a simple experiment to take into account the
behaviour of proper elements in case of noisy initial conditions. We believe that this topic
deserves a thorough study; however, we think interesting to give a preliminary insight on a
test sample, following this procedure: consider the evolution of the mean elements starting
from some initial values, add noise to the latter, and then compute the proper elements using
the noisy data.

The noise is introduced by computing the orbital elements according to the following
formulae: aN = a(1 + 0.001τ), eN = e(1 + 0.05τ), iN = i(1 + 0.005τ), MN = M(1 +
0.005τ), ωN = ω(1 + 0.005τ), �N = �(1 + 0.005τ), where τ is a random number taking
the values -1, 0, or 1.

Again, we consider the sample already presented in Fig. 4, but adding noise. The results
show a larger spreadwith respect to the casewithout noise as shown in Fig. 13, and comparing
the histogram from Figs. 11 and 14. The conclusion of such experiment is that adding a small
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Fig. 13 Distribution of a-i (left), i-e (right)with the parent body at the initial position a = 20600 km, e = 0.01,
i = 15◦, ω = 10◦, � = 20◦: proper elements computed after 150 years. Additional effect: random noise

Fig. 14 Histogram of e (left) and i (right) for e parent body at the initial position a = 20600 km, e = 0.01,
i = 15◦, ω = 10◦, � = 20◦. Additional effect: random noise

noise to the orbital elements, we are still able to reproduce the initial distributions with a
fairly good approximation. A result which is confirmed also by the values of the statistical
tests reported in Table 3.

6.4 Constancy of the proper elements

Using the results obtained in Sect. 4.3, we analyze how the distribution of the proper elements
changes when we take different evolution times. To this end, we consider the fragments at
four different times: 0 years, 50 years, 100 years and 150 years. For each time and each
fragment, we obtain a set of final data from which we compute the proper elements; for this
reason, we will refer to the time at which we compute the proper elements as the proper-time.
The results are given in Fig. 15. The plots make clear that the mean elements distributions
change with time, while those of the proper elements are kept nearly constant; this fact is
reflected also by the statistical data analysis shown in Fig. 15, namely by the histograms and
the values of the Pearson correlation coefficients.

7 Conclusions and further work

In the present paper we developed a method to compute proper elements for groups of frag-
ments of space debris associated to the same break-up event. The Hamiltonian formulation
of the model was adopted to describe the dynamics taking into account three main forces:
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Fig. 15 Comparison of mean inclination and proper inclination at different times 0 years, 50 years, 100 years,
150 years (top). Distribution and Pearson correlation coefficient for mean inclination (bottom-left) and for
proper inclination (bottom-right)

the potential of the Earth, and the attraction of the Moon and the Sun. We also make some
experiments to evaluate the effect of Solar radiation pressure and that of data affected by
noise. Using a break-up simulator reproducing the model described in Johnson et al. (2001),
we analyzed the effectiveness of the computation of the proper elements in different regions,
which include moderate altitude orbits (a = 15100 km and a = 20600 km), and medium
altitude orbits (a = 33600 km). The experiments consisted in a comparison of the distribu-
tion of the elements a, e, i in three different scenarios: after break-up, after 150 years and
after the transformation into proper elements of the data propagated to 150 years. The main
results come from the plots in Sects. 4.3, 4.4. The plots obtained computing the proper ele-
ments show a distribution similar to that after the break-up; the results are supported by data
analysis, mainly through histograms, the K-S test and the determination of the Pearson cor-
relation coefficient. We have also noticed that the proper elements become very useful when
analyzing the dynamics after long periods of time. Indeed, we can use them as a prediction
of the mean position of the group of fragments using the information at the break-up time.

We also included a computation of proper elements in the neighborhood of the 1:1 and
2:1 tesseral resonances. Although the present results display already the correct behaviour,
we believe that the resonant cases need a more accurate investigation and their analysis can
be improved through the development of a resonant normalization procedure.

