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Abstract
Future space programmes pose some interesting research problems in the field of non-
Keplerian dynamics, being the Moon and the cislunar space central in the proposed roadmap
for the future space exploration. In these regards, the deployment of a cislunar space station
on a non-Keplerian orbit in the lunar vicinity is a fundamental milestone to be achieved. The
paper investigates the natural orbit-attitude dynamics and the attitude stabilisation of cou-
pled motions for extended bodies in the Earth–Moon system. The discussion is carried out
analysing the phase space of natural dynamics, constituted by both the orbital and the rota-
tional periodic motions of a spacecraft in cislunar orbits. Floquet theory is applied to periodic
orbit-attitude solutions in lunar proximity, to characterise their attitude stability properties
and their attitude manifolds, which are discussed and analysed focusing on their dynami-
cal features applicable to cislunar environment. Attitude stabilisation methods are proposed
and developed, with particular attention to spin-stabilised solutions. Periodic orbit-attitude
dynamics are studied to highlight possible favourable conditions that may be exploited to
host a cislunar space station with a simplified control action. The focus of the analysis is ded-
icated to halo and near-rectilinear halo orbits in the circular restricted three-body problem
Earth–Moon system.

Keywords Circular restricted three-body problem (CR3BP) · Orbit-attitude dynamics ·
Floquet modes · Attitude stabilisation · Attitude manifolds · Spin-stabilised spacecraft

1 Introduction

The global space exploration roadmap (ISECG 2018), which has been endorsed by the
worldwide space agencies collaborating at the International Space Station (ISS) project,
proposes the sustainable conquest of theMoonas thefirst fundamental step on the road toMars
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and beyond. The deployment of the cislunar space gateway, which is a proposed habitable
space outpost running on a non-Keplerian orbit in the lunar vicinity, constitutes one of the
major milestones in the aforementioned roadmap and one of the most attractive challenges
in the next decade of space exploration. Recent studies have selected elongated halo orbit
and near-rectilinear halo orbit (NRHO) as the most attractive staging orbit candidates for the
cislunar space gateway, also known as Lunar Orbital Platform-Gateway (LOPG) (Williams
et al. 2017). These classes of non-Keplerian orbits offer continuous line of sight coverage
for communications with Earth, an easy access from the Earth with existing transportation
systems and convenient descending/ascending trajectories with lunar surface (Whitley and
Martinez 2016).

The proposed space gateway will be likely assembled in-orbit, by means of several auto-
mated Rendezvous and Docking (RVD) operations among its constituting massive modules
(Crusan et al. 2019). The orbital properties of elongated halo orbits and NRHOs have been
widely investigated in the literature, since the first introduction of these orbit families exist-
ing in the circular restricted three-body problem (CR3BP) model (Howell and Breakwell
1984). However, the complete 6 degrees of freedom (6DOF) orbit-attitude dynamics has
been addressed only in recent years (Guzzetti and Howell 2016; Colagrossi and Lavagna
2017b). The accurate analysis of proximity operations for large space infrastructures cannot
overlook the rotational motion, coupled with the orbital dynamics, in non-Keplerian cislu-
nar space. This peculiar dynamical environment could unveil natural dynamics features that
would dramatically increase the orbit-attitude manoeuvring capabilities of nowadays space-
craft, leading to the design of new space exploration and scientificmissions with strict control
effort requirements.

In the existing literature, several studies have investigated the attitude stability of a space-
craft fixed at the libration points in the CR3BP (Kane and Marsh 1971; Robinson 1974), or
of an axis-symmetric spinning spacecraft moving on planar non-Keplerian orbits (Hitzl and
Levinson 1979). Euler parameters have been introduced to study the rotational dynamics of
a single body located at one of the Lagrangian points by Abad, Arribas and Elipse (Abad
et al. 1989). More recently, Brucker and Gurfil (Brucker and Gurfil 2007) have focused their
attention to the attitude dynamics of a spacecraft in the vicinity of equilibrium points using
Poincarémaps,while linear approximations of non-Keplerian orbits have been used byWong,
Patil and Misra (Wong et al. 2008).

In the last few years, the coupling between the orbital and attitude motions has been inves-
tigated within the simplified dynamical environment of the CR3BP, considering both planar
and three-dimensional motions in non-Keplerian dynamics, providing different families of
periodic orbit-attitude solutions (Knutson et al. 2015; Guzzetti and Howell 2016; Colagrossi
and Lavagna 2017b). In the same decade, Meng, Hao and Chen (Meng et al. 2014) proposed
a semi-analytical approach to conduct stability analyses of a dual-spin spacecraft running
along a family of halo orbits, identifying periodic dynamical modes.

