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Abstract
This paper deals with direct transfers from the Earth to Halo orbits related to the translunar
point. The gravitational influence of the Sun as a fourth body is taken under consideration by
means of the Bicircular Problem (BCP), which is a periodic time dependent perturbation of
the Restricted Three Body Problem (RTBP) that includes the direct effect of the Sun on the
spacecraft. In this model, the Halo family is quasi-periodic. Here we show how the effect of
the Sun bends the stable manifolds of the quasi-periodic Halo orbits in a way that allows for
direct transfers.

Keywords Bicircular problem · Translunar point · Quasi-periodic Halo orbits · Invariant
manifolds of tori · Earth–Moon transfers

1 Introduction

The translunar point, the L2 point in the Earth-MoonRestricted ThreeBody Problem (RTBP),
has interested researchers from the late sixties, Schmid and Center (1968). Since those first
years, authors writing about the translunar point have in their sight the possibility of a per-
manent station on the lunar far side. Out of all the families that drive the dynamics nearby
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the translunar point, a particular one has always stood out as the favorite, the Halo family
(see Farquhar 1970). The main reason is the geometry of the orbits within the family as they
are always visible from the Earth. This property allows permanent communication with a
spacecraft following a Halo orbit. A remarkable part of the efforts during these decades has
been devoted to the problem of constructing a path from the Earth to a Halo orbit. That is,
designing a transfer orbit for the spacecraft to depart from the Earth and inject onto the Halo
orbit.

Mathematically speaking, the Halo family is a family of periodic orbits of the RTBP that
appears from a pitchfork bifurcation as the horizontal and vertical Lyapunov family merge
(see Jorba and Masdemont 1999). As periodic orbits, the trajectories in the Halo family have
a linear behaviour that encodes their stability property in the eigenvalues of the monodromy
matrix. In particular, the members of the standard Halo family have linear behaviour of type
center×saddle; this is, a pair of imaginary eigenvalues conjugated to each other corresponding
to the center, and a real eigenvalue and its inverse corresponding to the saddle. The other two
eigenvalues are equal to 1 due to the autonomous character of the RTBPHamiltonian, and are
associated to themanifold defined by the family of Halo orbits. This implies that each of these
orbits have one stable and one unstable manifold that are tangent to the stable and unstable
eigenspaces of the linearized system around the orbit. These stable and unstable manifolds
provide connections with different parts of the phase space and one can take advantage of
this fact to build transfer orbits.

The use of invariant manifolds to transport (and control) a spacecraft to a target orbit was
first analyzed in Gómez et al. (2001) and it has been extensively studied in the context of the
RTBP for both the Sun-Earth system, and the Earth-Moon system. For the Halos around the
L1 point of the Sun-Earth system the invariant manifolds are especially interesting because,
depending on the geometry and size of the Halo orbit, the stable manifold passes close to the
Earth. In this case, a spacecraft in a parking orbit can be inserted in the stable manifold of a
target Halo orbit with only one maneuver performed at the intersection of parking orbit with
the stable manifold. Once the spacecraft is in the manifold, it coasts to the orbit associated
with that manifold with no need to perform extra maneuvers1. In the Earth-Moon RTBP,
unfortunately, this is not the case (see Bernelli Zazzera et al. 2004; Alessi et al. 2010).
Different approaches have been developed for the Earth-Moon system, and these in general
require two or more maneuvers. These approaches, along with representative references, are
outlined in Sect. 2.3.

The Earth-Moon RTBP, however, does not take into account the gravitational pull of the
Sun. It has been shown, in a number of papers, that solar gravitation plays an important role
in the Earth-Moon environment and that its inclusion as a perturbation of the Earth-Moon
RTBP leads to significant changes in the phase space. See (Simó et al. 1995; Castellà and
Jorba 2000; Jorba 2000) for results regarding specifically the triangular points, Jorba et al.
(2020) for the case of L1 and Jorba and Nicolás (2020, 2021) for the case of L3. Moreover,
the case of the translunar point has been tackled in Alessi et al. (2012), Rosales et al. (2021).

Themain goal of this paper is to study this effect in the transfer from a parking orbit around
the Earth to the Halo family related to the translunar point. A natural question arising from
this context is whether the change on the phase space of the Earth-Moon RTBP produced
by the Sun is sufficient to bring the invariant manifolds of the Halo orbits close to the Earth,
allowing for one-maneuver transfers. During this paper wewill see that the answer is positive.

1 This statement is valid from a theoretical point of view, where maneuver execution is perfect and instan-
taneous, the position and velocity of the spacecraft at the maneuver time is known with no error, and the
spacecraft is considered massless. In practice, however, none of these assumptions are true, and usually it is
required to perform small correction maneuvers.
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There are, of course, several ways to model the influence of the Sun’s gravity in the Earth-
Moon system. In this study, we focus on the Bicircular Problem (BCP), Huang (1960), Cronin
et al. (1964). It is, broadly speaking, a pair of coupled RTBP (details on the construction of
the model are provided in Sect. 2.1). The BCP can be written as a periodic time perturbation
of the RTBP. Notice that this means that the dimension of the phase space is increased by one.
Also the invariant objects increase their dimension: the Lagrangian points no longer exist as
equilibria but they are replaced by periodic orbits with the same period as the perturbation
(in fact, in some cases the perturbation produced by the Sun is large enough to produce
bifurcations). An analogous situation holds for periodic orbits: they become, generically,
two dimensional quasi-periodic orbits, gaining the frequency of the perturbation (Jorba and
Villanueva 1997). In particular, the translunar Halo family is composed of quasi-periodic
orbits in the BCP. Therefore, in this paper, we use invariant manifolds attached to quasi-
periodic orbits to build the transfers.

