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Abstract
Spacecraft propagation tools describe the motion of near-Earth objects and interplanetary
probes using Newton’s theory of gravity supplemented with the approximate general rela-
tivistic n-body Einstein–Infeld–Hoffmann equations of motion. With respect to the general
theory of relativity and the long-standing recommendations of the International Astronomical
Union for astrometry, celestial mechanics and metrology, we believe modern orbitography
software is now reaching its limits in terms of complexity. In this paper, we present the first
results of a prototype software titled General Relativistic Accelerometer-based Propagation
Environment (GRAPE).We describe themotion of interplanetary probes and spacecraft using
extended general relativistic equations of motion which account for non-gravitational forces
using end-user supplied accelerometer data or approximate dynamical models. We exploit
the unique general relativistic quadratic invariant associated with the orthogonality between
four-velocity and acceleration and simulate the perturbed orbits for Molniya, Parker Solar
Probe and Mercury Planetary Orbiter-like test particles subject to a radiation-like four-force.
The accuracy of the numerical procedure is maintained using a 5-stage, 10th-order structure-
preserving Gauss collocation symplectic integration scheme. GRAPE preserves the norm of
the tangent vector to the test particle worldline at the order of 10−32.

Keywords General relativity · Non-gravitational forces · Symplectic integration

1 Introduction

Modern orbitography software such as the French space agency Géodésie par Intégrations
Numériques Simultanées GINS (Marty 2013) or NASA’s Mission Analysis, Operations, and
Navigation Toolkit Environment MONTE (Evans et al. 2018) describe the motion of inter-
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planetary spacecraft and near-Earth satellites using Newton’s theory of gravity supplemented
with the so-called Einstein–Infeld–Hoffmann equations of motion (Einstein et al. 1938; Sof-
fel and Han 2019). The dynamical equations of motion characterising spacecraft orbits are
given in terms of gravitational and non-gravitational perturbations, denoted, respectively, fG
and fNG , which are linearly superimposed as small corrections to Newton’s universal law
of gravitation. Classically, non-gravitational forces are derived analytically using simplified
ideal physical models, for example, the so-called cannonball model, and are the main source
of error in the orbit determination process (Vallado 2001). Examples of several gravitational
and non-gravitational perturbations, and their respective orders of magnitude can be found
in (Pireaux et al. 2006, Table 1), and the reader is further referred to (Vallado 2001, Chapter
9) for a detailed discussion on classical perturbation techniques.

Due to the complexity involved in accurately determining spacecraft orbits, the system of
equations considered by modern orbitography software require advanced numerical proce-
dures. There exists a multitude of open-source and commercial software suites (Hughes et al.
2014; Vallado et al. 2006; Evans et al. 2018) designed to determine spacecraft ephemerides
subject to a surfeit of physical and dynamical configurations. Althoughmany platforms differ
in their initial formulation (special and general perturbation approaches (Vallado et al. 2006),
semi-analytical techniques, etc.), we may mathematically formulate the problem as follows.
The approximate position of spacecraft subject to gravitational and non-gravitational pertur-
bations is determined through numerical integration of the first coordinate-time derivative
of the spatial and velocity components, denoted xi = (x1, x2, x3) and vi = (v1, v2, v3),
respectively, given by the initial value problem

dxi

dt
= vi , xi (t0) = xi0,

dvi

dt
= f iG + f iNG , vi (t0) = vi0,

(1)

where we denote the initial position and velocity of the spacecraft at a given initial epoch
t0 by xi (t0) = xi0 and vi (t0) = vi0. We note that the aforementioned time parameter is
absolute and universal in the framework of Newtonian mechanics. The expressions f iG and
f iNG are introduced for brevity and denote the i-th component of the individual gravitational
and non-gravitational perturbations which are given explicitly by

f iG ≡ −
n∑

j=1

(∂iU ) j , f iNG ≡
n∑

k=1

(
f iNG

)

k
, (2)

where the spatial gradient operator is given by ∂i ≡ ∂/∂xi , the Newtonian gravitational
potential is given by U and the subscripts j, k denote the j-th gravitational and k-th non-
gravitational perturbation, respectively.

Owing to the increased accuracy requirements in fields such as astrometry (Soffel and
Han 2019), geodesy (Müller et al. 2008; Soffel and Langhans 2012), the rapid improve-
ments in time and frequency stability (Exertier et al. 2019), and further, the development
and utilisation of advanced telecommunication systems for radio tracking of interplanetary
probes, we require that Einstein’s general theory of relativity (d’Inverno 1992; Weinberg
1972) be taken into account for any mission requiring highly accurate orbit information and
practically all astronomical and geodynamical observations (Brumberg et al. 1998). Within
the Solar System, the so-called effects of general relativity are accounted for using the first
post-Newtonian (PN) approximation (Soffel and Han 2019) and we refer the reader to the
seminal papers Damour et al. (1991, 1992b, 1993, 1994) for extensive technical details.
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The PN framework is a slow-motion, weak-field approximation to the Einstein field equa-
tions of gravitation and is a formal expansion of the metric tensor components in powers
of order O(c−2), where c denotes the isotropic speed of light in vacuum. For an Earth-
orbiting satellite, the typical relativistic effects considered by modern orbitography software
are the contributions due to the Schwarzschild field of the Earth, and the DeSitter and Lense-
Thirring effects (Misner et al. 1973). As an example, consider the Earth-orbiting Laser
Geodynamics Satellite LAGEOS.1 With respect to the aforementioned relativistic contri-
butions, the additional perturbing effect of the Schwarzschild field is largest in magnitude,
causing a decrease in semi-major axis by 4.4mm and a perigee advance of approximately
9mas/day. The magnitude of the Lense-Thirring and DeSitter effects is considerably smaller
and amount to a precession of the longitude of the ascending node by approximately 85 and
53μas/day, respectively, with a further precession of the argument of perigee caused by the
Lense-Thirring effect of the order 31.6mas/year (Hugentobler 2010; Combrinck 2012). The
magnitude of the DeSitter and Lense-Thirring effects as predicted by the general theory of
relativity was experimentally verified by the Gravity Probe B mission using IM Pegasi as a
guide star where the reader is referred to Everitt et al. (2011) for further details.

The general relativistic corrections to Newton’s law of gravitation, denoted fGR , are
derived analytically (to first PN order) and added linearly to Eq. (1)b. Hence, the complete
system of equations of motion typically considered by modern orbitography software are
given by

dvi

dt
= f iG + f iGR + f iNG . (3)

Again,we remind the reader, the expression fGR is introduced for brevity and denotes the sum
of the individual relativistic perturbations under consideration. The recommended analytical
form for the general relativistic correction to Newton’s law of gravitation fGR is maintained
and published by the International Earth Rotation and Reference Systems Services (IERS)
in a series of technical notes.2 For the interested reader, derivations of the PN equations of
motion can be readily found in the extensive literature (see, for example Damour et al. (1994);
Brumberg (2004); Soffel (1989); Huang et al. (1990)). Although we may observe the correct
dynamical contributions due to the general theory of relativity by numerically integrating (3),
care must be taken. The naive process of linearly adding fGR to Eq. (1) in order to account
for the so-called relativistic effects introduces a Newton-esque, or, what is more commonly
referred to in the literature, a neo-Newtonian interpretation of the general theory of relativity
(Damour et al. 1991). As discussed bymany authors previously (Damour et al. 1991; Damour
1987; Damour et al. 1992a; Soffel 2000), the aforementioned reduction of general relativity
to the framework of Newtonian theory can lead to the derivation of erroneous equations of
motion and the apparent appearance of illusory defects in material bodies (Damour 1987).