Our conclusion is that the present work should be seen as a proof of the conceptual
relevance of normal forms and proper elements in classifying space debris, especially when
associated to break-up events, either an explosion or a collision between two satellites. Some
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real cases have been successfully studied in Celletti et al. (2021), using some of the methods
detailed in the present work. In view of possible applications, we foresee several ways to
improve the results, in primis the study of a more elaborated model including a larger number
of spherical harmonics and a higher order expansion of the Hamiltonian. Another ingredient
that can contribute to improve the results is to push the normalization procedure to higher
orders. Besides, we believe that it could be worth investigating the effectiveness of synthetic
versus analytic proper elements. As a further direction of our work, we plan to explore the
construction and use of approximate integrals within the LEO region, in which the objects
are affected by the atmospheric drag. The dissipative effect in LEO might require to develop
tools different than those presented in this work.
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Appendix A: Cartesian equations of motion

Let us consider a body orbiting around the Earth. We assume that it is subject to the gravi-
tational attraction of the Earth, which we consider as an extended body, the Moon, and the
Sun. We consider two reference systems, with origin in the center of the Earth:

(1) a quasi-inertial frame, where the unit vectors {e1, e2, e3} are fixed;
(2) a co-rotating frame { f

1
, f

2
, f

3
}, in which the Earth is fixed and f

3
is aligned with the

spin axis, which rotates at a constant rate ω.

Let r be the position of the body, which can be written in both reference systems as

r = xe1 + ye2 + ze3
= X f

1
+ Y f

2
+ Z f

3
.
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Denoting by θ the sidereal time, the relation between the coordinates (x, y, z) and (X , Y , Z)

is given by
⎛

⎝
x
y
z

⎞

⎠ = R3(−θ)

⎛

⎝
X
Y
Z

⎞

⎠ ,

where

R3(θ) =
⎛

⎝
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞

⎠ .

Let r S, rM be the positions of the Sun and the Moon with respect to the center of the Earth,
mS ,mM the masses of the Sun and the Moon, and G the gravitational constant. The Cartesian
equations of motion for a satellites in orbit around the Earth are written

r̈ = − G
∫

VE

ρ(r p)
r − r p

|r − r p|3
dVE − GmS

(
r − r S

|r − r S |3
+ r S

|r S |3
)

− GmM

(
r − rM

|r − rM |3 + rM
|rM |3

)
,

(7.1)

whereVE is the volume of the Earth, r p is the position vector of a point inside the Earth, ρ(r p)
denotes the density at r p; the other two terms in (7.1) represent the gravitational attraction
of Sun and Moon, respectively. Denoting by

V (r) = G
∫

VE

ρ(r p)

|r − r p|
dVE

the gravitational potential of the Earth andwith∇ f the gradient with respect to the co-rotating
frame, the first term at the right hand side of (7.1) can be written as

R3(−θ)∇ f V (r). (7.2)

A.1 Spherical harmonics expansion of the geopotential

The Earth’s gravitational potential can be expanded as a series of spherical harmonics (Kaula
1966). Let us introduce spherical coordinates in the co-rotating frame as

⎧
⎪⎨

⎪⎩

X = r cosφ cos λ,

Y = r cosφ sin λ,

Z = r sin φ,

where 0 ≤ λ < 2π , −π
2 ≤ φ < π

2 . The series expansion of V in spherical harmonics is
given by

V (r , φ, λ) = GmE

r

∞∑

n=0

(
RE

r

)n n∑

m=0

Pnm(sin φ)
[
Cnm cos(mλ) + Snm sin(mλ)

]
.

Here, the functions Pnm are defined in terms of the Legendre polynomials Pn(x) as

Pnm(x) = (1 − x2)m/2 dm

dxm
Pn(x),
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and Cnm, Snm are the harmonic coefficients obtained by the following formulae:

Cnm = 2 − δ0m

mE

(n − m)!
(n + m)!

∫

VE

(
rp
Re

)n Pnm(sin φp) cos(mλp)ρ(r p)dVE

Snm = 2 − δ0m

mE

(n − m)!
(n + m)!

∫

VE

(
rp
Re

)n Pnm(sin φp) sin(mλp)ρ(r p)dVE ,

where mE is the mass of the Earth, (rp, φp, λp) denote the spherical coordinates associated
to a point P inside the Earth and, again, rp is its radius vector (δ jm is the Kronecker symbol).