The paper presents a brief introduction on the orbit-attitude dynamical model based on the
CR3BP formulation and it describes representative families of periodic orbit-attitude solu-
tions existing in the Earth–Moon system. Particular attention is dedicated to halo and NRHO
families. Next, the concept of manifolds, which has been widely explored in the classical
CR3BP, is extended to the attitude dynamics in the coupled CR3BP, as preliminary intro-
duced in a previous work of the authors (Colagrossi and Lavagna 2017a). The Floquet theory
is applied to orbit-attitude families of cislunar halo orbits and NRHOs to characterise their
attitude stability and their attitude manifolds natural structures. Finally, attitude stabilisation
methods are proposed and developed considering the crucial limitation in the consumption
of non-recoverable resources, such as propellants, applicable to the future cislunar gateway.
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Single-spin and dual-spin solutions are applied to stabilise the attitude behaviour of a generic
spacecraft on some representative periodic motions in the orbit-attitude CR3BP. The stabil-
isation action with spinning spacecraft or with constant speed reaction wheels reduces the
required intervention of an active attitude control logic. The numerical results of natural and
stabilised dynamics are critically illustrated and relevant operational outcomes are stated.

2 Dynamical model and assumptions

The paper discusses the orbit-attitude behaviours of large spacecraft orbiting on particular
non-Keplerian orbits, existing in the cislunar space, under the combined gravitational action
of the Earth and the Moon. The investigation is focused on the absolute natural dynamics
experienced in this peculiar dynamical environment, with particular attention to the stability
of the motion. The absolute orbit-attitude dynamics is based on the CR3BP formulation,
which is used as a base to derive the subsequent relative dynamics.

2.1 CR3BP orbit-attitudemotion

The CR3BP is the simplest orbital model able to catch the attractive non-Keplerian orbits
existing near Lagrangian Points. The Euler’s equations of motion are added to the CR3BP
dynamics in order to obtain a coupledmodel able to link the rotationalmotion of the spacecraft
with its orbit in cislunar environment. TheCR3BPmodel simplifies themotion of three bodies
with massesmB ,m1 andm2. The spacecraft is assumed as a rigid body with negligible mass,
mB � m1,m2; the primaries have mass m1 and m2 and move on circular orbits about their
common barycentre, O , with constant angular velocity ωs . The framework employed in this
paper for the analysis of the coupled orbit-attitude dynamics of the spacecraft is represented
in Fig. 1. A rotating synodic frame, {r̂} = {x̂, ŷ, ẑ}, is conveniently defined to analyse the
motion of the spacecraft with mass mB .

The synodic {r̂}-frame is a non-inertial frame centred at the barycentre of the system, O .
It is aligned with the reference inertial frame, {î} = {X̂, Ŷ , Ẑ}, at time t = 0. The x̂-axis
is directed from m1 to m2 and the ẑ-axis is in the direction of the angular velocity of the
primaries, ωs = ωs ẑ, while the ŷ-axis completes the right-handed triad. The equations of
motion can be conveniently normalised via the definition of characteristic quantities, so that
the distance between the two primaries, l∗ = r12, the synodic angular velocity, ωs , and the
total mass of the system, m∗ = m1 + m2, are unitary in non-dimensional units (symbol
[ndim]). As a consequence of the normalisation, the non-dimensional orbital period of the
primaries is Tp = 2π , while the non-dimensional time t represents the angle θ that the
rotating {r̂}-frame has covered from t = 0, as shown in Fig. 1. A time interval equal to
1 ndim corresponds to ∼ 4.45 d (i.e. terrestrial days). Finally, thanks to this normalisation,
the system is uniquely described by the mass parameter μ:

μ = m2

m1 + m2
. (1)

The absolute orbital states, xorb = {r; v}, describe the position and the velocity of the centre
of mass of the spacecraft, which are expressed in the rotating synodic {r̂}-frame. The body-
fixed frame of the spacecraft, {b̂} = {b̂1, b̂2, b̂3}, has been defined to model the rotational
dynamics. It is located at the centre of mass of the spacecraft and it is aligned with its
principal inertia directions. The attitude quaternion, iqb = {q1; q2; q3; q4}i , parametrises
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Fig. 1 Orbit-attitude absolute and
relative model

the orientation of the body-fixed frame with respect to the reference inertial {î}-frame. The

angular rates of the body relative to the inertial {î}-frame, îωb̂ = {ω1;ω2;ω3}, which are
expressed in the body-fixed {b̂}-frame, complete the attitude states of the spacecraft.