A further source of confusion may be linked to the recommendations of the International
Astronomical Union (IAU) (Soffel et al. 2003), which, through a series of resolutions, sug-
gest that all problems in the field of astronomy or astrodynamics be formulated within the
framework of Einstein’s general theory of relativity. Specifically, this relates to the deriva-
tion of all dynamical equation of motion including those which model the propagation of
electromagnetic waves in curved spacetime, the definition of reference frames and the cor-
responding four-dimensional spacetime transformations connecting them. In order for the
IAU resolutions to be sufficiently reflected in the so-called “Newton + correction” frame-

1 See https://lageos.cddis.eosdis.nasa.gov/ for an overview of the LAGEOS satellites.
2 At the time of writing, the most recent technical note is given by Ref. Petit and Luzum (2010).
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work would not only require additional corrections to standard Newtonian quantities, but
would further require that we abolish the classical notion of absolute time resulting in an
additional hybrid Newton–Einstein theory of celestial mechanics. Considering the aforemen-
tioned shortcomings of the “Newton + correction” approach, and the confusion arising in
adopting the recommended IAU resolutions in a Newton-dominated theory, we believe the
current approach is now reaching its limits in terms of complexity.

In this paper, we discuss the formulation of a new prototype orbitography software
titled General Relativistic Accelerometer-based Propagation Environment (GRAPE), for-
mally extending the proposed work of Pireaux et al. (2006). We suggest a novel technique for
the propagation of interplanetary probes and near-Earth spacecraft using the full framework of
general relativity by accounting for the spatial components of non-gravitational forces using
either end-user supplied data from on-board accelerometers (Lenoir et al. 2011; Touboul
et al. 1999) or specific force models with adjustable parameters. Accelerometer-based orbit
determination has been successfully exploited by the geodesy community for a number of
geopotential recovery missions (see, for example Kang et al. (2006); Van Helleputte and
Visser (2008)), where the dynamical models used to approximately account for the non-
gravitational perturbations fNG are replaced with accelerometer data obtained in the local
frame of the spacecraft. Hence, errors introduced by simplified dynamical models, omitted
second-order perturbations and unaccounted anomalous forces are automatically included at
the order of the measurement sensitivity of the on-board accelerometer.

General relativity provides our currently accepted theory of gravitation. Within the frame-
work of general relativity, quantities constructed from themetric tensor components gμν such
as Christoffel symbols, curvature scalars and the Ricci, Riemann and Einstein tensors encode
the geometry of spacetime which we associate with classical gravitational phenomenon.
GRAPE assumes the local structure of spacetime is unperturbed by non-gravitational forces,
and all associated gravitational effects are contained within the choice of spacetime metric.
Consequently, the general relativistic analogue of the first two terms on the right-hand side
of Eq. (3) is accounted for by a suitable choice of metric gμν . Further, we note the space-
craft equations of motion are always accompanied by a quadratic invariant quantity unique
to general relativity; offering an opportunity to exploit sophisticated structure-preserving
numerical integration techniques irrespective of whether non-gravitational perturbations are
being considered (Hairer et al. 2006). Again, we note such an opportunity to exploit structure-
preserving integration schemes is not readily available in classical Newtonian theory and is
unique to the general theory of relativitywhich arises due to the orthogonality of four-velocity
and acceleration. GRAPE employs a 5-stage, 10th order symplectic implicit Runge–Kutta
scheme (Butcher 1964) to maintain the constancy of the quadratic invariant providing a con-
sistent accuracy check over the considered numerical propagation arc. Additionally, given
that the magnitude of the non-gravitational perturbations is measured in the local frame of
the spacecraft, GRAPE utilises the so-called tetrad formalism (Weinberg 1972), introducing
at each point in spacetime, a locally Minkowski frame, which we associate with the local
frame of the spacecraft (up to a Lorentz boost), allowing for convenient transformations,
which relate the dynamical quantities dynamical quantities between local and global frames
(Brumberg 2017).

The paper is organised as follows: in Sect. 2, we provide an overview of the mathematics
employed by the GRAPE orbitography software. We derive the equations of motion for
near-Earth objects and interplanetary probes subject to non-gravitational perturbations and
discuss the associated quadratic invariant for spacecraft whose wordline is parameterised by
proper time τ . Further, we present a brief overview of the tetrad formalism and discuss a
novel method to determine themagnitude of the global force components obtained using both
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Lorentz and tetrad transformations which does not appear to have been previously discussed
in the literature. In Sects. 3 and 4, we derive the general relativistic extension of the classical
accelerometer equation using a modified geodesic deviation approach (Pireaux et al. 2006)
and give an overview of the structure-preserving symplectic numerical integration scheme
implemented in GRAPE, respectively. In Sect. 5, we provide a specific illustrative example
of the GRAPE tool and consider the perturbed motion of the NASA Parker Solar Probe
(Fox et al. 2016), Mercury Planetary Orbiter (Novara 2002) and Molniya-like spacecraft
(Daquin et al. 2021). Additionally, we show the conservation of the quadratic invariant in
the local frame of each spacecraft whose motion is perturbed by a constant radiation-like
non-gravitational force.

Unless otherwise stated, throughout the remainder of the manuscript we assume the Ein-
stein summation convention for repeated indices, and the use of Latin indices (i, j = 1, 2, 3)
is reserved for spatial coordinates while Greek indices (α, β = 0, 1, 2, 3) denote spacetime
coordinates with the 0th coordinate being reserved for time so that xα = (

ct, xi
)
. Finally, we

assume a spacetime metric signature according to (+,−,−,−).

2 GRAPE: mathematical preliminaries

The worldline of a time-like test particle is described by the spacetime coordinates xα (λ),
where λ is an arbitrary affine parameter. For a massive time-like particle, such as an interplan-
etary probe or near-Earth satellite, a common parameterisation of the spacecraft worldline
is achieved using the proper time τ (Poisson and Will 2014). However, spacecraft operators
track satellites, interplanetary probes, large debris objects and planets with reference to an
external coordinate time such as terrestrial, universal, ephemeris or barycentric times (see
Vallado (2001) for further time scales and definitions). Hence, for operational purposes, it
is convenient to modify the parameterisation and adopt a global coordinate time te = x0/c
common to all spacecraft instead of τ as the integration variable. Each parameterisation
offers different insight for perturbed spacecraft motion in the framework of general rela-
tivity. Accordingly, GRAPE numerically solves both systems of equations of motion and
determines spacecraft orbits with respect to both proper time τ and Solar System ephemeris
time te. We note for the purpose of the present paper, we define ephemeris time as the time
read by a clock at spatial infinity, void of gravitational effects, and draw the readers attention
to (Soffel and Han 2019, Chapter 8) for formal operational details.

2.1 On the nature of non-gravitational forces in general relativity

Studies on the motion of near-Earth spacecraft and interplanetary probes subject to non-
gravitational forces are ubiquitous in the literature and remain an active area of research
for modern operational astrodynamics and celestial mechanics (Vallado 2001). However,
the same treatment cannot be said for the general theory of relativity where the practical
incorporation of non-gravitational forces for near-Earth objects remains somewhat elusive
and requires elucidation. The approach adopted by GRAPE follows from the work of Lich-
nerowicz and Teichmann (1955); Burcev (1962); Charon (1963) which extend the standard
geodesic equation of motion to include non-gravitational forces. While the extended equa-
tions of motion derived by Lichnerowicz and Teichmann (1955); Burcev (1962); Charon
(1963) appear to have important practical implications for applied general relativity, the
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utility of their results appears to have gone largely unnoticed in the community which we
re-derive herein.

Classical dynamical quantities associated with continuous matter distributions such as
stresses and mass, energy and flux densities are coalesced into a single unified object in the
general theory of relativity known as the energy momentum tensor T αβ (Kopeikin 2007). To
account for non-gravitational forces in the framework of general relativity, we decompose
the energy-momentum tensor as follows

T αβ = Θαβ + Sαβ, (4)

where we define the stress tensor according to Sαβ and we interpret Θαβ as the energy-
momentum of an isolated test particle or system of non-interacting test particles defined in
terms of mass density ρ and test particle four-velocity uα according to Θαβ ≡ ρuαuβ .