The coefficients Cnm and Snm are related to the quantities Jnm and λnm of Table 1 by

Jnm = (C2
nm + S2nm)

1
2 for m 
= 0 ,

Jn0 = Jn = −Cn0 for m = 0 .

A.2 Equations of motion up to 2nd order

The Cartesian equations of motion in the quasi-inertial reference frame are given by the
rotation (7.2) and by computing the partial derivatives of the potentialwith respect to spherical
coordinates:

R3(−θ)∇ f V (r) = (∂V

∂X
cos θ − ∂V

∂Y
sin θ

)
e1 + (∂V

∂X
sin θ + ∂V

∂Y
cos θ

)
e2 + ∂V

∂Z
e3 , (7.3)

where the potential up to order n = m = 2 in the co-rotating frame is given by

V (X , Y , Z) = GmE

r
+ GmE

r
(
RE

r
)2

[
C20

(3Z2

2r2
− 1

2

) + 3C22
X2 − Y 2

r2
+ 6S22

XY

r2
]
.

By differentiating the potential V with respect to X , Y , Z and substituting the result in
(7.3) and (7.1), we find the following expression for the Cartesian equations of motion:

ẍ = − GmEx

r3
+ GmE R2

E

r5

{
C20

(3
2
x − 15

2

xz2

r2
) + 6C−

S x + 6C+
S y

+15x

r2
[C−

S (y2 − x2) − 2xyC+
S ]

}
− GmS

(
x − xS

|r − r S |3
+ xS

|xS |3
)

− GmM

(
x − xM

|r − rM |3 + xM
|rM |3

)
,

ÿ = − GmE y

r3
+ GmE R2

E

r5

{
C20

(3
2
y − 15

2

yz2

r2
) + 6C+

S x − 6C−
S y

+15y

r2
[C−

S (y2 − x2) − 2xyC+
S ]

}
− GmS

(
y − yS

|r − r S |3
+ yS

|r S |3
)

− GmM

(
y − yM

|r − rM |3 + yM
|rM |3

)
,

z̈ = − GmEz

r3
+ GmE R2

E

r5

{
C20

(9
2
z − 15

2

z3

r2
) + 15z

r2
[C−

S (y2 − x2) − 2xyC+
S ]

}

− GmS

(
z − zS

|r − r S |3
+ zS

|r S |3
)

− GmM

(
z − zM

|r − rM |3 + zM
|rM |3

)
,

where C+
S = C22 sin 2θ + S22 cos 2θ , C

−
S = C22 cos 2θ − S22 sin 2θ .
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Appendix B: Data analysis

In this section we report the basic elements of data analysis, used in the rest of this work
to get useful information from the dataset associated to the fragments. We refer to Brandt
(2014), Cowan (1998) for further details.

B.1 Histogram

To visualize the data and to understand the main features of a distribution, one can plot the
histogram of the dataset. This plot shows the frequency of each element from the set. It turns
out to be a useful tool to compare the distributions of two or more data sets.

B.2 Outliers

Outliers are rare data points far away from regular data points and generally do not form a tight
cluster. To check them, we count the anomalies in each dataset of semi-major axis, eccentric-
ity, and inclination in all three situations: initial osculating elements, final mean elements, and
proper elements. We used a predefined Mathematica©function, Find Anomalies from
the MachineLearning package, which is computed as:

p = P( fD(y) ≤ fD(x), y ≈ D) ,

where P denotes the probability, D is the approximated distribution of a 1D array X , x is an
element in X and fD(x) is the probability density function ofD; y ≈ Dmeans that y follows
the distribution D. In case of p < 0.001 (default threshold), Find Anomalies considers x
as anomalous. This function returns the number of outliers, the value of each outlier, and its
position in the dataset. With this information, we can compare the outliers for osculating,
mean and proper elements.

B.3 Pearson correlation coefficient

Pearson correlation coefficient, usually denoted by r , is used as a statistical measurement of
the relationship between two one-dimensional datasets. Mathematically, it is a real number
in [−1, 1], where 1 means a total positive linear relationship, 0 means no relationship, and
−1 means a total negative linear relationship between the two datasets.