The paper is structured as follows: Sect. 2 is devoted to preliminaries. In there,we introduce
specific details on the BCP and provide a description of relevant aspects of the Halo family in
this model. The preliminaries end with Sect. 2.3, in which we provide a summary of different
approaches to compute transfers. In Sect. 3 we construct transfer orbits from a parking orbits
about the Earth to Quasi-Periodic Halo orbits in the BCP. Finally, in Sect. 4 we provide our
conclusions and future work.

2 Preliminaries

In this section we review some previous results and techniques that have been used in the
paper. In particular, we focus on a description of themodel and the basic ideas for the transfer.

2.1 The Sun–Earth–Moon Bicircular model

A key aspect of the present work is to account for the gravitational pull of the Sun upon the
spacecraft. The effect of the Sun is twofold: first there is the direct effect, i.e., the pull that
the spacecraft receives directly from the Sun. Second, the indirect effect, i.e., the different
attraction on the spacecraft coming from the different motion of the Earth and the Moon due
to the effect of the Sun on the Earth and the Moon. To get a clear insight of the dynamical
aspects of the problem one should select the simplest models among the ones that contain the
desired phenomena. Aswewill see in this case the consideredmodel includes the effect of the
Sun in a quite simple way, that is, as a periodic time dependent perturbation of the Restricted
Three Body Problem (RTBP). When perturbing the RTBP periodically, the complexity of the
phase space increases, that is, the dimension of the invariant objects is increased, generically,
by one. This is a well-known fact that, moreover, is developed with more detail in Sect. 2.2.
As we will be dealing with a periodic time dependent perturbation of the RTBP, we devote
some words on recalling some basic properties of the latter.

TheRTBP is amodel that describes themotionof amassless particle under the gravitational
influence of two masses (the primaries). In the simplest of its versions the two primaries
revolve along circular orbits about their common barycentre. It is standard to use specific
units so that the distance between the primaries is equal to one, the sum of their masses
is equal to one and their period of revolution is equal to 2π . With these units the universal
gravitational constant is also equal to one.Moreover, it is also standard to consider a rotational
frame of reference (the synodic frame), fixing the two primaries in the horizontal axis. With

123



55 Page 4 of 20 J. J. Rosales et al.

Table 1 Values of the parameters
of the BCP μ = 0.012150581623 ms = 328900.55

ωs = 0.925195985518 as = 388.811143023351

these conditions, the motion of an infinitesimal particle under the gravitational attraction of
the primaries is described by a three degrees of freedom Hamiltonian system,

HRT BP = 1

2
(p2x + p2y + p2z ) − xpy + ypx − 1 − μ

rPE
+ μ

rPM
, (1)

where r2PE = (x−μ)2+ y2+z2, r2PM = (x−μ+1)2+ y2+z2 and ẋ = px + y, ẏ = py −x ,
ż = pz . The constant μ is called the mass parameter and represents the non-dimensional
mass of the smallest primary. In the case of the Earth-Moon system, the smallest primary is
the Moon and has a mass μ ≈ 0.012.

The BCP is among the simplest versions of the Restricted Four Body Problem. It is
assumed that two of the primaries (Earth and Moon) revolve around their common center
of mass and, at the same time, the barycentre of these two bodies and a third primary (Sun)
revolve also along circular orbits around the barycentre of the third primary and the barycentre
of the first two. The BCP is the study of the motion of an infinitesimal particle under the
attraction of these three masses. Notice that the motion of these masses is not coherent, that
is, the trajectories prescribed for the primaries do not follow Newton’s laws. While this could
be seen as inconvenient, the BCP has been used to successfully describe relevant aspects of
the dynamics of the real Earth-Moon system, see (Simó et al. 1995; Jorba 2000; Jorba and
Nicolás 2020).

As a dynamical system, the BCP is a three and a half degrees of freedom Hamiltonian
system or, equivalently, it has three degrees of freedom and a periodic time dependence.
When written in the standard RTBP frame and units, the dynamics of the BCP is governed
by the following Hamiltonian function,

H = 1

2
(p2x + p2y + p2z ) − xpy + ypx − 1 − μ

rPE
− μ

rPM
− mS

a2S
(y sin ϑ − x cosϑ) − mS

rPS
.