It is well established that the conservation equation

∇αT
αβ = 0, (5)

gives rise to the geodesic equation of motion in the absence of stresses (Sαβ ≡ 0). In the
case where Sαβ �= 0, we find

∇αΘαβ = ρKβ, (6)

where we have introduced the force densityKβ associated with an arbitrary non-gravitational
force f β and we have ∇αSαβ = −ρKβ . Eq. (6) is equivalently expressed as

ρuα∇αu
β + uβ∇α

(
ρuα

) = ρKβ, (7)

where the second term on the left hand side of Eq. (7) is a continuity-like equation which is
defined in terms of the force density according to

uβ∇α

(
ρuα

) = ρKαu
αuβ/c2. (8)

Thus, the complete system of equations of motion describing the perturbed motion of space-
craft subject to an external perturbation f α employed in GRAPE are given by

f α ≡ uβ∇βu
α = Kβ

(
gαβ − uαuβ/c2

)
, (9)

where it is clear for Kβ = 0, Eq. (9) reduces to the equation of geodesic motion

d2xα

dτ 2
= −Γ α

βγ u
βuγ , (10)

and we introduce the Christoffel symbols of the second kind according to Γ α
βγ ≡

gαδ
(
∂βgγ δ + ∂γ gδβ − ∂δgβγ

)
/2.

Following several applications of the chain rule so that

dxα

dte
= dxα

dτ

(
dte
dτ

)−1

,
d2xα

dt2e
=

(
dte
dτ

)−2 [
d2xα

dτ 2
− d2te

dτ 2

(
dxα

dte

)]
, (11)

and using (9) in expressions (11), it can be readily shown that the perturbed equations of
motion with respect to ephemeris time are given by

d2xα

dt2e
=

(
Γ 0

βγ

c

dxα

dte
− Γ α

βγ

)
dxβ

dte

dxγ

dte
−

(
f 0

c

dxα

dte
− f α

)(
dτ

dte

)2

, (12)
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where it is clear that the temporal component of (12) is identically zero. Hence, when inte-
grated with respect to ephemeris time, the motion of spacecraft depends only on the spatial
coordinates xi and Eq. (12) may be equivalently expressed as

1

c2
d2xi

dt2e
= −Γ i

00 − 2Γ i
0kβ

k − Γ i
jkβ

jβk + Γ 0
00β

i + 2Γ 0
0kβ

iβk

+ Γ 0
jkβ

iβ jβk − 1

c2

(
f 0β i − f i

)(
dτ

dte

)2

,

(13)

where we have introduced the dimensionless quantity β i ≡ vi/c and the contravariant
components of the coordinate velocity are given by vi = dxi/dte. We remind the reader that
f α is defined according to Eq. (9). In addition, wemake the observation that in the Newtonian
limit of Eq. (13), we recover Newton’s universal law of gravitation perturbed by an arbitrary
non-gravitational force f i .

Finally, it is interesting to note for an arbitrary non-affine parameter such as the proper
time of an external Solar System probe or celestial body σ , the resulting equations of motion
are implicitly defined according to

d2xα

dσ 2 = −Γ α
βγ

dxβ

dσ

dxγ

dσ
+

[
f α − dxα

dσ

d2σ

dτ 2

](
dτ

dσ

)2

, (14)

where

dτ

dσ
=

[
1

c2
gμν

dxμ

dσ

dxν

dσ

]1/2
, (15)

and

d2σ

dτ 2
= − 1

c2
dxμ

dσ

[
1

2

∂gμν

∂xα

dxα

dσ

dxν

dσ
+ gμν

d2xν

dσ 2

](
dσ

dτ

)4

, (16)

so that Eq. (14) must be solved iteratively.

2.2 General relativistic invariant

We note the explicit expression for the final quantity (dτ/dte) arising in the right-hand side
of Eq. (13) is determined by the differential relationship between the square of the magnitude
of the invariant spacetime line element (ds)2 and proper time namely

ds2 ≡ c2dτ 2 = gμνdx
μdxν, (17)

and is given explicitly by

dτ

dte
=

[
1

c2
gμν

dxμ

dte

dxν

dte

]1/2
. (18)

We further note, the components of the spacecraft four-velocity are equivalently expressed
in terms of ephemeris time according to

uα = dte
dτ

(
dxα

dte

)
= dte

dτ

(
c, vi

)
. (19)
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Hence, on substituting Eq. (18) in (19), it can be readily shown that the particle tangent vector
to the worldline satisfies the normalisation condition given by (Poisson and Will 2014)

I ≡ gμνu
μuν = c2. (20)

Equation (20) is an invariant of the motion and is defined implicitly in terms of numerically
integrated spacetime coordinates arising in the metric tensor components and explicitly in
terms of the spacecraft four-velocity vector (or, coordinate velocity if (19) is used) so that
I ≡ I (

gμν (xα) , uα
)
. Eq. (20) remains valid when the spacecraft is subject to external

perturbations and has noNewtonian analogue, giving rise to a unique opportunity for GRAPE
to utilise symplectic integration schemes providing an accuracy check over the numerical
integration span (see Sect. 4 for further details).

2.3 Tetrad formalism

GRAPEutilises the so-called tetrad formalism in order to relate dynamical quantities between
local (known as the natural frame) and global frames. That is, at each point in spacetime, we
can construct a pseudo-Cartesian reference system through the introduction of a tetrad3 eμ

(ν)

so that (Brumberg 2017)

ηαβ = gμνe
μ

(α)e
ν
(β), gμν = e(α)

μ e(β)
ν ηαβ, (21)

where indices are manipulated using the components of the Minkowski metric ηαβ and it is
clear for a diagonal metric we have the relations

eμ

(0) = (
(g00)

−1/2 , 0, 0, 0
)
, eμ

(1) = (
0, (−g11)

−1/2 , 0, 0
)
, (22)

eμ

(2) = (
0, 0, (−g22)

−1/2 , 0
)
, eμ

(3) = (
0, 0, 0, (−g33)

−1/2) . (23)

In the natural tetrad, all dynamical quantities have physical meaning, so that for example,
the expressions

dx (0) = e(0)
μ dxμ, dx (i) = e(i)

ν dxν, (24)

denote locally measured intervals of time and distance, respectively (Brumberg 2007). From
Eqs. (24), it is clear that the transformations relating natural and global four-velocity com-
ponents are given by the relations

u(σ ) = e(σ )
μ uμ, uν = eν

(σ )u
(σ ), (25)

and the corresponding transformations for the non-gravitational forces are given, respectively,
by

D

Dτ
u(σ ) = D

Dτ

(
e(σ )
μ uμ

)
,

D

Dτ
uν = D

Dτ

(
eν
(σ )u

(σ )
)

, (26)

where we have introduced D/Dτ ≡ uα∇α and ∇α denotes the covariant derivative operator.
Hence, the resulting expressions for the natural and global four-forces are given, respectively,
by

f (σ ) = e(σ )
μ f μ, f ν = eν

(σ ) f
(σ ), (27)

3 We note eμ
(ν)

consists of four orthonormal vector fields as opposed to one single tensor quantity known
collectively as a tetrad or vierbein (Weinberg 1972). The vector of interest is indicated by the subscript and
the component of that vector is indicated by the superscript.
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where we have used

∇αe
(σ )
μ ≡ 0, (28)

known as the tetrad postulate (Yepez 2011).

2.4 Non-gravitational force transformations

Finally, we describe the method adopted by GRAPE in order to determine the components
of the non-gravitational forces in the global frame. The covariant derivative of Eq. (20) is by
definition (Poisson and Will 2014)

DI
dτ

≡ gσαu
α∇β

(
uβuσ

) = 0, (29)

and using (9) simplifies to give the orthogonality constraint

uσ f σ = 0. (30)

The spatial components of the external force are measured by on-board accelerometers or
modelled by dynamical equations in the local co-moving frame (L) of the spacecraft and
provided to GRAPE by end-users. We have, by definition, in the rest frame of the spacecraft
uα
L = (c, 0, 0, 0) so that in order to satisfy Eq. (30), we find f α

L = (0, f iL). Hence, there is no
temporal component of the non-gravitational force in the co-moving frame of the spacecraft.
At this point, we make the important observation that in the local rest frame of the spacecraft
we have f α

L = Kα
L = (

0,Ki
L

)
. Thus, the components of the non-gravitational force density

in the natural tetrad are obtained using a Lorentz transformation

K(α) = Λα
βKβ

L , (31)

where the components of Λα
β

(
vi

)
are given by

Λ0
0 = γ, Λ0

i = γ vi/c, Λi
0 = γ vi/c, Λ

j
i = δ

j
i + (γ − 1) viv

j/v2, (32)

where the Lorentz factor is given by γ = dte/dτ , the magnitude of the relative frame
velocity is given by v and the inverse transformation is given by Λ

β
α

(−vi
)
. Finally, the

global components of the non-gravitational force are obtained using Eqs. (27).

