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Abstract
We propose the general method of proving the bifurcation of new solutions from relative
equilibria in N -body problems. The method is based on a symmetric version of Lyapunov
center theorem. It is applied to study the Lennard–Jones 2-body problem, where we have
proved the existence of new periodic or quasi-periodic solutions.
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1 Introduction

N -body problems have been widely studied in celestial mechanics since Kepler and Newton.
We study the motion of N particles moving under the action of mutual potential forces.
Denote by q1, . . . , qN ∈ R

d the positions of the particles with the masses m1, . . . ,mN ,
respectively, by Ui j (qi , q j ) : Rd × R

d → R the potential between particles qi and q j , and
putU (q1, . . . , qN ) = ∑

1≤i< j≤N
Ui j (qi , q j ). Then, denotingq = (q1, . . . , qN ), theNewtonian

equation of motion can be written as the system:

mi q̈i = −∇qiU (q) i = 1, . . . , N .

A typical question for the N-body problem is the existence of relative equilibria, i.e.,
solutions where the system of particles behaves like a rigid body—the mutual distances of
the particles remain constant during themotion. In other words, the system of particles moves
under the actionof rotationgroup (the center ofmass of the system isfixed). Therefore, relative
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equilibria are special cases of periodic solutions. For the extend discussion about N -body
problem, see Meyer et al. (2009).

In this paper,we showhow toutilize the existence of relative equilibria to the demonstration
of the existence of quasi-periodic solutions that are not relative equilibria. This method can
be applied for a variety of problems like gravitational N -body problem, Lennard–Jones
N -body problem or N -vortex problem. We apply this method to study the 2-body problem
with Lennard–Jones potential.

Lennard–Jones potential describing the potential energy of a pair of molecules is given
by

ULJ (r) = ε

[(σ

r

)12 − 2
(σ

r

)6
]

,

where r is a distance of themolecules and the parameters ε and σ can be found experimentally
for the specific model. The first term describes the Pauli repulsion (the molecules repel each
other at a close distance), the second one—London forces (attraction at a moderate distance).
Lennard–Jones potential is used frequently in a chemistry modeling. By the change of units
and scale, we can assume ε = σ = 1. Then, the potential for the N -body problem is given
by

U (q) =
∑

1≤i< j≤N

(
1

|qi − q j |12 − 2

|qi − q j |6
)

. (1.1)

Lennard–Jones N -body problem has been studied in many ways, including more general
class of potential. In Llibre and Long (2015), the authors have studied the circular periodic
solutions and antiperiodic solutions of the generalized problem. The classical case studied
here corresponds to the case γ = 0 in Llibre and Long (2015), where the authors have proved
the existence of a circle of equilibria.

In Liu et al. (2018), the authors have used variational methods to study the structure
of solutions of the generalized Lennard–Jones system. They have proved, among others,
the existence of periodic non-circular solution with any period greater than the number τ #1 ,

where τ #1 =
(
2·117
33·54

)1/6
in the classical case. They have also studied the existence of periodic

solutions in a rotating frame, giving the period of solution as an integral, see Proposition 5.2
in Liu et al. (2018).

Lennard–Jones (N +2)- and (N +3)-body problems with the generalized potential onR3

have been studied in Liu (2020)where the existence of circular and non-circular homographic
solutions has been proven.

The 2-body problem with the potential (1.1) has been studied in Corbera et al. (2004) for
the existence of equilibria and relative equilibria. In Pérez-Chavela et al. (2018), the existence
of periodic solutions bifurcating from the stationary ones has been proven. Moreover, the
detailed study of generalized 2-body Lennard–Jones potential was done in Bărbosu et al.
(2011).