(2)

Here, the quantities μ, rPE and rPM are the ones appearing in (1). The constant mS denotes
the mass the of Sun, aS is the averaged semi-major axis of the Sun, ϑ = ωSt , ωS is the
frequency of the Sun in the RTBP synodic frame, TS = 2π

ωS
is its period and r2PS = (x −

aS cosϑ)2 + (y − aS sin ϑ)2 + z2. The value of these constants are given in Table 1.
Notice that the Hamiltonian function of the BCP (2) is the Hamiltonian of the RTBP

(1) plus two extra terms, the first corresponds to the Coriolis term due to the motion of the
Earth-Moon barycentre and the second one associated to the gravitational effect of the Sun.

2.2 The neighborhood of the translunar point

In the context of the RTBP, it is a very well-known fact that the translunar point L2 is an
equilibrium point of type saddle×centre×centre. For each elliptic direction, there exists a
family of periodic orbits such that:

• It is tangent to the elliptic eigensubspace at L2,
• near L2, it can be locally parameterized by the frequency,
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• as the members of the family get close to the equilibrium point, their frequencies tend to
the corresponding normal mode (the frequency given by the complex eigenvalue) of the
equilibrium point.

These families are known as the Lyapunov families of periodic orbits. As the linear behaviour
of the translunar point is saddle×centre×centre, there are two Lyapunov families that are
born at the point, one contained in the (x, y) plane and named the horizontal Lyapunov family,
and one born in the (z, pz) direction and called the vertical Lyapunov family. Both families
are, near L2, of center×saddle type. The planar family, at some distance of L2 undergoes a
pitchfork bifurcation that produces a new family, the so-called Halo orbits (this description
remains true for the collinear points L1 and L3).

When a time-dependent periodic perturbation (such as the influence of the Sun’s gravity
introduced in the BCP) is considered, the translunar point is replaced by a periodic orbit with
the same period as the perturbation (this is a consequence of the Implicit Function Theorem
and these kinds of orbits are known as dynamical equivalents). When the perturbation is not
small, this picture can change. In the BCP, the influence of Sun’s gravity is strong enough to
produce bifurcations and, in particular, merge the dynamical equivalent of L2 and a resonant
Lyapunov orbit with half the period of the Sun. In particular, there is no direct replacement
of L2 in the BCP.

The effect that the periodic perturbation has on the periodic orbits that populate the neigh-
borhood of the translunar point is analogous to the one on the point itself but much more
complicated. Periodic orbits, generically, gain a frequency and become invariant tori with
two frequencies (the one of the periodic orbit plus the one of the perturbation). More gener-
ally, invariant tori of any dimension gain the frequency of the Sun, see (Jorba and Villanueva
1997). The last statement is not true whenever one of the frequencies of the unperturbed tori
are a rational multiple of the frequency of the Sun.

In Rosales et al. (2021), the authors study the effect of the Sun’s gravity on the neighbor-
hood of the translunar point of the BCP. In particular, the most relevant families (horizontal
and vertical Lyapunov families and the Halo one) are considered. Notice that these classical
families of periodic orbits of the RTBP become, in the BCP, families of two-dimensional
invariant tori. Special attention is given to the Halo family. In particular, two different two-
dimensional families of Halo-like invariant tori, labeled as Type I and Type II, are shown to
exist in the aforementionedwork. TheType I family is the family that replaces the classicHalo
family of the RBTP in the BCP. Type II family comes from a 1:2 resonant Quasi-Halo orbit:
that is, a family of two-dimensional tori which is locally tangent to the elliptic eigenspace of
the main Halo family that has ωS/2 as one of its inner frequencies. Representative examples
of a member of each of these families can be found in Fig. 1.

2.3 Approaches to compute transfers

In this section we review some of the main techniques to transfer a spacecraft from a parking
orbit to Halo or Lissajous orbits around L1/L2. This is not meant to be an exhaustive review
of the literature, but a short overview of the main approaches. These techniques have been
mainly divided into two groups, with a main focus on transfers from a parking orbit around
the Earth to a Halo orbit around L2.2 These are summarized in the following paragraphs:

• Direct Transfer: This approach is a purely ballistic transfer, and it requires twomaneuvers:
one to leave the parking orbit, and the second one to insert the spacecraft in the target

2 A similar argument applies to L1, but for the sake of clarity, we focus our attention on L2.
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Fig. 1 Examples of members of the Type I and Type II families. Left: Projection of a member of Type I family
onto the plane y-z. Right: Projection of a member of Type II Family onto the plane y-z

orbit. This approach requires, in general, an expensive maneuver to leave the Earth
(approximately 3300–3500 m/s), and a less expensive maneuver, but still relatively big
to insert into the Halo orbit (500–700 m/s). The main benefit of this approach is that the
time of travel spans between 4 and 13 days. Previous works that document this approach
can be found in Rausch (2005), Le Bihan et al. (2014).