3 General relativistic accelerometer equations

Space-based accelerometer technology or drag-free satellites (Lange 1964) have been suc-
cessfully utilised in space missions across a number of fields including geodesy (Touboul
et al. 1999), planetary science (Lucchesi and Iafolla 2006) and gravitational-wave physics
(Rodrigues and Touboul 2003). For near-Earth spacecraft, the analytical models for non-
gravitational forces such as solar radiation pressure and atmospheric drag depend on the
physical characteristics of individual spacecraft (for example the area-to-mass ratio and solar
reflectivity parameters) and its attitude (for example the orientation of solar panels)which give
rise to a number of technical issues in modern orbit determination and prediction software.
Typically, the parameters associated with non-gravitational forces such as solar radiation
and atmospheric drag coefficients (Vallado et al. 2006) are prescribed as solve-for parame-
ters whose value minimises the residuals between measurement and predictions in the orbit
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determination process (Schutz et al. 2004). For the motion of spacecraft and interplanetary
probes about central bodies other than the Earth, the accurate modelling of non-gravitational
forces becomes increasingly difficult. In this section, we derive the so-called general rela-
tivistic accelerometer equations for spacecraft which are subject to non-gravitational forces
and, using a post-Newtonian expansion of the resulting expressions, describe the approach
adopted herein to determine the components of f α .

Consider the perturbed motion of a spacecraft subject to the gravitational field of an
arbitrary central body with spacetime coordinates given by xα and equations of motion
prescribed according to Eq. (9). Likewise, consider the motion of a Test Mass (TM) located
inside the spacecraft at xα

T M ≡ xα + δxα , shielded from all non-gravitational forces so that
the motion of the test mass follows a geodesic i.e. f α

T M ≡ 0 in Eq. (9). Therefore, the relative
acceleration between the spacecraft and test mass is given by

d2ξα

dτ 2
= −

(
∂μΓ α

βσ

)
uβuσ ξμ − 2

(
Γ α

βσ u
β
) dξσ

dτ
− f α, (33)

where we have introduced ξα ≡ xα
T M − xα as the relative spacetime separation vector and

we assume ξ0 = 0. We note in the absence of non-gravitational forces f α ≡ 0, Eq. (33)
reduces to the so-called equation of geodesic deviation (d’Inverno 1992).

The IAU-recommended post-Newtonian metric tensor components gμν are given by (Sof-
fel et al. 2003)

g00 = 1 − 2W

c2
+ 2W 2

c4
, gi j = −δi j

(
1 + 2W

c2

)
, (34)

where W is a scalar gravitational potential defined in the Geocentric Celestial Reference
Frame which generalises the definition of the classical Newtonian potential where the reader
is referred to Soffel and Han (2019); Soffel (2000) for further details. In general, there exists
an additional general relativistic vector potential W j in the off-diagonal time-space metric
tensor components which accounts for the rotation of the central body. However, for the
current analyses we assume a static spacetime so that W j ≡ 0. The invariant spacetime line
element associated with Eqs. (34) is given explicitly by

(ds)2 = c2dτ 2 =
(
1 − 2W

c2
+ 2W 2

c4

)
c2dT 2 − δi j

(
1 + 2W

c2

)
dXidX j , (35)

where it is standard practice to denote spacetime coordinates in the local geocentric frame
using upper case symbols. Hence, the differential relations between proper and coordinate
time are given (to order O(c−2)) by

dτ =
(
1 − 2W

c2
− V 2

c2

)1/2

dT , (36)

which gives rise to the first- and second-order differential operators

d

dτ
=

(
1 − 2W

c2
− V 2

c2

)−1/2
d

dT
, (37)

and

d2

dτ 2
= Σ

d2

dT 2 + 2V i

c2
dV i

dT

d

dT
, (38)
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respectively, where we have introduced Σ ≈ (
1 + 2W/c2 + V 2/c2

)
. Hence, the spatial

components of the post-Newtonian accelerometer equation are given by

Ai = Bi + Ci + Di , (39)

where

Ai ≈ Σ
d2ξ i

dT 2 + 2V i

c2
dV i

dT

dξ i

dT
, (40)

Bi ≈ −Σ
[(

∂ j∂iW
)
ξ j +

(
∂lΓ

i
jk

)
V j V kξ l

]
, (41)

Ci ≈ −2Σ

(
Γ i
jkV

j dξ
k

dT

)
, (42)

Di ≈ −Ki + Σ

(
V i

c
K0 + V i V j

c2
K j

)
= − f i . (43)

The nonzero Christoffel symbols associated with the first post-Newtonian metric tensor
components (34) are given by

Γ
j
00 = − 1

c2

(
∂ jW − 1

c2
4W∂ jW

)
,

Γ
j
ik = 1

c2
(
δ jk∂iW + δi j∂kW − δik∂ jW

)
,

Γ 0
0 j = − 1

c2
∂ jW ,

(44)

where the reader is reminded that in the present manuscript we assume a static spacetime
so that the so-called gravitomagnetic vector potential W j ≡ 0 (cf. O’Leary et al. (2018) for
the explicit derivation of the Christoffel symbols when W j �= 0). The above expressions
are obtained following direct application of the first- and second-order differential operators
(37) and (38) to Eq. (33). The classical accelerometer equation is deduced in the weak field
Newtonian limit (d’Inverno 1992) of expressions (40) to (43) and is given by

d2ξ i

dt2
= − (

∂ j∂iU
)
ξ j − Ki , (45)

where, at themeasurement accuracyof space-based accelerometers, the tidal effects contained
in the expression

(
∂ j∂iU

)
ξ j are negligible so that Eq. (45) is approximately given by

d2ξ i

dt2
= −Ki . (46)

Hence, in the Newtonian limit, the relative acceleration between the test mass and the space-
craft is determined by the non-gravitational forces Ki only.

4 GRAPE: structure-preserving integration scheme

In the framework of general relativity, the equations of motion for test particles are given
by a system of four nonlinear, second-order, coupled differential equations. Although exact
analytical expressions exist for the geodesicmotion of test particles in Schwarzschild andKerr
geometries (Misner et al. 1973), the systemof equations (9) are, in general, non-integrable and
require numerical integration. Classical numerical procedures for the solution of differential
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equations (Butcher and Goodwin 2008) such as the family of explicit, single-step Runge–
Kutta schemes do not preserve first integrals or phase-space volume (or, more generally, the
Poincare integral invariants) and, as a result, are unsuitable for problems in orbitography or
celestial mechanics requiring long-term stability.

Symplectic integration schemes (Hairer et al. 2006) are advanced numerical procedures
which preserve the symplectic structure of Hamiltonian systems so that the so-called flow
of the system defines a canonical transformation (Yoshida 1990). Symplectic integration
algorithms belong to a class of numerical methods known as structure-preserving geometric
integrators and have been successfully applied across amyriad of fields (Donnelly andRogers
2005; Hairer et al. 2006) where the reader is referred to Kinoshita et al. (1991) for a detailed
discussion on the merits of symplectic integration algorithms to problems in astronomy.