In this article, we study Lennard–Jones 2-body problem and we prove the existence of
connected families of periodic or quasi-periodic solutions bifurcating from the relative equi-
libria with the moment of inertia in the given interval. The article is organized as follows.
In Sect. 2, we reformulate the problem into Hamiltonian equation in rotating frame and we
formulate the main tool of this work, Theorem 1. Section 3 is devoted to study the problem
in a number of cases depending on the moment of inertia of the relative equilibrium.
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2 The theoretical background

Consider a planar N -body problem with all masses equal to 1 described by the equation

q̈(t) = −∇U (q(t)), (2.1)

where q = (q1, . . . , qN ) : R → �, � = {(q1, . . . , qN ) ∈ (R2)N : qi �= q j for i �= j} is
the configuration space andU : � → R is of the class C2. We treat q and gradient as column

vectors. Denote by K (θ) thematrix of planar rotation, i.e., K (θ) =
[
cos θ − sin θ

sin θ cos θ

]

∈ SO(2)

and by R(θ) = K (θ) ⊕ . . . ⊕ K (θ) - the 2N × 2N block matrix with 2 × 2 matrices K (θ)

on its diagonal. We recall that the rotation group SO(2) acts on R
2N as SO(2) × R

2N �
(K (θ), q) → R(θ)q ∈ R

2N . Assume additionally that the potential U is SO(2)-invariant,
i.e., for any θ ∈ R, we haveU (R(θ)q) = U (q). Then, the gradient∇U is SO(2)-equivariant,
i.e., ∇U (R(θ)q) = R(θ)∇U (q).

Suppose that for some q0 ∈ �, the map q̃(t) = R(ωt)q0, q0 ∈ � is a solution of the
equation (2.1). A solution of this form is called a relative equilibrium generated by q0, and
the point q0 is called a central configuration. A relative equilibrium q̃(t) can be viewed as
an equilibrium point in a rotating frame with rotation rate ω. One can show that q̃(t) is a
solution of (2.1) if and only if ∇U (q0) = ω2q0 (see also Corbera et al. (2004)).

We are going to put the system into a rotating frame. Firstly, we translate the Newtonian
system (2.1) to the Hamiltonian one. Let’s introduce the variable p = (p1, . . . , pN ) = q̇.
The problem can be written in the form

{
q̇ = p = ∇pH(q, p)
ṗ = −∇U (q) = −∇q H(q, p)

, (2.2)

for H(q, p) = 1
2‖p‖2 + U (q). Now, we introduce the new variables in the frame rotating

with velocity ω: Q(t) = R(−ωt)q(t), P(t) = R(−ωt)p(t) and denote JN = R( π
2 ) =

[
0 −1
1 0

]

⊕ . . .⊕
[
0 −1
1 0

]

- N -times. In these variables, the equation of motion can be written

in the general form
[
Q̇
Ṗ

]

= J∇H(Q, P), (2.3)

where Hamiltonian function H is given by H(Q, P) = 1
2‖P‖2 + ωQT JN P + U (Q) and

J =
[

0 I2N
−I2N 0

]

is a standard 4N -dimensional symplectic matrix.

Since the potential U is SO(2)-invariant and RT JN R = JN , the Hamiltonian H is also
SO(2)-invariant, where the action is given by (θ, (Q, P)) → (R(θ)Q, R(θ)P). Recall that

the block matrix

[
R(θ) 0
0 R(θ)

]

is a unitary one.

Note that ∇PH(Q, P) = P +ω(QT JN )T = P −ωJN Q and ∇QH(Q, P) = ∇U (Q)+
ωJN P . Therefore, equilibria of the problem (2.3) are givenby P = ωJN Q and0 = ∇U (Q)+
ωJN P = ∇U (Q)−ω2Q. Hence, (Q0, P0) = (q0, ωJNq0) is an equilibrium of the equation
(2.3).

To prove the existence of family of solutions of the problem (2.3) emanating from the
stationary solution (Q0, P0), we can apply the following theorem. The theorem is a gen-
eralization of the famous Lyapunov center theorem, see Lyapunov (1895); Moser (1976);
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Weinstein (1973). Since we are going to apply it to 2 · (2N )-dimensional system, it is given
in this case.

Theorem 1 ( Strzelecki (2020)) Assume that a compact Lie group 
 acts unitary on R
4N .