• Invariant manifolds: This approach uses the invariant manifold of the target Halo orbit to
provide a low-cost transfer. The use of invariant manifolds has been proved to be useful
in the Sun-Earth system, where the invariant manifolds get very close to the sphere of
influence of the Earth. Hence, to insert a spacecraft from a parking orbit to the target
orbit is relatively cheap. However, in the Earth-Moon system the invariant manifolds of
the Halo orbits do not pass close to the Earth. In order to try to take advantage of the
natural dynamics of the system provided by the invariant manifolds, in Bernelli Zazzera
et al. (2004) the authors develop an algorithm for the solution of the Lambert’s three-
body problem that leaves the transfer time free and tries to minimize the cost of the
insertion maneuver in the invariant manifold. That is, they target a point in the invariant
manifold that requires minimum fuel expenditure, and not its associated Halo orbit. Once
on the invariant manifold, the spacecraft coasts to the target Halo orbit. The total cost of
these transfers from a LEO orbit varies between 3100 and 3200 m/s with a transfer time
between 40 and 255 days. Another implementation of the use of invariant manifolds can
be found in Alessi et al. (2010), Li and Zheng (2010). In Alessi et al. (2010) the author
computes transfers from a LEO orbit to a square Lissajous orbit around L1 or L2. The
�v costs documented in Alessi et al. (2010) are also in the 3000–4000 m/s range. In Li
and Zheng (2010) the authors study indirect transfers to the L1 libration point with a
three-maneuver approach with a total cost of 3439.8 m/s and a travel time of 22.9 days.

The interested reader in transfers from the Earth to the Moon is referred to Parker and
Anderson (2014), where the authors survey thousands of low-energy transfers form the Earth
to different orbits around the Moon.

Note that all of the above approaches are either limited to the Earth-Moon RTBP, or
consider the decoupled Sun-Earth RTBP and Earth-Moon RTBP. Thus, the contribution of
the Sun’s gravitational effect either is completely neglected, or it is considered only partially
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during specific parts of the transfer. As mentioned in the previous section, the approach taken
here accounts directly for the effect of the Sun’s gravity as modeled in the BCP model. The
numerical experiments and the results are discussed in Sect. 3.

2.4 The stroboscopic map

As it has been mentioned before, the BCP is a model that depends periodically on time. To
cope with this kind of models it is standard to use the so-called stroboscopic map PTS which
is defined, for an initial condition of the phase space at time t = 0, as the flow evaluated
at time TS . Periodic orbits of period TS appear as fixed points of the stroboscopic map. In a
similar way, the two-dimensional invariant tori whose one of their frequencies is ωS , appear
as invariant curves. In the following sections, we focus on several members of Type I and
Type II families of quasi-periodic orbits that are treated as invariant curves.

3 Transfers in the BCP

In this section we study the transfer from parking orbits around the Earth to three Type I Halo
orbits, and three Type II Halo orbits in the BCP. The only parameters fixed in the parking
orbit are the semi-major axis and the eccentricity. The semi-major axis is set to be equal
to the radius of the Earth, RE = 6400 km, plus 200 km. We define R = RE + 200. The
eccentricity is set equal to zero. That is, we consider the family of circular orbits around
the Earth traveling at approximately 200 km above the Earth’s surface. This family can be
interpreted as a sphere with center in the center of the Earth, and radius equal to the radius
of the Earth plus 200 km. From now on, we will refer to this sphere as the LEO sphere.

Note that for practical applications we would also be concerned about the inclination of
the parking orbit. Ideally, the inclination should be close to the latitude of the launching
facility. For this analysis, this has been intentionally omitted given that the main focus is to
study whether or not, in the BCP, the invariant manifold of the Halo-like orbits considered
here intersect with the LEO sphere.

The idea is the following: given a target Halo-like orbit (Type I or Type II), a suitable mesh
of initial conditions on the stable manifold are integrated backward in time. When one of
these trajectories intersects the LEO sphere, then a valid transfer is considered to exist. In that
event, the �v between the parking orbit in the LEO sphere corresponding to the intersection
point, and the corresponding point in the unstable manifold is computed. This gives an initial
measure of the total �v transfer cost. The total transfer time �t is also recorded, as well as
longitude and latitude of the intersection point in the LEO sphere. The latitude gives a first
approximation of the parking orbit inclination. The computation of the �v and �t are given
in physical units (km/s and days, respectively).

3.1 The stable manifold

To get a local representation of the potential transfers we use a parametrization of the linear
approximation of the stable manifold close to the invariant curve: if θ ∈ [0, 2π) parametrizes
the invariant curve and h is a small real value, the linear approximation to the stable manifold
is

ps0(h, θ) = x(θ) + hψs(θ), (3)
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where x is a parameterization of the invariant curve, ψs is the eigenfunction associated to
the stable eigenvalue λs (see Rosales et al. 2021 for the computation of ψs and λs). The
value h is selected such that |h| < h0/|λs |, for a fixed value h0 ∈ R

+ such that h0/|λs | is
small (for example, on the order of 10−6 or 10−7), so that the error of this approximation is
O(h20). Positive and negative values of h correspond to each of the two sides of the manifold.
From now on, we will refer to the positive (resp. negative) side of the manifold as the side
generated with a px > 0 for ps0(0), and a positive (resp. negative) value of h. For reference,
the positive side is in the direction towards the Moon from the invariant curve.