4.1 GRAPE: Gauss collocation procedure

In the celebrated work of Butcher (1964), the author discusses the properties of implicit
Runge–Kutta schemes and presents the Butcher tableau coefficients for a series of s-stage,
nth-order algorithms known collectively as Gauss collocation methods (Hairer et al. 2006).
The coefficients for the 5-stage, 10th-order integration scheme implemented in GRAPE are
given by

α − ω2 ω1 ω′
1 − ω3 + ω′

4 β − ω5 ω′
1 − ω3 − ω′

4 ω1 − ω6

α − ω′
2 ω1 − ω′

3 + ω4 ω′
1 β − ω′

5 ω′
1 − ω′

6 ω1 − ω′
3 − ω4

α ω1 + ω7 ω′
1 + ω′

7 β ω′
1 − ω′

7 ω1 − ω7

α + ω′
2 ω1 + ω′

3 + ω4 ω′
1 + ω′

6 β + ω′
5 ω′

1 ω1 + ω′
3 − ω4

α + ω2 ω1 + ω6 ω′
1 + ω3 + ω′

4 β + ω5 ω′
1 + ω3 − ω′

4 ω1

2ω1 2ω′
1 γ 2ω′

1 2ω1

where the constants α, β, γ are defined by α = 1/2, β = 32/225, γ = 64/225 and the
m = 1, 2, . . . , 7 components ωm, ω′

m are defined according to (Butcher 1964)

ω1 = 322 − 13δ

3600
, ω′

1 = 322 + 13δ

3600
,

ω2 = 1

2

√
35 + 2δ

63
, ω′

2 = 1

2

√
35 − 2δ

63
,

ω3 = ω2

(
452 + 59δ

3240

)
, ω′

3 = ω′
2

(
452 − 59δ

3240

)
,

ω4 = ω2

(
64 + 11δ

1080

)
, ω′

4 = ω′
2

(
64 − 11δ

1080

)
,

ω5 = 8ω2

(
23 − δ

405

)
, ω′

5 = 8ω′
2

(
23 + δ

405

)
,

ω6 = ω2 − 2ω3 − ω5, ω′
6 = ω′

2 − 2ω′
3 − ω′

5,

ω7 = ω2

(
308 − 23δ

960

)
, ω′

7 = ω′
2

(
308 + 23δ

960

)
,

where δ = √
70. Hence, given an arbitrary system of N differential equations

dxi

dt
= f i (t, x j ), xi (tn) = xin, (i, j = 1, 2, . . . , N ) , (47)
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the solution xn → xn+1 with integration step size h is given by

xin+1 = xin + h
s∑

j=1

b j k
i
j , (48)

kij = f i
(
tn + c j h, xin + h

s∑

l=1

a jlk
i
l

)
. (49)

Wemake the observation that Eqs. (49) are defined implicitly. At present, GRAPE determines
the individual kij usingfixed-point iterationwhere the initial value is assumed zero everywhere

so that (k0)ij = 0. In future studies, improved strategies will be employed to initialise the kij
which requires further investigation (Hairer et al. 2006).

4.2 Quadratic invariants

Central to the present paper is the conservation of first integrals associated with the per-
turbed motion of a test particle described by Eq. (9). General relativity gives rise to a unique
dynamical quantity (20) known formally as a quadratic invariant (Hairer et al. 2006).

The coefficients bi , ai j appearing in Butcher (1964) satisfy the constraint

biai j + b ja ji − bib j = 0, (i, j = 1, 2, · · · s), (50)

which, as a result, indicates that Gauss collocation methods (Butcher 1964) are symplectic
and preserve quadratic invariants completely (Cooper 1987; Butcher 2016). The proof is
outlined below and the reader is referred to (Hairer et al. 2006, Chapter 4) for complete
details.

A first integral I(x j ) associated with an arbitrary system of differential equations (47)
satisfies the following condition

dI
dt

= ∂I
∂xi

f i (t, x j ) = 0. (51)

We define a quadratic function of (47) according to

Q(xk) = Mi j x
i x j , (52)

where Mi j is an arbitrary square, symmetric matrix. Hence, Q(xk) is a first integral of (47)
if the following holds (Hairer et al. 2006)

Mi j x
i f j (t, xk) = 0. (53)

From the above, it is clear that we must have dMi j/dt = 0 which is demonstrated as follows

d

dt

(
Mi j x

i x j
)

= dMi j

dt
xi x j + Mi j

dxi

dt
x j + Mi j x

i dx
j

dt
= 0, (54)

and using the symmetry Mi j = Mji we find

Mi j x
i dx

j

dt
= Mi j x

i f j = 0, (55)

if and only if Mi j is a constant.
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According to Eq. (48) we have the following

Mi j x
i
n+1x

j
n+1 = Mi j x

i
nx

j
n + h

s∑

�=1

b�Mi j x
i
nk

j
� + h

s∑

m=1

bmMi j k
i
mx

j
n

+ h2
s∑

�=1

s∑

m=1

b�bmMi j k
i
�k

j
m,

(56)

where it is important to note that Eq. (56) is obtained by squaring Eq. (48), xin denotes the i
th

component of an arbitrary vector at time t = tn and kim denotes the mth approximate slope
associated with the i th differential equation. In order for Eq. (52) to be classified as a first
integral we must have Qn+1 = Qn = ... = Q0 = C,∀n where Qn ≡ Q(xkn ) denotes the
value of the quadratic function (52) at time tn and C is an arbitrary constant. Hence, using
Eq. (49), we can equivalently express Eq. (56) according to

Mi j x
i
n+1x

j
n+1 = Mi j x

i
nx

j
n + 2h

s∑

�=1

b�Mi j X
i
� f

j

+ h2
s∑

�=1

s∑

m=1

(b�bm − b�a�m − bmam�) Mi j k
i
�k

j
m,

(57)

where, for brevity, we have introduced kij = f i
(
T , Xi

n

)
with T = tn + c j h and Xi

n =
xin + h

∑s
l=1 a jlkil . Hence, according to Eqs. (53) and (50), the second and final terms on

the right hand side of Eq. (57) are zero so that for Runge–Kutta methods satisfying (50), we
have Mi j xin+1x

j
n+1 = Mi j xinx

j
n . Thus, with respect to the current problem

xi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

u0

u1

u2

u3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Mi j =
[
0 0
0 ημν

]
, ημν = diag (1,−1,−1,−1) , (58)

which, when expressed according to Eq. (52), we find Q(xk) = I(ημν(xα), uα), where I is
defined according to (20) and the condition (55) corresponds to the orthogonality condition
(30) associated with the four-velocity and acceleration. It is important to note that in order to
enforce strict symplecticity, we must express I in the natural tetrad so that at each numerical
integration step the spacetime is assumed flat which is a formal requirement according to the
condition dMi j/dt .

5 GRAPE: first results and discussion

In this section, we demonstrate the utility of the newly developed GRAPE software through
a series of numerical simulations. We consider the motion of three test particles with orbital
parameters assimilated to Molniya (M), Parker Solar Probe (PSP) and Mercury Planetary
Orbiter (MPO)-like objects. We assume each test particle is initially located at apoapsis ra
so that the initial spacetime coordinates and four-velocity are given by xα

0 = (0, ra, 0, 0)
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and uα
0 = (c, 0, va cos i, va sin i), respectively, where va is the magnitude of the spacecraft

velocity at apoapsis and the reader is referred to Table 1 for further details. The gravitational
field of the respective central body is assumed to bemodelled by themetric tensor components
associated with the spherically symmetric Schwarzschild solution. While the choice of the
underlying coordinate system is arbitrary, integration is performed in (Cartesian) isotropic
coordinates which are easy to implement numerically.