Under the following assumptions:

(A1) H : R4N → R is a 
-invariant Hamiltonian of the class C2,
(A2) z0 ∈ R

4N is a critical point of H such that the isotropy group 
z0 is trivial,
(A3) the orbit 
(z0) is isolated in (∇H)−1(0),
(A4) ±iβ1, . . . ,±iβm, 0 < βm < . . . < β1, m ≥ 1 are the purely imaginary eigenvalues

of J∇2H(z0),

(A5) deg
(
∇

(
H|T⊥

z0

(z0)

)
, B(z0, ε), 0

)
�= 0 for sufficiently small ε,

(A6) β j0 is such that β j/β j0 /∈ N for all j �= j0

(A7) the Morse index m−
([−λ∇2H(z0) −J

J −λ∇2H(z0)

])

changes at λ = 1
β j0

when λ

varies,

there exists a connected family of non-stationary periodic solutions of the system ż(t) =
J∇H(z(t)) emanating from the stationary solution z0 (i.e., with amplitude tending to 0) such
that minimal periods of solutions in a small neighborhood of z0 are close to 2π/β j0 .

Remark 1 The assumption (A6) is needed to be studied if the period of the new solution has
to beminimal. If we are interested in the existence of solutions only, we do not have to verify
it.

Remark 2 If dim 
(z0) = dim ker∇2H(z0), then Tz0
(z0) = ker∇2H(z0). Hence, z0 is
a non-degenerate critical point of H|T⊥

z0

(z0), and as a consequence, the Brouwer degree

deg
(
∇

(
H|T⊥

z0

(z0)

)
, B(z0, ε), 0

)
equals ±1 for sufficiently small ε. Therefore, in this case

the assumption (A5) is satisfied.

Remark 3 The limit of m−
([−λ∇2H(z0) −J

J −λ∇2H(z0)

])

for λ → 0 equals 4N . The limit

for λ → ∞ is a singular matrix; however, for large values of λ we can estimate

2m+(∇2H(z0)) = 2m−(−∇2H(z0)) ≤ m−
([−λ∇2H(z0) −J

J −λ∇2H(z0)

])

≤
≤ 2(4N − m+(−∇2H(z0))) = 2(4N − m−(∇2H(z0))), (2.4)

where m+(A) is a positive Morse index of a matrix A. Therefore, if m+(∇2H(z0)) > 2N or
m−(∇2H(z0)) > 2N , then the Morse index changes for some value of parameter λ.

Note that the only values of the parameter λ where the Morse index from the assump-
tion (A7) can change are λ ∈ { 1

β j
: j = 1, . . . ,m}. Therefore, m+(∇2H(z0)) > 2N or

m−(∇2H(z0)) > 2N implies the existence of a purely imaginary eigenvalues of J∇2H(z0)
(the assumption (A4)). To summarize, when we are able to verify the stronger assumption

(A7.1) m+(∇2H(z0)) > 2N or m−(∇2H(z0)) > 2N

then the assumptions (A4) and (A7) are satisfied. However, then we do not know the level λ
where the assumption (A7) holds true, and therefore, we cannot give the minimal period of
new solutions. The assumption (A6) has not to be verified.

See Strzelecki (2020) for more details.
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Theorem1provides the existence of periodic solutions of the problem in the rotating frame
whose trajectories lie arbitrarily close to the stationary solution (Q0, P0). In the original frame
these solutions, we call quasi-periodic as a composition of two periodic motions with not
necessarily resonant frequencies. Their trajectories lie arbitrarily close to the trajectory of
the relative equilibrium R(ωt)q0.

One can askwhetherwe can apply classical Lyapunov center theorem to study the problem.
Note that in the rotating frame, the Hamiltonian functionH still has symmetries of the group
SO(2). It implies that critical points of H (i.e., stationary solutions of the problem in the
rotating frame) are not isolated and therefore they are degenerate—Lyapunov theorem cannot
be applied. It is possible to reduce the system to the space of orbits of the SO(2)-action
(reduced Hamiltonian system). However, if dim ker∇2H(z0) ≥ 2, the relative equilibrium is
degenerate stationary solution of the reduced system and Lyapunov theorem is not applicable,
while Theorem 1 could be applied.