The model employed in this analysis assumes the sole gravitational presence of the two
primaries, i.e. the Earth and theMoon. This assumption has been already justified in previous
works of the authors (Colagrossi and Lavagna 2017a, b; Colombi 2019), where the perturba-
tion effect of the attitude motion on the orbital dynamics is assumed negligible for nowadays
and near-future spacecraft. The order of magnitude of the net perturbation force, which is
exerted on a spacecraft due to its finite extended dimension, with respect to its point-mass
simplification is proportional to the following relation:

‖ f perti ‖ ∼
(
l�SC
ri

)2

, where l�SC = √
max(Ii )/mB . (2)

The term l�SC represents the characteristic length of the spacecraft, associated with the ratio
between the largest among the moments of inertia of the spacecraft, Ii , and its mass, mB ;
while ri is the distance from the i-th primary body. For example, considering a spacecraft
with characteristic length equal to 100 meters, the perturbation magnitude would range from
O(10−9) (at perilune of an NRHO) toO(10−12) (at apolune of an NRHO). This perturbation
of the attitude dynamics on the orbital motion is many orders of magnitude lower with respect
to other perturbation sources in the Earth–Moon system, such as the gravitational presence of
the Sun (Bucci 2020). Thus, the orbital dynamics has been modelled via the classical CR3BP
equations, while the rotational dynamics are solely driven by the gravity gradient torques
acting on the spacecraft due to the two primaries.
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By defining r1 and r2 as the distances of the generic spacecraft from the first and the second
primary, respectively, the classical CR3BP dynamical equations are defined as follows:

fCR3BP =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = vx

ẏ = vy

ż = vz

v̇x = x + 2vy − (1 − μ)(x + μ)

r13
− μ(x − 1 + μ)

r23

v̇y = y − 2vx − (1 − μ)y

r13
− μy

r23

v̇z = − (1 − μ)z

r13
− μz

r23

. (3)

Quaternions, also known as Euler parameters, are commonly exploited in the field of
space applications for numerical simulation of the attitude dynamics because they avoid the
gimbal lock singularity, which is present in Euler angles representation. A quaternion is a
four-dimensional representation of the attitude, which results in algebraic expressions for the
elements of the rotation matrix. Quaternions are related to the eigenvalues and the eigenvec-
tors of the corresponding direction cosinematrix, physically describing the Euler axis and the
Euler angle of rotation of the body-fixed frame with respect to the inertial reference frame.
The attitude kinematics for the quaternion of the body-fixed frame is expressed through the
following differential equations, and it is a function of the quaternion elements and of the
angular velocity of the spacecraft expressed in {b̂}-frame:

f q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q̇1 = 1

2 (ω3q2 − ω2q3 + ω1q4)

q̇2 = 1
2 (−ω3q1 + ω1q3 + ω2q4)

q̇3 = 1
2 (ω2q1 − ω1q2 + ω3q4)

q̇4 = 1
2 (−ω1q1 − ω2q2 − ω3q3)

. (4)

The numerical integration of the quaternion kinematics equation allows to determine the
orientation profile of the spacecraft as a function of time t . During the numerical integration,
the quaternion constraint has to be always satisfied:

q1
2 + q2

2 + q3
2 + q4

2 = 1. (5)

The Euler’s equations of motion describe the rotational dynamics driven by the gravity
gradient torques of the two primaries acting on the spacecraft:

f ω =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω̇1 = I3 − I2
I1

(
3(1 − μ)

r15
g2g3 + 3μ

r25
h2h3 − ω2ω3

)

ω̇2 = I1 − I3
I2

(
3(1 − μ)

r15
g1g3 + 3μ

r25
h1h3 − ω1ω3

)

ω̇3 = I2 − I1
I3

(
3(1 − μ)

r15
g1g2 + 3μ

r25
h1h2 − ω1ω2

)
. (6)

In this formulation, the orientation of the spacecraft is represented by the terms gi and hi ,
which represent the direction cosines of the radial vectors, r1 and r2, respectively, going
from the first and the second primary to the spacecraft, expressed in the body-fixed frame.
Moreover, the inertia properties of the spacecraft directly influence the natural rotational
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dynamics through the inertia ratios K1 = I3−I2
I1

, K2 = I1−I3
I2

and K3 = I2−I1
I3

. The rotational
dynamics in (6) are normalised thanks to the characteristic quantities describing the CR3BP
in order to obtain the complete set of orbit-attitude dynamical equations expressed in the
same non-dimensional units (i.e. [ndim]). The propagation of the non-dimensional dynamical
system, using (3), (4), (6), allows to predict the absolute 6DOF motion of a spacecraft in
cislunar space.