For the benefit of the reader, and in order to facilitate future replications of the results
presented in the current manuscript, we briefly outline the dynamical quantities used in the
numerical simulations. Themetric tensor components and corresponding invariant spacetime
line element associatedwith the spherically symmetric Schwarzschild field of the central body
are given by

g00 =
(
1 − ρs/ρ

1 + ρs/ρ

)2

, gi j = δi j (1 + ρs/ρ)4 , (59)

and

(ds)2 =
(
1 − ρs/ρ

1 + ρs/ρ

)2

c2dt2 − (1 + ρs/ρ)4 δi jdx
idx j , (60)

respectively, where ρs = rs/4, ρ = (xi xi )1/2, the Schwarzschild radius is denoted rs and
xi = (x, y, z) denote pseudo-Cartesian coordinates (Müller and Grave 2009).We transform
dynamical quantities from global to natural frames using Eqs. (22) with the corresponding
inverse transformations following trivially. The equations of motion used in the numerical
simulation are given by

d2x0

dτ 2
= −4

(
ρs

ρ3

) (
xi ui

w1

)
u0 + f 0, (61)

d2xi

dτ 2
= −2ρs

{
ρ3(ρ − ρs)w2

(
u0u

0) xi − (
ρ3w3

)−1

×
[ (

uiu
i − u ju

j
)
xi + 2

(
x j u

j
)
ui

]}
+ f i , (62)

where in the above equations j �= i and we define w1 = 1 − (ρs/ρ)2 , w2 =
(ρ + ρs)

−7 , w3 = 1 + ρs/ρ and the Christoffel symbols of the second kind required to
derive Eqs. (61) and (62) are given explicitly in Müller and Grave (2009). Finally, we note,
in each simulation, we assume a constant radiation-like four-force (in the direction opposite
to central body) acting on the spacecraft measured in the local frame (see Sect. 2 for imple-
mentation details) where f α ∼ 1× 10−6m/s2. Again, it is important to note that the specific
form of the external perturbation is selected arbitrarily and will be provided to GRAPE by
end-users using either specific force models or data obtained from an accelerometer.

It is interesting to consider the evolution of the individual spacecraft proper time when
compared with a derived coordinate time as per Fig. 1. Taking into account the order of
magnitude and the nonlinear evolution of δt , we can extract information regarding the orbit
type. It is clear that Molniya spacecraft are in a highly eccentric orbit given the periodic
oscillation occurring at perigee where special and general relativistic time dilation effects are
greatest in magnitude. While the order of magnitude of the combined effects is low for the
weak gravitational field of the Earth, we observe that for the PSP, the effects are increased
by approximately six orders of magnitude due to the Schwarzschild field of the Sun and the
high orbital velocity at perihelion.
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Fig. 1 Evolution of spacecraft proper time with global coordinate time where δt ≡ t − τ

Complete conservation (at the order 10−32) of the quadratic invariant (20) is achieved for
the perturbed motion of the three test particles described in Table 1 and presented in Fig. 2.
We simulate three orbits per test particle, selecting different integration time steps h which are
typical in magnitude for practical operations. For example, consider the simulated orbit of the
perturbedNASAParker Solar Probe-like object.We assume a time step of approximately five
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Table 1 Molniya (M), Parker Solar Probe (PSP) and Mercury Planetary Orbiter (MPO) orbital inclination,
i , period T , semi-major axis a and geocentric, heliocentric and hermiocentric apoapsis ra and periapsis rp
radial distances, respectively

Spacecraft i [deg] ra [km] rp [km] T [sec] a [km]
Molniya 63.4 43370 7650 39480.49 25060

Parker Solar Probe 3.4 110 × 106 6.7 × 106 7687503.77 5835×104

Mercury Planetary Orbiter 90 3940 2920 8503.42 3430

minutes (given in black in Fig. 2) where the typical order of magnitude used for generating
ephemerides for probes during interplanetary cruise is approximately ten minutes.

The standard “Newton+ correction” approach for the numerical propagation of spacecraft
is in conflict with the resolutions of the IAU which necessitate that all astrodynamical prob-
lems be formulated in the framework of Einstein’s general theory of relativity. Given the rapid
increase in measurement technology, we reiterate the important point: modern orbitography
software is approaching its limits in terms of complexity. The standard approach to include
relativity as an effective force presents both technical and conceptual problems in modern
orbitography. It ignores the fundamental principles of relativity and gives rise to opportunities
to duplicate or ignore relativistic effects. Further, as precision increases in measurement tech-
nology, propagation tools need to be continuously updated in order to account for additional
relativistic effects and changes in conventions; increasing opportunities for human error.

We have presented a novel approach to propagate the motion of test particles subject
to non-gravitational forces in the complete framework of general relativity which does not
appear to have been exploited in the literature. GRAPE accounts for all relativistic con-
tributions and all non-gravitational forces at the order of the chosen spacetime metric and
the measurement sensitivity of the on-board accelerometer, respectively. Further, due to the
existence of the unique general relativistic quadratic invariant (20), the integration procedure
adopted in GRAPE provides an additional layer of security and an accuracy check during
the propagation interval. We note that given the order of magnitude of the relativistic contri-
butions arising in the PN metric tensor components, GRAPE employs 128-bit (quadruple)
precision to perform calculations. While 64-bit (double) precision is less computationally
demanding, we conjecture that high-order relativistic contributions will appear as noise at
this level of precision.

It is of interest to the present authors to investigate and perform comparisons with alter-
native integration procedures in future implementations of GRAPE. We note the truncation
error of integration procedures is of a mathematical origin, where the accumulation of round-
off errors is intrinsically linked with the machine architecture. Hence, the optimal time step
required is machine-precision dependent, and is obtained as a trade-off between truncation
and round-off errors. Ideally, the optimal time step must be determined using a reference
integration scheme built with respect to a representation of floating numbers with a higher
number of bits with respect to the method to be assessed in order to reduce the numerical
round-off noise to nearly zero (Balmino and Barriot 1990). Given that GRAPE is currently
utilising 128- bit precision necessitates a reference integrator with 256- bit (octuple) preci-
sion which is rarely used in practice. A typical reference integrator is the classical Bulirsch
and Stoer algorithm with Richardson extrapolation (see Stoer and Bulirsch (2013) and Press
et al. (2007) for implementation details). More recently, there has been renewed interest in
utilising high-order, adaptive integration procedures based on Taylor’s method (Biscani and
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Fig. 2 Relative frequency of quadratic invariant Eq. (20) forMercury PlanetaryOrbiter (top),Molniya (middle)
and Parker Solar Probe (bottom)-like objects. The individual orbits are propagated with integration time step h

which is calculated with respect to the orbital period T . We define δI according to δI ≡
(
I − c2

)
/c2 where

I is calculated at each numerical integration step. Hence, for the perturbed motion of test particles subject to
a locally measured radiation-like four-force, GRAPE preserves I at the order of 10−32

Izzo 2021) which have been shown to be competitive with and in some cases superior to
symplectic and non-symplectic schemes.

The coefficients of the implicit Runge–Kutta integration scheme currently implemented in
GRAPEare analytically derived inButcher (1964) up to order 10.While higher ordermethods
allow for a larger time step h and a reduction in computational demand, their derivation is
complex. The construction of higher order implicit Runge–Kutta methods which also satisfy
the highly nonlinear constraint (50) is a non-trivial task and the reader is referred to Yoshida
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(1990) and Hairer et al. (2006) for further technical details which are beyond the scope of
the current paper.

As a final remark, we outline an approach to extend GRAPE for practical mission plan-
ning and compatibility with NASA’s SPICE kernels (Acton 1997). This will be formally
addressed in a future manuscript and we expect the important results of the Cassini-Huygens
(Bertotti et al. 2003) and BepiColumbo (Serra et al. 2018; Iess et al. 2021) radioscience
experiments to serve as important verification tests for future versions of GRAPE. When
complete, GRAPE will utilise the PN IAU operational-ready spacetime metrics for both
geocentric and barycentric studies and will calculate important light-time observables (Cap-
puccio et al. 2021) associated with interplanetary probes. The complete n−body barycentric
metric tensor components are given by (Damour et al. 1991; Soffel 2000)

g00 = 1 − 2w

c2
+ 2w2

c4
, g0 j = 4w j/c3, g jk = −δ jk

(
1 + 2w/c2

)
, (63)

where, for consistency we have adopted the opposite metric signature to Soffel (2000) and
w is defined in terms of the individual contributions due to monopole w0 and higher order
post-Newtonian multipole wL moments of the A = 1, . . . , N Solar System bodies and an
additional post-Newtonian contribution � so that

w =
n∑

A

[
(w0)A + (wL)A + �A/c2

]
, (64)

and the vector potential wi accounts for the motion (rotational and translational) of the
respective Solar System bodies. Again, we note that for consistency the above definitions
(63) and (64) are defined using the opposite metric signature to Soffel (2000). At this point,
we refrain from providing explicit definitions of the individual terms as they are dependent
on the accuracy required for the specific mission and refer the reader to Soffel (2000) for
further details. However, we make the observation that �A is defined in terms of Solar
System body position, velocity and acceleration which are provided to GRAPE via SPICE
kernels. Hence, the resulting equations of motion will be defined implicitly and will need
to be solved by iteration, which, in the monopole approximation, is equivalent to the EIH
approach discussed in Standish et al. (1992). Finally, we note the analytical computation
of the Christoffel symbols associated with (63) can be calculated using computer algebra
software packages to avoid computationally demanding numerical differentiation.