Even when we research non-degenerate case, an application of Theorem 1 is direct and
does not require the study of the properties of the orbit space which is a manifold. Note that
in the case of general unitary action of the compact Lie group on the problem (as is stated in
Theorem 1), the orbit space does not have to have a structure of manifold, while Theorem 1
is still applicable.

3 The results for the Lennard–Jones 2-body problem

In the paper Corbera et al. (2004) Corbera, Llibre and Pérez-Chavela have described equi-
libria and central configurations for Lennard–Jones 2- and 3-body problems with equal
masses. We focus on 2-body problem where for each value of the moment of inertia
I ∈ ( 14 ,∞) there exists a relative equilibrium generated by the central configurations in
the set CC = {(q1, q2) ∈ R

2 × R
2 : q2 = −q1, |q1 − q2| = 2

√
I }—a closed trajec-

tory of this relative equilibrium. The period of this relative equilibrium equals T = 2π/ωI ,

where ωI =
√
384I 3−6
64

√
I 7

. Moreover, the period function T (I ) has a minimum at the point

I0 = 1
4

( 7
4

)1/3
, see Corbera et al. (2004).

Applying the method described in the previous section and Theorem 1, we are going to
prove the bifurcation of periodic solutions from this relative equilibrium for various values
of the moment of inertia.

The symbolic computations in this section were performed by using Maple. One can find
the Maple file under the following link: https://mat.umk.pl/~danio/LJ2BP.html.

Fix I > 1
4 . We consider the problem in the frame rotating with the angular velocity ωI as

described in the previous section. In this frame, the Hamiltonian of the motion has the form

H(Q1x , Q1y, Q2x , Q2y, P1x , P1y, P2x , P2y)

= 1

((Q1x − Q2x )2 + (Q1y − Q2y)2)6
− 2

((Q1x − Q2x )2 + (Q1y − Q2y)2)3

+1

2

(
P2
1x + P2

1y + P2
2x + P2

2y

)
+ ωI

(−Q1x P1y + Q1y P1x − Q2x P2y + Q2y P2x
)
.

(3.1)

Since the Lennard–Jones potential is SO(2)-invariant, the Hamiltonian H is invariant
under the diagonal action of SO(2). Note that for any point z �= 0 ∈ R

8, the isotropy group
SO(2)z is trivial.
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Put a = √
I > 1

2 . The point z0 = (a, 0,−a, 0, 0, ωI a, 0,−ωI a) of the form
(q0, ωI J2q0), where q0 = (a, 0,−a, 0) ∈ CC comes from the central configuration and
is a critical point of the Hamiltonian H. The assumption (A2) is satisfied. Since there is
only one relative equilibrium of Lennard–Jones 2-body problem rotating with frequency ωI ,
there is only one SO(2)-orbit of critical points of H, i.e., (∇H)−1(0) = SO(2)(z0) and the
assumption (A3) is satisfied.

We begin with the study of the assumptions (A4) and (A6), i.e., we calculate the eigen-

values of the matrix J∇2H(z0). These are: α1 = 0 with multiplicity 2, α2 =
√−15+384a6

32a7
,

α3 = −α2, α4 = i ·
√
384a6−6
64a7

with multiplicity 2 and α5 = −α4 with multiplicity 2. Since

a > 1
2 , the conjugate eigenvalues α4 and α5 are always purely imaginary. The number

−15 + 384a6 is negative for a < 6
√

5
128 =: δ; therefore, we consider two cases:

1. a < δ when the matrix J∇2H(z0) possess two pairs of purely imaginary eigenvalues:

±i ·
√
384a6−6
64a7

=: ±iβ1 and ±i ·
√
15−384a6
32a7

=: ±iβ2,

2. a ≥ δ when there is only one pair of imaginary eigenvalues ±i ·
√
384a6−6
64a7

= ±iβ1.

Note that β1 < β2 ⇔ a < 6
√

11
320 =: γ , for a = γ these numbers are equal and γ < δ.

Remark 4 β1 = ωa2 .