Roughly speaking, a fundamental set of a manifold is a set of initial conditions on the
manifold such that the orbits starting there generate, forward and backward in time, the full
manifold. In this case, and for the stroboscopic map, the fundamental sets are cylinders. As
λs > 0, given a positive real number h0 we can define a fundamental cylinder for the linear
approximation (3) as the set of points corresponding to [h0, h0/λs] × [0, 2π). If h0 is small
enough, this is a good approximation to a fundamental cylinder of the manifold. Note that,
in this case, the circle at the bottom {h0}× [0, 2π) is mapped to the top circle of the cylinder
{h0/λs} × [0, 2π) by the inverse of the stroboscopic map.

Once we have defined the fundamental cylinder, we create a grid of N × N points on
[0, 2π) × [h0, h0/λs]. The value of h0 has been selected such that

max
i

(‖P−1
T (x(θi )) − x(θi − ρ) − h0

λs
ψs(θi − ρ)‖) < δ, θi = 2π · i

N
, i = 0, ..., N − 1,

where P−1
Ts

is the inverse of the stroboscopic map at time Ts , Ts is the period of the Sun in
the normalized frame, and ρ is the rotation number of the associated invariant curve. For this
analysis we used N = 2000 and δ = 10−6.

Then, we integrate this initial data backward in time to span the stable manifold, and check
whether or not these trajectories intersectwith the LEO sphere.Moreover, we check collisions
with the Moon, and for trajectories that leave the sphere of influence of the Earth-Moon
system. For the latter, we stop the integration if the distance to the Earth-Moon barycentre
exceeds at any point during the integration 6 units of distance in the normalized frame.
This is equivalent to approximately 2.3 million kilometers. Of course, we also need to set a
maximum integration time. For this analysis, the maximum integration time was set to 6Ts .
This corresponds to approximately 191.5 days of physical time. We acknowledge that this
number is somewhat arbitrary, but it is justified in the sense that we are looking for reasonable
transfer times.

As a summary, we have defined a fundamental cylinder on the linear approximation of
the stable manifold that is very close to the invariant curve, we have chosen a mesh of points
on this fundamental cylinder and we have integrated them backward in time looking for one
of the following four events:

1. The stable manifold intersects the LEO sphere.
2. The stable manifold collides with the Moon.
3. The stable manifold leaves the sphere of influence of the Earth-Moon system; this is, the

distance of the computed state to the Earth-Moon barycentre exceeds 6 times the distance
from the Earth to the Moon.

4. After 6Ts units of time in the normalized frame, none of the above occur (these will be
referred to wandering trajectories).

As has been mentioned before, for this analysis we have chosen three Type I and three
Type II quasi-periodic Halo orbits around the L2 point of the BCP and run the process
described in the previous paragraphs. The projections of the invariant curves of the three
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Fig. 2 Invariant curves IC11, IC12, IC13 of the family of Type I orbits in the BCP

Type I orbits are shown in Fig. 2. These are referred as IC11 (green), IC12 (blue), and IC13
(red). The three corresponding of the Type II are in Fig. 3. These are labeled as IC21 (green),
IC22 (blue), and IC23 (red). Note that the invariant curves IC21 and IC23 in Fig. 3 are very
close to each other (not only in position space, but also in the sense that the difference between
their rotation numbers is small). These were intentionally chosen to assess the sensitivity in
the transfers with respect to the distance of target orbits. Tables 2 and 3 contain the rotation
number associated to each of the trajectories selected and the unstable eigenvalues.

The results of the analysis are shown in Figs. 4 and 5 . The color code is the following:
red corresponds to those trajectories on the unstable manifold that intersect with the LEO
sphere; green denotes trajectories that collide with the Moon; yellow the trajectories that
escape the Earth/Moon sphere of influence; and black the trajectories that do not meet any
of the previous criteria. The horizontal axis corresponds to the angle associated with a point
on the invariant curve. The vertical axis corresponds to the signed height of the fundamental
cylinder, where the sign denotes the side of the manifold. As a general comment that applies
to both Figs. 4 and 5, notice that all figures are periodic with respect to the horizontal axis (this
is, the left side of the plot matches with the right side). About the vertical axis note that, by
construction, the bottom and top rows are related by the stroboscopic map at time equal to the
period of the Sun, Ts . For the sake of clarity, let’s consider the positive side of the manifold.
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Fig. 3 Invariant curves IC21, IC22, IC23 of the famliy of Type II orbits in the BCP

Table 2 Type I invariant curves characteristics

Invariant curve Rotation number λ−1
s = λu

IC11 3.239814740891185 1407.242345974658

IC12 1.658983813333736 19619.97458514797

IC13 0.645906459334160 179352.0342756758

Table 3 Type II invariant curves characteristics

Invariant curve Rotation number λ−1
s = λu

IC21 3.097097182626015 24082.25237481578

IC22 3.128958892611009 23104.95771489475

IC23 2.085220044971505 93487.30771525634
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Fig. 4 Fundamental cylinders for Type I orbits. Valid transfers are colored in red, trajectories where a particle
leaves the Earth/Moon system are colored in yellow, collisions with the Moon are green, and none of the
previous cases in black. See text for details