Acknowledgements JO’L would like to acknowledge several helpful discussions with Professor James M.
Hill (University of South Australia) and Professor Sam P. Drake (Flinders University). In addition, JO’Lwould
like to acknowledge Dr. Michael Efroimksy (US Naval Observatory) who provided helpful feedback on a first
draft of the current manuscript. JPB is funded by a DAR grant in planetology from the French Space Agency
(CNES).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


56 Page 20 of 22 J O’Leary, J.P. Barriot

References

Acton, C. H.: Nasa’s spice system models the solar system. In I. M. Wytrzyszczak, J. H. Lieske, and R. A.
Feldman, editors, Dynamics and Astrometry of Natural and Artificial Celestial Bodies, pages 257–262,
Dordrecht, (1997). Springer Netherlands. ISBN 978-94-011-5534-2

Balmino,G., Barriot, J.P.: Numerical integration techniques revisited.Manuscripta geodaetica. 15, 1–10 (1990)
Bertotti, B., Iess, L., Tortora, P.: A test of general relativity using radio links with the Cassini spacecraft. Nature

425(6956), 374–376 (2003)
Biscani, F., Izzo, D.: Revisiting high-order taylor methods for astrodynamics and celestial mechanics. Mon.

Not. Roy. Astronom. Soc. 504(2), 2614–2628 (2021)
Brumberg, V.: Essential relativistic celestial mechanics. Routledge, (2017). ISBN 1351449699
Brumberg, V.: On relativistic equations of motion of an earth satellite. Celest. Mech. Dyn. Astron. 88(2),

209–225 (2004). (ISSN 0923-2958)
Brumberg, V.: On derivation of EIH (Einstein-Infeld-Hoffman) equations of motion from the linearized metric

of general relativity theory. Celest. Mech. Dyn. Astron. 99(3), 245–252 (2007). (ISSN 0923-2958)
Brumberg, V.A., Bretagnon, P., Capitaine, N., Damour, T., Eubanks, T.M., Fukushima, T., Guinot, B., Klioner,

S.A., Kopeikin, S.M., Krivov, A.V., Seidelmann, P.K., Soffel, M.H.: General relativity and the IAU
resolutions report of the IAU WGAS Sub-Working Group on Relativity in Celestial Mechanics and
Astrometry (RCMA SWG). Highlights Astron. 11(1), 194–199 (1998)

Burcev, P.: Non-gravitational force effect in general theory of relativity. Cechoslovackij fiziceskij zurnal B
12(10), 727–733 (1962)

Butcher, J. C., Goodwin, N.: Numerical methods for ordinary differential equations. Wiley Online Library,
(2008)

Butcher, J. C.: Numerical methods for ordinary differential equations. Wiley, (2016). ISBN 1119121507
Butcher, J.C.: Implicit Runge-Kutta processes. Math. Comput. 18(85), 50–64 (1964). (ISSN 0025-5718)
P. Cappuccio, I. di Stefano, G. Cascioli, and L. Iess. Comparison of light-time formulations in the post-

newtonian framework for the bepicolombo more experiment. Class. Quant. Grav, (2021)
Charon, J. E.:Quinze leçons sur la relativité générale avec une introduction au calcul tensoriel. Kister, (1963)
Combrinck, L.: General Relativity and Space Geodesy. In G. Xu, editor, Sciences of Geodesy-II: Innovations

and Future Developments, volume 2, chapter 2. Springer, (2012)
Cooper, G.: Stability of Runge-Kutta methods for trajectory problems. IMA J. Num. Anal. 7(1), 1–13 (1987).

(ISSN 1464-3642)
Damour, T., Soffel, M., Xu, C.: General-relativistic celestial mechanics II. translational equations of motion.

Phys. Rev. D 45(4), 1017 (1992)
Damour, T., Soffel, M., Xu, C.: General-relativistic celestial mechanics. III. rotational equations of motion.

Phys. Rev. D 47(8), 3124 (1993)
Damour, T., Soffel, M., Xu, C.: General-relativistic celestial mechanics. IV. theory of satellite motion. Phys.

Rev. D 49(2), 618 (1994)
Damour, T., Soffel, M., Xu, C.: General-relativistic celestial mechanics. I. method and definition of reference

systems. Phys. Rev. D 43(10), 3273 (1991)
Damour, T., Soffel, M.: Chongming, and Xu. The general relativistic N-body problem. In: Hawking, S., Israel,

W. (eds.) Relativistic Gravity ResearchWith Emphasis on Experiments and Observations. Lecture Notes
in Physics, pp. 46–69. Springer, Berlin, Heidelberg (1992)

Damour, T.: The problem ofmotion in Newtonian and Einsteinian gravity. In S. Hawking andW. Israel, editors,
Three hundred years of gravitation, chapter 6, pages 128–198. Cambridge University Press, (1987)

Daquin, J., Alessi, E.M., O’Leary, J., Lemaitre, A., Buzzoni, A.: Dynamical properties of the Molniya satellite
constellation: long-term evolution of the semi-major axis. Nonlin. Dyn. 105(3), 2081–2103 (2021)

d’Inverno, R.: Introducing Einstein’s relativity. Oxford University Press, USA (1992)
Donnelly, D., Rogers, E.: Symplectic integrators: an introduction. Am. J. Phys. 73(10), 938–945 (2005). (ISSN

0002-9505)
A. Einstein, L. Infeld, and B. Hoffmann. The gravitational equations and the problem of motion. Ann. Math.,

pp. 65–100, (1938). ISSN 0003-486X
Evans, S., Taber, W., Drain, T., Smith, J., Wu, H.-C., Guevara, M., Sunseri, R., Evans, J.: MONTE: the

next generation of mission design and navigation software. CEAS Space J. 10(1), 79–86 (2018). (ISSN
1868-2502)

Everitt, C.F., DeBra, D., Parkinson, B., Turneaure, J., Conklin, J., Heifetz, M., Keiser, G., Silbergleit, A.,
Holmes, T., Kolodziejczak, J., et al.: Gravity probe b: final results of a space experiment to test general
relativity. Phys. Rev. Lett. 106(22), 221101 (2011)

Exertier, P., Belli, A., Samain, E., Meng, W., Zhang, H., Tang, K., Schlicht, A., Schreiber, U., Hugentobler,
U., Prochàzka, I., Sun, X., McGarry, J.F., Mao, D., Neumann, A.: Time and laser ranging: a window of

123



General relativistic planetary orbitography Page 21 of 22 56

opportunity for geodesy, navigation, and metrology. J. Geod. 93(11), 2389–2404 (2019). https://doi.org/
10.1007/s00190-018-1173-8. (ISSN 1432-1394.)

Fox, N.J., Velli,M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., Kasper, J.C., Kinnison, J., Kusterer,
M., Lario, D., Lockwood, M.K., McComas, D.J., Raouafi, N.E., Szabo, A.: The solar probe plus mission:
humanity’s first visit to our star. Space Sci. Rev. 204(1), 7–48 (2016). https://doi.org/10.1007/s11214-
015-0211-6. (ISSN 1572-9672.)