To verify the assumption (A7) by its stronger version (A7.1) from Remark 3, we study the
Hessian ∇2H(z0). The eigenvalues of ∇2H(z0) are:

λ1 = 0, λ2 = 2048 a14 + 192 a6 − 3

2048 a14
,

λ3 = 2048 a14 − 1344 a6 + 39 + √
r(a)

4096 a14
,

λ4 = 2048 a14 − 1344 a6 + 39 − √
r(a)

4096 a14
,

λ5 = 16 a7 + 1
2

√
1024 a14 + 384 a6 − 6

32 a7
,

λ6 = 16 a7 − 1
2

√
1024 a14 + 384 a6 − 6

32 a7
,

where r(a) = 4194304 a28+7077888 a20−184320 a14+1806336 a12−104832 a6+1521
andmultiplicities of λ5 and λ6 equal 2. Since a Hessian is a symmetric matrix, its eigenvalues
are real numbers. Since a > 1

2 , we can easily see that λ2, λ5 > 0 and λ6 < 0. Moreover,

λ3 · λ4 = 1

224a28
(
(2048a14 − 1344a6 + 39)2 − r(a)

)

= 1

224a28
(−12582912a20 + 344064a14),

this product equals 0 if and only if a = a0 := √
I0 = 1

2

( 7
4

)1/6
for a > 1/2, is positive for

1/2 < a < a0 and negative for a > a0. It is easy to verify that λ4 = 0 for a = a0. Since
λ3 > λ4, we conclude λ3 > 0 and λ4 changes its sign at a = a0. It means that for a < a0 the
positive Morse index m+(∇2H(z0)) equals 5 and the assumption (A7.1) is satisfied, while
for a > a0 m+(∇2H(z0)) = 4 and m−(∇2H(z0)) = 3.

Since 1
2 < a0 < γ < δ, we will study the cases as follows.
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3.1 The case a < a0

By the results above, in this case the stronger assumption (A7.1) is satisfied, and therefore,
we do not have to verify the assumptions (A4), (A6) and (A7), but we will obtain a weaker
theorem—without an information about the minimal period, see Remark 3. Moreover, in this
case dim ker∇2H(z0) = 1 = dim SO(2), i.e., the assumption (A5) is satisfied, see Remark
2.

To summarize, we can formulate the following result as a consequence of Theorem 1.

Theorem 2 For 1/2 < a < 1
2

( 7
4

)1/6
, there exists a connected family of quasi-periodic

solutions of the Lennard–Jones 2-body problem bifurcating from the relative equilibrium
generated by the central configuration from the set {(q1, q2) ∈ R

2 ×R
2 : q2 = −q1, |q1 −

q2| = 2a}.
When we are interested in the minimal period of solutions in this case, we might study the

assumption (A7) in its general formulation as it is done in the next caseswhere the assumption
(A7.1) is not satisfied. However, in the next sections the proofs are much complicated.
Therefore, we utilized the condition (A7.1) in the case a < a0.

3.2 The case a = a0

The case a = a0 = √
I0 is a critical one, where the assumption (A5) has to be studied in its

general version and it is more complicated; therefore, the problem is far from being solved.
However, in this case it is not hard to verify the assumption (A7).

3.3 The case a0 < a < � ⇒ 0 < ˇ1 < ˇ2.

In this case and the following ones, dim ker∇2H(z0) = 1 = dim SO(2),m+(∇2H(z0)) = 4
andm−(∇2H(z0)) = 3. Thanks toRemark 2, the assumption (A5) is satisfied. Sinceβ2 > β1,
the assumption (A6) is satisfied forβ j0 = β2. The assumption (A7)wewill study in its general
formulation. We denote

Kλ =
[−λ∇2H(z0) −J

J −λ∇2H(z0)

]

for simplicity.
We will study the change of m− (Kλ) at λ0 = 1

β2
. Since limλ→0 m− (Kλ) = 2N = 8 and

λ0 is the smallest value of parameter where this Morse index can change (see Remark 3), we
have to verify whether m− (Kλ) �= 8 for some 1

β2
< λ < 1

β1
, i.e.,

64a7√−1536a6 + 60
< λ <

64a7√
384a6 − 6

.