The bottom row corresponds to the trajectories obtained fixing h = min([h0, h0/λs]) = h0,
and changing the angle θ ∈ [0, 2π). The top row corresponds to the trajectories associated
with h = max([h0, h0/λs]) = h0/λs , where λs is the eigenvalue corresponding to the stable
component of the hyperbolic part. By construction, the top row is the image of the bottom
row by the stroboscopic map. With that, it would be expected that the top row is equal to the
bottom one plus a shift equal to the rotation number of the invariant torus under consideration
(see, for example, Jorba and Nicolás 2020). Looking at Figs. 4 and 5 this is clearly not the
case. The reason is that we are using a total integration time equal to 6Ts , and this is relatively
short. Using a short integration time has the following effect: when we integrate backward
an initial condition on the stable manifold at distance h0 from the invariant curve, we check
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Fig. 5 Fundamental cylinders for Type II orbits. Valid transfers are colored in red, trajectories where a particle
leaves the Earth/Moon system are colored in yellow, collisions with the Moon are green, and none of the
previous cases in black. See text for details

for events that happen in that period of time (intersection with the LEO sphere, collision
with the Moon, escape, or none of the previous). When we repeat this process for the initial
conditions of the top row, we know that these are the image of the initial conditions of the
bottom row. In other words, it is as if we have already integrated a total of Ts units of time.
Hence, the results of the top row are the same as if we integrated 7Ts units of time the initial
conditions of the bottom row. This may cause that the events we observe are different for the
bottom and top rows. If we were to integrate an infinite (or a large enough) amount of time,
we would observe that shift.
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3.2 Transfer trajectories

The first row in Fig. 4 contains the results for the invariant curve IC11, the second row for
the invariant curve IC12, and the third one for the invariant curve IC13. The first column is
the negative side of the stable manifold, and the second one the positive side. For both the
positive and negative sides of the manifold, the distance from the invariant curves as defined
in at the beginning of this section (this is, the value h0/λs) is equal to 3 × 10−7 units of
distance in the normalized coordinates (or approximately 115 m) for IC11 and IC12, and
equal to 4 × 10−7 units of distance in the normalized frame (or approximately 150 m) for
IC13.

It is observed that in all cases except of the IC11, positive side case, there are small
regions (colored in red) where the stable manifold intersects the LEO sphere. For the IC11,
positive side case, there are also connections via the stable manifold, but there are not clearly
perceived in the image. In all cases the dominant outcomes are either when the particle leaves
the Earth-Moon sphere of influence (colored in yellow) or it follows a wandering trajectory
for the time-span integrated (colored in black). In all cases there are also collisions with the
Moon (regions colored in green). It is in the cases IC12 and IC13, positive side in both cases,
where there are large regions where the stable manifold collides with the Moon (recall that
the positive side of the manifold is the one oriented towards the Moon). It also noted that the
closest the target orbit is to the Moon, the more collisions exist (in this order, for farthest to
closest: IC11, IC12, and IC13).

The scenario for the Type II trajectories is captured in Fig. 5. The first row contains the
results for the invariant curve IC21, the second row for the invariant curve IC22, and the third
one for the invariant curve IC23. As for the Type I case, the first column is the negative side
of the stable manifold, and the second one the positive side. The distances from the invariant
curves in this case are 10−6 units of distance in the normalized frame (or approximately 380
m) for IC21, 5 × 10−7 units of distance in the normalized frame (or approximately 190 m)
for IC22, and 7 × 10−7 units of distance in the normalized frame (or approximately 270 m)
for IC23. In all cases these values are for both the positive and negative sides of the manifold.

In this case, there are very few transfers that intersect with the LEO sphere, and these are
barely noticeable in the figures. For the case of the invariant curves IC21, IC22, and IC23,
there are almost no trajectories of the unstable manifold that intersect the LEO sphere. In
the negative side there are small regions where the trajectories collide with the Moon, while
in the positive side there are quantitatively more (again, this is the side oriented towards the
Moon). Most of the trajectories, either leave the Earth-Moon’s sphere of influence, or wander
around during the total time of the integration.

3.3 Transfer costs

For each one of the cases analyzed, the transfers that minimize three different cost functions
have been computed. These three cost functions are, as mentioned before:

• J1(θ, h) = �v(θ, h)

• J2(θ, h) = �t(θ, h)

• J3(θ, h) =
√

�v(θ, h)2 + �t(θ, h)2

When doing this analysis, it is important to define how the �v was computed, and what is
meant by “transfer time” and how it was calculated. The total �v was computed the same
way as in Alessi et al. (2010). This is, if v̂ is velocity of the spacecraft when it intersects with
the LEO sphere, the first step is to convert this vector from conjugated momentum to synodic
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velocity. Let us call this velocity v. Note that in theory we should also convert this velocity
from the rotating frame to the inertial frame. However, because this transformation does not
change the module of the vector, we can skip it. With that, the �v is computed as follows,

�v =
√

‖v‖2 + v2s − 2‖v‖ cos
(

π

2
− β

)
,

where β is the angle between the velocity vector v and the normal to the LEO sphere. The
value vs is the module of the velocity of a circular orbit on the LEO sphere, and it is computed
using the vis-viva equation,

vs =
√
1 − μ

R
.