Once the absolute 6DOF dynamics of the spacecraft is available, the relative orbit-attitude
dynamics with respect to a reference state can be obtained thanks to relative 6DOF kinematic
relations (Colagrossi and Lavagna 2018; Bucci et al. 2018). The relative position state can be
simply obtained by differentiating the absolute states, while the relative attitude quaternion
qrel can be obtained by applying the rule of successive rotation for quaternions (Markley and
Crassidis 2014):

qrel(t) =
(
îqref b̂(t)

)−1 � îq b̂(t), (7)

where îqref b̂(t) is the quaternion of the reference attitude state.
Finally, the relative angular velocity ωrel with respect to the reference periodic solution is

defined in the fixed-body {b̂}-frame as follows:

ωrel(t) = îωb̂(t) − [Crel] îωref
b̂(t), (8)

where îωref
b̂ is the reference angular velocity. The rotation matrix [Crel] is defined as the

direction cosine matrix associated with the quaternion qrel. It should be remarked that this
equation is valid for both the dimensional and non-dimensional definitions of the angular
velocity.

2.2 Libration point orbits

A periodic orbit-attitude solution in the coupled CR3BP is defined as the continuity between
the initial and the final conditions, in both orbital and attitude states, as seen by an observer
standing in the rotating synodic {r̂}-frame (Guzzetti and Howell 2016; Colagrossi and
Lavagna 2017b). A periodic orbit-attitude Libration Point Orbit (LPO) can be identified
by a set of twelve independent orbit-attitude states:

X0 = [
x; y; z; vx ; vy; vz; q1; q2; q3;ω1;ω2;ω3

]
, (9)

plus the orbital period T . Note that only three quaternion elements are necessary to identify
the orientation of the spacecraft, because the fourth is obtained directly by the quaternion
constraint relation in (5) (Guzzetti and Howell 2016). Once the initial condition of a periodic
solution is selected, the non-dimensional time t ∈ [0, T ] allows to identify any point along
that orbit.

These natural orbit-attitude behaviours could open the door to newconceptmission design.
Slowly diverging or marginally stable rotational behaviours may be exploited to define atti-
tude configurations for space infrastructure, such as crewed habitats in lunar proximity, or
micro spacecraft with low control capabilities.

Considering symmetric or quasi-symmetric spacecraft structures, their equivalent shape
can be characterised with the ratio between the transversal, It , and the axial, Ia, principal
moments of inertia: Ka = It/Ia. Hence, in these cases, the parameters determining the
attitude behaviour of a family of orbit-attitude solutions in the CR3BP are: the characteristic
dimensions of the system, the type of orbit, the initial orientation of the axial axis, the shape
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Fig. 2 Orbital motion of the
periodic orbit-attitude
Earth–Moon L1 Northern NRHO
family with vertical amplitude
Az ∈ [73 − 89] × 103 km and
period T ∈ [7.8 − 9.6] d.
Reference initial condition at
t = 0, corresponding to apolune,
with r(0) = [0.930, 0.000,
0.231][ndim] and v(0) =
[0.000, 0.103, 0.000][ndim]. The
Moon position is indicated with a
grey dot

of the spacecraft reflected by its inertia ratios, the axis of rotation and the number of rotations
of the spacecraft during one orbital period, n-spin. If the periodic solution shows an attitude
which is oscillating about the synodic {r̂}-frame, it is labelled as “librating attitude” solution
(i.e. n-spin = 0). Otherwise, the attitude behaviour is labelled as “spinning” solution when
the rotational behaviour shows finite rotations about a certain axis (i.e. n-spin ≥ 1).