Let’s take λ∗ = 64a7√−576a6+27
, where the denominator is a quadratic mean of the two denom-

inators. We are going to apply Descartes’ rule of signs, i.e., for any a ∈ (a0, γ ) we have
to study the number of changes of signs of the coefficients of the characteristic polynomial
wKλ∗ (r) of the matrix Kλ∗ . The coefficients ofwKλ∗ (r) are rational functions of a; hence, we
are going to bring them into polynomials. Denote by wi (a), i = 0, . . . , 16, the coefficient of
r i in the polynomialwKλ∗ (r) and put vi (a) = wi (a)·(−64a6+3)αi,1 ·aαi,2 : (11−320a6)αi,3 ,

123
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where the table (αi, j )
T
i=0,...,16; j=1,2,3 is given by

⎡

⎣
6 13/2 7 13/2 6 11/2 5 9/2 4 7/2 3 5/2 2 3/2 1 1/2 0
0 7 14 21 28 21 28 21 28 21 28 21 28 21 14 7 0
6 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎦ .

Note that −64a6 + 3 and 11 − 320a6 are positive on the interval (a0, γ ). Therefore, the
polynomial vi (a) has the same zeros and the same sign on this interval as wi (a) function,
for i = 0, . . . , 16.

We are interested in the signs of the values of vi (a); therefore, using Sturm method we
verify how many distinct roots in the interval (a0, γ ) they have.

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16

0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0

Denote the root of vi (a) in the given interval as ri (if it exists). We can perform the Sturm
method on smaller intervals to order the roots ri :

r11 < r9 < r14 < r7 < r12 < r10 < r1 < r3 < r8 < r2 < r15.

In the next table, we test the signs of the polynomials on the intervals determined by their
roots. For example, the symbol + → − denotes that a polynomial with a root ζ is positive
for a ∈ (a0, ζ ) and negative for (ζ, δ).
Now,wearewell prepared to study the sequenceof signs of (v0(a), v1(a), . . . , v15(a), v16(a))

on the subintervals of (a0, γ ):

v0 v1 v2 v3 v4 v5 v6 v7

sign + + → − − → + − → + + + + − → +

v8 v9 v10 v11 v12 v13 v14 v15 v16

sign − → + + → − + → − − → + − → + − + → − + → − +

Note that in the endpoint ri the sign of vi equals 0, but 0 has no effect on the number
of changes of signs, therefore, this number of changes in ri is the same as on the interval
(r j , ri ); therefore, we study right-closed intervals.

To summarize, we have proved that for any a ∈ (a0, γ ), there are 6 changes of signs in
the sequence of coefficients of the characteristic polynomial of the matrix Kλ∗ . Hence, there
are at most 6 positive roots of the characteristic polynomial. Moreover, the matrix Kλ∗ is
symmetric and non-singular. Therefore, m−(Kλ∗) ≥ 10 and the assumption (A7) holds true.
In fact, m−(Kλ∗) = 10, by the study of characteristic polynomial of the negative variable.

To summarize, in this case the assumptions of Theorem 1 with β j0 = β2 are satisfied and
we can formulate the following result.
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Interval Sequence of signs Number of changes

(a0, r11] +,+, −,−, +,+, +,−, −,+,+, −,−, −,+, +,+ 6
(r11, r9] +,+, −,−, +,+, +,−, −,+,+, +,−, −,+, +,+ 6
(r9, r14] +,+, −,−, +,+, +,−, −,−,+, +,−, −,+, +,+ 6
(r14, r7] +,+, −,−, +,+, +,−, −,−,+, +,−, −,−, +,+ 6
(r7, r12] +,+, −,−, +,+, +,+, −,−,+, +,−, −,−, +,+ 6
(r12, r10] +,+, −,−, +,+, +,+, −,−,+, +,+, −,−, +,+ 6
(r10, r1] +,+, −,−, +,+, +,+, −,−,−, +,+, −,−, +,+ 6
(r1, r3] +,−, −,−, +,+, +,+, −,−,−, +,+, −,−, +,+ 6
(r3, r8] +,−, −,+, +,+, +,+, −,−,−, +,+, −,−, +,+ 6
(r8, r2] +,−, −,+, +,+, +,+, +,−,−, +,+, −,−, +,+ 6
(r2, r15] +,−, +,+, +,+, +,+, +,−,−, +,+, −,−, +,+ 6
(r15, γ ) +,−, +,+, +,+, +,+, +,−,−, +,+, −,−, −,+ 6