Note that as the LEO sphere is close to the Earth, it is natural to assume a Keplerian motion
for the parking orbit.

The computation of the total transfer time is a matter of convention. Note that, in theory,
if we follow stable manifold, the total time needed to arrive to the invariant curve is infinite.
This is because the dynamics on the stable manifold tends asymptotically to the invariant
curve. However, for practical purposes we define a threshold such that if the distance to the
invariant curve is below it, we consider the transfer completed. This threshold is (within
reason) arbitrary, and here we have chosen a distance equal to D = 100 km as a threshold.
The next question is how to estimate time tD at which the particle will be a distance D to the
invariant curve. This is not as straightforward as computing the distance between two points
in space. The approach we took to estimate the time tD is to use the linear flow in a vicinity
of the invariant curve. Let us define

λ̄ = log λs

Ts
.

This value λ̄ < 0 is the eigenvalue associated with the flow on the stable manifold near the
invariant curve, and it is a measure of the rate at which, locally, an initial condition close to
the invariant curve approaches the curve or, if the time goes backwards, the rate at which
an orbit on the manifold departs. The evolution of the distance d to the invariant curve can
be modeled, at first order, by the differential equation ḋ = λ̄d . Then, the time needed to go
between distances h and D is given by

tD = 1

λ̄
log

(D

h

)
.

Hence, if T is the total time of integration from the distance h to the invariant curve, and tD
the time to reach a distance equal to D, the total transfer time �t is defined as

�t = T − tD .

This is the time reported in the rest of the section with, again, a value of D = 100 km.
The results for each case, for a parking orbit traveling at 200 km above the Earth’s surface,

are summarized in Table 4 for Type I orbits, and in Table 5 for Type II orbits. The first column
of Tables 4 and 5 states the invariant curve associated with the target orbit, the second column
is the manifold side (positive/negative), the third the cost function minimized, the fourth and
fifth columns the �v and the total transfer time �t associated to the cost function, and the
last column the latitude of the intersection point in the LEO sphere.

Looking at the results in Table 4 it is observed that the cheapest transfer in terms of �v

corresponds to the case {IC13, –, J1} (meaning: IC13 invariant curve, negative side of the
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Table 4 Transfer cost to Type I Halo orbits

Invariant curve Manifold side Cost function �v (km/s) �t (days) Latitude (deg)

IC11 + J1 3.2669 142.0661 13.439409

IC11 – J1 3.1641 138.3457 12.037744

IC11 + J2 4.0805 141.6628 -5.295561

IC11 – J2 3.2158 118.6235 1.816246

IC11 + J3 3.5347 141.9145 1.483374

IC11 – J3 3.2158 118.6235 1.816246

IC12 + J1 3.1970 124.5192 -7.529808

IC12 – J1 3.2180 122.3772 8.693360

IC12 + J2 6.4304 113.8526 11.245034

IC12 – J2 4.3185 112.5306 -28.175822

IC12 + J3 6.4304 113.8526 11.245034

IC12 – J3 4.3185 112.5306 -28.175822

IC13 + J1 3.1734 110.3284 -3.869638

IC13 – J1 3.1617 141.6146 -5.502472

IC13 + J2 3.2671 110.3107 -7.639184

IC13 – J2 3.3344 100.2958 7.040290

IC13 + J3 3.1734 110.3284 -3.869638

IC13 – J3 3.3344 100.2958 7.040290

invariant manifold, and J1 cost function) with a total of 3.1617 km/s. This transfer, however,
takes almost 142 days to reach the target orbit. In terms of total transfer time, the cheapest
corresponds to the cases {IC13, –, J2} and {IC13, –, J3} with slightly over 100 days. For
this option, the total cost terms of �v is 3.3344 km/s, making this transfer very reasonable.
It is a good idea to look at other options that are a trade-off between a cheap maneuver and
a reasonable transfer time. In these category, we have the cases {IC13, +, J1}, and {IC13,
+, J3}, where the total �v cost is 3.1734 km/s, and the total travel time is around 110 days.
This provide a saving of around 161 m/s at the expense of an increase in travel time of
approximately 10 days. Another important aspect is the latitude at the LEO sphere. In all the
cases, the latitudes are below 7.1 degrees, which is also a reasonable value.

Table 5 shows some transfers for Type II Halo orbits. In this scenario, the case {IC23, –,
J1} is the cheapest transfer in terms of �v with a total of 3.1231 km/s, and a total transfer
time of around 132 days to reach the target orbit. The shortest transfers in this case are {IC23,
–, J2} and {IC23, –, J3}, with a total transfer time of approximately 104 days, but with a
total �v cost of more than 4.1 km/s. As the in the case for the Type I case, we can look for
trade-offs. However, after looking at the data, it seems that the option that minimizes the total
�v is the best, given the low latitude intersection with the LEO sphere, and how the total
transfer time compares with the other options.

Overall, and as a main takeaway, it can be concluded that there are transfers in the BCP
comparable in total �v and transfer time with other techniques such as the Indirect Transfer,
but with the main advantage that only one maneuver is required.