For two variables (1D arrays) X = (x1, . . . , xn), Y = (y1, . . . , yn), we define the follow-
ing statistical measures:

(1) Mean of X : X̄ = 1
n

∑n
i=1 xi

(2) Variance of X : Var [X ] = 1
n−1

∑n
i=1(xi − X̄)

(3) Covariance of X and Y : Cov[X , Y ] = 1
n−1

∑n
i=1(xi − X̄)(yi − Ȳ ) .

Then, the Pearson correlation coefficient is defined as

r = Cov[X , Y ]
Var [X ]Var [Y ] .
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B.4 Kolmogorv-Smirnov test

Kolmogorov-Smirnov test is a goodness-of-fit test where the null hypothesis says that two
datasets are drawn from the same distribution and the alternative hypothesis that they were
not drawn from the same distribution.

Appendix C: Solar radiation pressure

Here we give the full expression of the Solar radiation pressure Hamiltonian, starting from
the expression (2.7):

HSRP = a
A

m

((−1.1446 × 10−10) e cos (−ω − � − MS + 4.9382)

− (
1.1446 × 10−10) e cos(i) cos (−ω − � − MS + 4.9382)

− (
1.1446 × 10−10) e cos (ω − � − MS + 4.9382)

+ (
1.1446 × 10−10) e cos(i) cos (ω − � − MS + 4.9382)

− (
3.2784 × 10−6) e cos (−ω − � + MS + 4.9382)

− (
3.2784 × 10−6) e cos(i) cos (−ω − � + MS + 4.9382)

− (
3.2784 × 10−6) e cos (ω − � + MS + 4.9382)

+ (
3.2784 × 10−6) e cos(i) cos (ω − � + MS + 4.9382)

− (
1.4109 × 10−7) e cos (−ω + � + MS + 4.9382)

+ (
1.4109 × 10−7) e cos(i) cos (−ω + � + MS + 4.9382)

− (
1.4109 × 10−7) e cos (ω + � + MS + 4.9382)

− (
1.4109 × 10−7) e cos(i) cos (ω + � + MS + 4.9382)

− (
1.0959 × 10−7) e cos (−ω − � + 2MS + 4.9382)

− (
1.0959 × 10−7) e cos(i) cos (−ω − � + 2MS + 4.9382)

− (
1.0959 × 10−7) e cos (ω − � + 2MS + 4.9382)

+ (
1.0959 × 10−7) e cos(i) cos (ω − � + 2MS + 4.9382)

− (
4.7161 × 10−9) e cos (−ω + � + 2MS + 4.9382)

+ (
4.7161 × 10−9) e cos(i) cos (−ω + � + 2MS + 4.9382)

− (
4.7161 × 10−9) e cos (ω + � + 2MS + 4.9382)

− (
4.7161 × 10−9) e cos(i) cos (ω + � + 2MS + 4.9382)

− (
3.0904 × 10−9) e cos (−ω − � + 3MS + 4.9382)

− (
3.0904 × 10−9) e cos(i) cos (−ω − � + 3MS + 4.9382)

− (
3.0904 × 10−9) e cos (ω − � + 3MS + 4.9382)

+ (
3.0904 × 10−9) e cos(i) cos (ω − � + 3MS + 4.9382)

− (
1.3299 × 10−10) e cos (−ω + � + 3MS + 4.9382)

+ (
1.3299 × 10−10) e cos(i) cos (−ω + � + 3MS + 4.9382)
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− (
1.3299 × 10−10) e cos (ω + � + 3MS + 4.9382)

− (
1.3299 × 10−10) e cos(i) cos (ω + � + 3MS + 4.9382)

− (
1.3602 × 10−6) e cos (−ω + MS + 4.9382) sin(i)

+ (
1.3602 × 10−6) e cos (ω + MS + 4.9382) sin(i)

− (
4.5468 × 10−8) e cos (−ω + 2MS + 4.9382) sin(i)

+ (
4.5468 × 10−8) e cos (ω + 2MS + 4.9382) sin(i)

− (
1.2822 × 10−9) e cos (−ω + 3MS + 4.9382) sin(i)

+ (
1.2822 × 10−9) e cos (ω + 3MS + 4.9382) sin(i)

)
.
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