Theorem 3 For a0 < a < 6
√

11
320 , there exists a connected family of quasi-periodic solutions

of the Lennard–Jones 2-body problem bifurcating from the relative equilibrium generated
by the central configuration from the set {(q1, q2) ∈ R

2 × R
2 : q2 = −q1, |q1 − q2| =

2a}. These solutions are compositions of two periodic motions: with minimal period 2π
ωa2

=
128πa7√
384a6−6

and with minimal period close to 2π
β2

= 64πa7√−384a6+15
.

One can ask whether there is a change of m−(Kλ) when λ crosses the second possible
value 1

β1
. Performing the same study as above, we can verify that for some λ∗ > 1

β1
, for

example, λ∗ = 1, there is m−(Kλ∗) = 10 and the assumption (A7) is not satisfied.

3.4 The case a0 = �.

±iβ1 is the only pair of purely imaginary eigenvalues of J∇2H(z0); therefore, it is sufficient
to prove thatm−(Kλ) �= 8 for some λ > 1

β1
≈ 0, 47. Put λ∗ = 1. Denote bywi the coefficient

of r i , i = 0, . . . , 16 in the characteristic polynomial of Kλ∗ . In the list below, we round the
values of these coefficients to integers.

⎡

⎢
⎢
⎣

w0 ≈ 2088, w1 ≈ 82739, w2 ≈ 812352, w3 ≈ −270347, w4 ≈ −2561758,
w5 ≈ −688334, w6 ≈ 2355090, w7 ≈ 1532645, w8 ≈ −255042, w9 ≈ −400090,
w10 ≈ −46706, w11 ≈ 29922, w12 ≈ 7077, w13 ≈ −275, w14 ≈ −153,
w15 ≈ −1, w16 ≈ 1.

⎤

⎥
⎥
⎦

In the sequence of coefficients of the characteristic polynomial of Kλ∗ , there are 6 changes
of signs; therefore, by Descartes’ rule of signs there are at most 6 positive eigenvalues. Since
Kλ∗ is a non-singular matrix, we obtain m−(Kλ∗) ≥ 10 and the assumptions of Theorem 1
are satisfied. Moreover, ωa20

= β1 = 12 · 52/311−7/6.

Theorem 4 There exists a connected family of periodic solutions of the Lennard–Jones
2-body problem bifurcating from the relative equilibrium generated by the central configu-

ration from the set {(q1, q2) ∈ R
2 × R

2 : q2 = −q1, |q1 − q2| = 2 6
√

11
320 } with minimal

periods close to 117/6π
6·52/3 .
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3.5 The case � < a < ı and 0 < ˇ2 < ˇ1

This case we study similarly as a0 < a < γ for λ0 = 1
β1
, so we compute the Morse index

of Kλ∗ for λ∗ = 64a7√−576a6+27
, 1

β1
< λ∗ < 1

β2
. Unfortunately, by Descartes’ rule of signs we

compute m−(Kλ∗) = 8 and the assumption (A7) is not satisfied for λ0 = 1
β1
. We are going

to verify that m−(Kλ) changes at λ0 = 1
β2
. In order to do it, we will follow the same way as

in the case a0 < a < γ to show that for λ∗ = 2
β2
, the Morse index of Kλ∗ equals 10, i.e.,

we apply Descartes’ rule of signs to prove that there are at most six positive eigenvalues of
symmetric non-singular matrix Kλ∗ .

Denote by wi (a), i = 0, . . . , 16, the coefficient of r i in the polynomial wKλ∗ (r), and put
vi (a) = wi (a)·(−128a6+5)αi,1 ·aαi,2 : (256a6−7)αi,3 , where the table (αi, j )

T
i=0,...,16; j=1,2,3

is given by
⎡

⎣
4 11/2 7 13/2 6 11/2 5 9/2 4 7/2 3 5/2 2 3/2 1 1/2 0
0 7 14 21 28 21 28 21 28 21 28 21 28 21 14 7 0
4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎦ .

Note that −128a6 + 5 and 256a6 − 7 are positive on the interval (γ, δ). Therefore, the
polynomial vi (a) has the same zeros and the same sign on this interval as wi (a) function,
for i = 0, . . . , 16.

By the Sturm method, we verify that there are only single roots of the polynomials v3(a)

(denote the root by r3) and v13(a) (with a root r13). Moreover, r3 < r13.
In the next table, we test the signs of the polynomials on the intervals determined by their

roots. For example, the symbol + → − denotes that a polynomial with a root ζ is positive
for a ∈ (γ, ζ ) and negative for (ζ, δ).

v0 v1 v2 v3 v4 v5 v6 v7 v8

sign + + + − → + − − + + −

v9 v10 v11 v12 v13 v14 v15 v16

sign − − + + − → + − − +

Now,wearewell prepared to study the sequenceof signs of (v0(a), v1(a), . . . , v15(a), v16(a))

on the intervals (γ, r3], (r3, r13], (r13, δ).

Interval Sequence of signs Number of changes

(γ, r3] +,+,+, −,−, −,+, +,−, −,−, +,+, −,−,−, + 6
(r3, r13] +,+,+, +,−, −,+, +,−, −,−, +,+, −,−,−, + 6
(r13, δ) +,+,+, +,−, −,+, +,−, −,−, +,+, +,−,−, + 6
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We have verified that for any a ∈ (γ, δ), there are 6 changes of signs in the sequence of
coefficients of the characteristic polynomial of Kλ∗ . Therefore, by Descartes’ rule of signs
there are at most 6 positive eigenvalues of this matrix, and at least 10 negative roots. The
assumption (A7) of Theorem 1 is satisfied with β j0 = β2 < β1. It remains to check the
assumption (A6).

Note that β1
β2

= k ∈ N ⇔ a = 6
√

10k2+1
256k2+64

= 6

√
5
128 − 6

4
256k2+64

=: θ(k). The function

θ(k) : N → R is increasing, so θ(k) > θ(1) = γ , and moreover, θ(k) < 6
√

5
128 = δ.

The assumption (A6) is satisfied when a ∈ (γ, δ) \ { 6
√

10k2+1
256k2+64

: k ∈ N}. However, this
assumption does not have to be satisfied when we do not study the minimal period, see
Remark 1.

To summarize, we can formulate the following result.

Theorem 5 For 6
√

11
320 < a < 6

√
5
128 , there exists a connected family of quasi-periodic

solutions of the Lennard–Jones 2-body problem bifurcating from the relative equilibrium
generated by the central configuration from the family {(q1, q2) ∈ R

2 × R
2 : q2 =

−q1, |q1 − q2| = 2a}. These solutions are compositions of two periodic motions: with

period 2π
ωa2

= 128πa7√
384a6−6

and with period close to 2π
β2

= 64πa7√−384a6+15
. The period of the

second motion is minimal for a �= 6
√

10k2+1
256k2+64

, k ∈ N.

3.6 The case ı ≤ a

In this unbounded case, there is noway to find a general behavior of theMorse indexm−(Kλ).
It could be possible to study small intervals of a or specific values of a by Descartes’ rule of
signs. For example, for δ ≤ a < 1 the Morse index equals 8 and the assumption (A7) is not
satisfied. But we are not able to formulate any general result.

3.7 Summary

We have proved that for any a ∈ (1/2, 6
√

5
128 ) \ { 6

√
7
256 }, there is a bifurcation of families

of quasi-periodic solutions from the family of central configurations {(x1, x2) ∈ R
2 × R

2 :
x2 = −x1, |x1 − x2| = 2a} of the Lennard–Jones 2-body problem.

The case a = 6
√

7
256 , where it is hard to verify the assumption (A5), remains to be solved.

The method proposed in this paper could be used to a variety of N -body problems where
the relative equilibria exist.
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