Let us have a closer look at the IC13 case. Figure 6 shows the trajectory followed by the
transfer {IC13, –, J2}. This trajectory corresponds to the stable manifold of the target orbit
IC13; this is, is the trajectory that a spacecraft would follow after departing from the Earth to
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Table 5 Transfer cost to Type II Halo orbits

Invariant curve Manifold side Cost function �v (km/s) �t (days) Latitude (deg)

IC21 + J1 3.1841 161.5869 5.645610

IC21 – J1 3.2668 152.9112 -8.222948

IC21 + J2 5.1727 127.4293 -24.409394

IC21 – J2 3.3851 144.9792 -18.574485

IC21 + J3 4.3772 127.8258 -31.131620

IC21 – J3 3.3851 144.9792 -18.574485

IC22 + J1 3.4450 170.1543 -0.049602

IC22 – J1 3.2184 153.3855 5.282887

IC22 + J2 8.9775 132.5925 66.012057

IC22 – J2 3.5173 145.8660 -22.626341

IC22 + J3 5.3619 133.2474 13.593364

IC22 – J3 3.5173 145.8660 -22.626341

IC23 + J1 4.1184 122.0862 -17.195273

IC23 – J1 3.1231 132.0245 9.329800

IC23 + J2 6.0772 121.4934 27.102303

IC23 – J2 4.1081 104.1051 -11.507359

IC23 + J3 3.1744 124.6729 -7.456677

IC23 – J3 4.1081 104.1051 -11.507359

the target orbit. It can be seen that the trajectory circles the Earth and the Moon twice before
converging to the target orbit. This ‘bending’ of the invariant manifold is due to the direct
gravitational effect of the Sun.

Figure 7 shows different zoomed projections of the transfer to the target orbit. The black
circle corresponds to the radius of the Moon, and blue circle to the LEO sphere (this is, the
radius of the Earth plus 200 km). It can be seen that for the IC13 orbit there is no Moon
occultation. This is relevant because for communications purposes it is important that the
Earth-Satellite line-of-sight is not blocked by the Moon.

Moreover, and for the sake of completeness, it is interesting to see how the different
parameters computed during the analysis relate to each other. For example, from the data
collected we can see how the �v changes as a function of the total transfer time. This is
shown in Fig. 8a for the IC13 case. It is observed that there is a concentration of transfer
trajectories that take less than 125 days, and that there are relatively cheap transfers that take
a long time. Also, it can be observed that the total maneuver cost is between 3.1617 km/s
(the minimum computed in this case) and slightly more than 13 km/s. Finally, it is interesting
to observe that the minimum �v transfers are not the ones with maximum time, which is a
usual trade-off.

Another interesting plot is total �v as function of the latitude at which the transfer inter-
sects with the LEO sphere. Figure 8b displays that information again for the IC13 scenario,
and shows that the majority of the transfers with less than 4 km/s are concentrated between
a latitude of −20◦ and 40◦. It also shows that transfers to low latitudes exhibit a wider range
of �v values.
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Fig. 6 Trajectory followed by the transfer {IC13, –, J2}

4 Conclusions and further work

In this work we have studied the potential use of invariant manifolds attached to quasi-
periodic Halo orbits to coast from the Earth to the neighborhood of the translunar point. A
relevant aspect of our study is the consideration of the Sun’s gravitational pull as well as the
effect of the Earth and the Moon, that is, we have addressed the problem with a restricted
four body problem approach.

We have based the study on the use of the BCP model, a non-coherent and simple model
that assumes a bicircular motion for the Sun, the Earth and theMoon. The BCP can be written
as a periodic time dependent perturbation of the classical RTBP. In this context, the classical
Halo orbits gain, generically, the frequency of the perturbation becoming two-dimensional
invariant tori. Following the nomenclature of Rosales et al. (2021), we have labeled these
two-dimensional tori as Halo orbits of Type I. On the other hand, the two-dimensional quasi-
periodic Halo orbits of the RTBP whose frequency is resonant with the one of the Sun,
remain two-dimensional tori once the perturbation is turned on. Those orbits are named, also
according to Rosales et al. (2021), as Halo orbits of Type II.
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Fig. 7 Zoom around the target orbit trajectory followed by the transfer {IC13, –, J2}

The strategy has been to compute the stable manifold of several Halo orbits of Type I and
Type II of the BCP noticing that there are some parts of thosemanifolds that intersect with the
LEO sphere of parking orbits around the Earth. Then, one-maneuver transfers are designed
where the total cost comes from the insertion into a parking orbit of 200 km above the Earth.
We would like to remark that this kind of single maneuver transfers have never been shown
to exist in the RTBP. Therefore, the Sun gravity is an essential ingredient for modeling these
trajectories. Moreover, in all cases, it has been shown that the total cost, in terms of �v and
transfer time, is comparable to other techniques requiring two or more maneuvers.

Further steps along this line of research would include the demonstration that these trans-
fers can be transitioned to higher fidelity models, and to better understand the trade-offs
between �v and total transfer times.
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Fig. 8 Plots of transfer time against total �v (left) and �v against latitude in the LEO Sphere (right) for the
IC13 case
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