For example, a set of orbit-attitude periodic solutions constituting a family of Earth–
Moon L1 northern NRHOs, with librating attitude behaviour about the synodic {r̂}-frame,
is reported in Figs. 2 and 3. The trajectories have been propagated for one orbital period
starting from the apolune at time t = 0. The orbit with the largest vertical amplitude, Az , has
been highlighted in black and it is used as a reference for comparison in the corresponding
behaviour of attitude evolution. These results refer to a spacecraft having the axis of symmetry
aligned to b̂1, and an equivalent cylinder-like shape, with inertia ratio Ka = It/Ia = 0.7.
This value of Ka is realistic for space structures with large solar panels. For example, the ISS
has an inertia ratio Ka ∼ 0.6 (Carter et al. 1997; NASA 2008), which makes its equivalent
inertia shape slightly flatter and more similar to a disc-like shape. A higher inertia ratio Ka

has been assumed because the proposed lunar gateway and other spacecraft typically have
more elongated cylinder-like shapes (Crusan et al. 2019).

The history of the quaternion of the body-fixed frame relative to the synodic {r̂}-frame,
r̂q b̂, in Fig. 3a, shows, through the quite constant value of its fourth quaternion component
qr4, the librating attitude behaviour associatedwith the presented family. The angular velocity
reported in Fig. 3b is evaluated with respect to the inertial reference frame; the component
along the ẑ synodic axis has an offset of 1 in non-dimensional units, because of the rotational
motion of the synodic frame with respect to the inertial one. Thus, a velocity component
îωb̂

z = 1 nd in inertial frame is equivalent to r̂ωb̂
z = 0 nd in synodic frame.

The corresponding attitude motion, followed by the spacecraft along a reference member
of the orbit-attitude NRHO family, can be visualised in Fig. 4. The axes of the body-fixed
frame have been drawn with small arrows for locations equally spaced in time along the
periodic solution.
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Fig. 3 Attitude evolution with
inertia ratio Ka = 0.7 of the
periodic orbit-attitude
Earth–Moon L1 Northern NRHO
family. Librating reference initial
condition at t = 0, corresponding

to apolune, with î qb̂(0) =
[−0.074, 0.128, 0.009, 0.988]
and îωb̂(0) = [−0.137,−0.091,
0.608][ndim]. Vertical dashed
lines indicate the perilune
crossing event for the reference
solution

(a)

(b)

These 6DOF periodic librating solutions have been found by employing a multiple-
shooting differential corrector algorithm, which has been developed to address coupled
orbit-attitude problems in the framework of the CR3BP (Guzzetti and Howell 2016; Cola-
grossi and Lavagna 2017b; Colombi 2019). The differential corrector enforces the continuity
at the patch points along the 6DOF trajectory and the periodicity after a period T (i.e. the ini-
tial state shall coincide with the final one). The initial guess for the periodic librating attitude
motion has, at t = 0, null angular velocity in the {r̂}-frame and the body-fixed {b̂}-frame
aligned with the synodic {r̂}-frame. When a first periodic solution is available, a pseudo
arc-length continuation algorithm can be used to extend the orbit-attitude family, generat-
ing other periodic solutions with constant spacecraft parameters (Doedel et al. 2007). The
differential corrector algorithm can also be used to continue the family in other phase space
directions by exploiting a single-parameter continuation method. For instance, the inertia
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Fig. 4 Spacecraft’s body frame
rotational motion along the
reference NRHO solution

ratios of the spacecraft can be varied, or initial spinning dynamics can be studied. The latter
will be discussed in Sect. 4.

The NRHOs are featured by a quasi-planar orbital path and close passages about the
secondary attractor, namely the Moon. NRHOs are known to exhibit nearly stable behaviour
favourable for orbital station-keeping (Howell and Breakwell 1984; Guzzetti et al. 2017).
They offer constant communication contact with Earth and high visibility time of lunar
South or North pole. In fact, they resemble some sort of high polar orbit of the Moon which
is synchronously aligned to the synodic {r̂}-frame. Moreover, they avoid lengthy eclipses of
the Sun by the Earth, maximising the possibility of solar energy generation. Finally, the costs
to reach theNRHO from theEarth are not prohibitive, both in propellant and transfer time, and
those orbits may offer an easy transfer link to and from the lunar surface. All these features,
analysed in thework ofWhitley andMartinez (Whitley andMartinez 2016),make theNRHOs
a very attractive choice as staging orbits for the future cislunar space station. However, the
closer passage to the Moon results in a significant rising of the angular acceleration acting on
the spacecraft. This is reflected with a sharp variation of the angular velocity, as can be seen in
Fig. 3b. Orbits with larger vertical amplitude have a closer perilune passage and, therefore, a
higher angular acceleration. This effect is a typical feature of periodic orbit-attitude solutions
along NRHOs (Colagrossi and Lavagna 2017b).