Hairer, E., Lubich, C.,Wanner, G.: Geometric numerical integration: structure-preserving algorithms for
ordinary differential equations. Springer, (2006). ISBN 3540306668

Huang, C., Ries, J.C., Tapley, B.D.,Watkins,M.: Relativistic effects for near-earth satellite orbit determination.
Celest. Mech. Dyn. Astronom. 48(2), 167–185 (1990). (ISSN 0923-2958)

Hugentobler, U.: Supporting material: Orbit perturbations due to relativistic corrections. In G. Petit and B.
Luzum, editors, IERS conventions (2010)

Hughes, S. P.,Qureshi, R. H. , Cooley, S. D., Parker, J. J.: Verification and validation of the general mission
analysis tool (gmat). In AIAA/AAS astrodynamics specialist conference, (2014)

Iess, L., Asmar, S., Cappuccio, P., Cascioli, G., De Marchi, F., di Stefano, I., Genova, A., Ashby, N., Barriot,
J., Bender, P., et al.: Gravity, geodesy and fundamental physics with bepicolombo’s more investigation.
Space Sci. Rev. 217(1), 1–39 (2021)

Kang, Z., Tapley, B., Bettadpur, S., Ries, J., Nagel, P.: Precise orbit determination for grace using accelerometer
data. Adv. Space Res. 38(9), 2131–2136 (2006). (ISSN 0273-1177)

Kinoshita, H., Yoshida, H., Nakai, H.: Symplectic integrators and their application to dynamical astronomy.
Celest. Mech. Dyn. Astron. 50, 59–71 (1991)

Kopeikin, S. M.: Relativistic reference frames for astrometry and navigation in the solar system. In AIP
Conference Proceedings, 886, 268–283. AIP, (2007). ISBN 0735403899

Lange, B.: The drag-free satellite. AIAA J. 2(9), 1590–1606 (1964). (ISSN 0001-1452)
Lenoir, B., Lévy, A., Foulon, B., Lamine, B., Christophe, B., Reynaud, S.: Electrostatic accelerometer with

bias rejection for gravitation and solar system physics. Adv. Space Res. 48(7), 1248–1257 (2011)
Lichnerowicz, A., Teichmann, T.: Théories relativistes de la gravitation et de l’électromagnétisme. Phys. Today

8, 24 (1955). (ISSN 0031-9228)
Lucchesi, D.M., Iafolla, V.: The non-gravitational perturbations impact on the bepicolombo radio science

experiment and the key role of the isa accelerometer: direct solar radiation and albedo effects. Celest.
Mech. Dyn. Astron. 96(2), 99–127 (2006). (ISSN 1572-9478)

Marty, J.: Algorithmic documentation of theGINS software. GINSAlgorithmOverview, (2013) https://www5.
obs-mip.fr/wp-content-omp/uploads/sites/28/2017/11/GINS_Algo_2013.pdf

Misner, C. W., Thorne, K. S., Wheeler, J. A.: Gravitation. Macmillan, (1973)
Müller, T., Grave, F.: Catalogue of spacetimes. arXiv 0904, 4184 (2009)
Müller, J., Soffel, M., Klioner, S.A.: Geodesy and relativity. J. Geod. 82(3), 133–145 (2008). https://doi.org/

10.1007/s00190-007-0168-7. (ISSN 1432-1394.)
Novara, M.: The BepiColombo ESA cornerstone mission to mercury. Acta Astronautica 51(1–9), 387–395

(2002)
O’Leary, J., Hill, J.M., Bennett, J.C.: On the energy integral for first post-newtonian approximation. Celest.

Mech. Dyn. Astron. 130(7), 44 (2018). (ISSN 0923-2958)
Petit, G., Luzum, B.: IERS conventions (2010). Report, DTIC Document (2010)
Pireaux, S., Barriot, J.-P., Rosenblatt, P.: SCRMI: A (S)emi-(C)lassical (R)elativistic (M)otion (I)ntegrator to

model the orbits of space probes around the earth and other planets. Acta Astronautica 59(7), 517–523
(2006). (ISSN 0094-5765)

Poisson, E.,Will, C.M.: Gravity: Newtonian, Post-Newtonian. CambridgeUniversity Press, Relativistic (2014)
1139952390

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes: The Art of Scientific
Computing, Vol. 3. Cambridge University Press, (2007)

Rodrigues, M., Touboul, P.: The lisa accelerometer. Adv. Space Res. 32(7), 1251–1254 (2003)
B. Schutz, B. Tapley, and G. H. Born. Statistical orbit determination. Elsevier, (2004). ISBN 0080541739
Serra, D., Di Pierri, V., Schettino, G., Tommei, G.: Test of general relativity during the BepiColombo inter-

planetary cruise to Mercury. Phys. Rev. D 98(6), 064059 (2018)
M. H. Soffel and W.-B. Han. Applied general relativity: theory and applications in astronomy, celestial

mechanics and metrology. Springer, Cham, (2019). https://doi.org/10.1007/978-3-030-19673-8
Soffel, M., Langhans, R.: Space-time reference systems. Springer, New york (2012)
M. Soffel, S. A. Klioner, G. Petit, P. Wolf, S. Kopeikin, P. Bretagnon, V. Brumberg, N. Capitaine, T. Damour,

and T. Fukushima. The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the
relativistic framework: explanatory supplement. TheAstronom. J., 126(6):2687, (2003). ISSN1538-3881

Soffel, M.: Relativity in astrometry, celestial mechanics and geodesy. Springer, Newyork (1989)

123

https://doi.org/10.1007/s00190-018-1173-8
https://doi.org/10.1007/s00190-018-1173-8
https://doi.org/10.1007/s11214-015-0211-6
https://doi.org/10.1007/s11214-015-0211-6
https://www5.obs-mip.fr/wp-content-omp/uploads/sites/28/2017/11/GINS_Algo_2013.pdf
https://www5.obs-mip.fr/wp-content-omp/uploads/sites/28/2017/11/GINS_Algo_2013.pdf
https://doi.org/10.1007/s00190-007-0168-7
https://doi.org/10.1007/s00190-007-0168-7
https://doi.org/10.1007/978-3-030-19673-8


56 Page 22 of 22 J O’Leary, J.P. Barriot

Soffel,M.:Report of theworkinggroup relativity for celestialmechanics and astrometry. Proc. IAUColloquium
180, 283–292 (2000)

E.M.Standish, J.G.Williams, et al.Orbital ephemerides of the sun,moon, andplanets. Explanatory supplement
to the astronomical almanac, pp. 279–323, (1992)

Stoer, J., Bulirsch, R.: Introduction to numerical analysis. Springer, Newyork (2013)
Touboul, P.,Willemenot, E., Foulon,B., Josselin,V.:Accelerometers for champ, grace and goce spacemissions:

synergy and evolution. Boll. Geof. Teor. Appl 40(3–4), 321–327 (1999)
D. Vallado, P. Crawford, R. Hujsak, and T. Kelso. Revisiting spacetrack report # 3. InAIAA/AAS Astrodynamics

Specialist Conference and Exhibit, (2006)
Vallado, D.A.: Fundamentals of astrodynamics and applications. Springer, Newyork (2001)
T. Van Helleputte and P. Visser. Gps based orbit determination using accelerometer data. Aerospace Sci.

Technol., 12(6):478–484, (2008). ISSN 1270-9638
Weinberg, S.: Gravitation and cosmology: principles and applications of the general theory of relativity.Wiley,

New York (1972)
J. Yepez. Einstein’s vierbein field theory of curved space. arXiv preprint arXiv:1106.2037, (2011)
Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268 (1990)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1106.2037

	An application of symplectic integration for general relativistic planetary orbitography subject to non-gravitational forces
	Abstract
	1 Introduction
	2 GRAPE: mathematical preliminaries
	2.1 On the nature of non-gravitational forces in general relativity
	2.2 General relativistic invariant
	2.3 Tetrad formalism
	2.4 Non-gravitational force transformations

	3 General relativistic accelerometer equations
	4 GRAPE: structure-preserving integration scheme
	4.1 GRAPE: Gauss collocation procedure
	4.2 Quadratic invariants

	5 GRAPE: first results and discussion
	Acknowledgements
	References