3 Orbit-attitude Floquet modes

TheLPOsare periodic solutions of the dynamical systemdescribing theorbit-attitudeCR3BP.
Peculiar natural dynamical structures exist around these periodic solutions. In the classical
CR3BP, trajectories belonging to the invariant manifolds have been widely explored in their
absolute point of view, such as for applications in low-energy transfer studies. In this inves-
tigation, invariant manifolds are employed as a primary tool to investigate the dynamics
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characterising the LPOs, as well as the relative orbit-attitude motion in their immediate
proximity.

According to the Floquet theory, the stability information and the local direction of the
invariant manifolds constituting the eigenstructure surrounding the neighbourhood of a ref-
erence periodic solution are embedded into the State Transition Matrix (STM) over a full
period T , also known as the monodromy matrix. It should be noticed that the monodromy
matrix Φ̃(T , 0) has to fully reflect the point of view of a rotating observer in the synodic
{r̂}-frame in order to catch the periodicity behaviour of the orbit-attitude LPOs, even though
the attitude state variables are expressedwith respect to the inertial {î}-frame (Guzzetti 2016).

In the most general case, the monodromy matrixM = Φ̃(T , 0) results as a full 12-by-12
matrix:

M =
[
MOrb MOrbAtt

MAttOrb MAtt

]
. (10)

Each block is a 6-by-6matrix. The blockMAttOrb represents the influence of the orbitalmotion
on the attitude dynamics depending by the gravity gradient torque. The cross-coupling block
MOrbAtt represents the influence of the attitude motion on the orbital dynamics. According
to the model simplification, not considering the variational effect on the gravitational pull
exerted by the primaries on the spacecraft due to its finite dimensions, this inertial cross-
coupling direction results inMOrbAtt = [0]6×6 and the monodromy matrix becomes a lower
triangular block matrix. Thus, the eigenvalues λ j ofM corresponds to the set of eigenvalues
belonging to the two matrices on the diagonal, MOrb and MAtt. In this investigation, they
are, respectively, denoted as orbital eigenvalues and attitude eigenvalues. It should be noticed
that, if the model includes the cross-coupling term between the attitude states and the orbital
dynamics, the eigenvalues would show a displacement in the complex plane with respect to
the eigenvalueswhich are obtained in the simplifiedmodel. This displacement is an alternative
index of influence representing the impact of the cross-coupling behaviour driving the two-
way coupled motion. If this displacement becomes not negligible, the coupling is reflected in
the eigenvector components. In this case, the classification of eigenvalues and eigenvectors in
separate orbital and attitude categories cannot be performed. This could happen in problems
where the characteristic dimensions of the spacecraft are comparable to the dimensions of
system constituted by the primaries, such as in asteroid missions.

For a periodic orbit-attitude solution, there is always a pair of trivial eigenvalues equal
to plus (or minus) one, for both orbital and attitude modes. They represent the periodicity
behaviour of the LPO in the orbital and the attitude states. The remaining two pairs, in both
orbital and attitude modes, may appear as real or complex eigenvalues/eigenvectors. They
feature the stability properties (e.g. stable, unstable and quasi-periodic behaviours) of the
orbit-attitude LPO and of the natural dynamical structure surrounding its vicinity.

A stability index ν can be defined, analogously to previous literature (Guzzetti and Howell
2016; Meng et al. 2014), to synthesise the stability information associated with each pair of
eigenvalues obtained from the monodromy matrix M:

νi = 1

2

(
‖λi‖ + 1

‖λi‖
)

. (11)

The dominant eigenvalue of the dynamics corresponds to λmax = max ‖λi‖. If all the
eigenvalues lay on the unit circle, each stability index results νi = 1, and the periodic
solution is marginally stable. On the contrary, if the dominant eigenvalue of the dynamics
λmax = max ‖λi‖ is higher than one, the periodic solution is unstable and at least one couple
of stable/unstable mode exists. An orbit-attitude LPO may result in marginally stable orbital
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and attitude motions (i.e. ν = 1). Alternatively, either the orbital or the attitude dynamics
may be marginally stable, otherwise neither of them would be.

Focusing the analysis on the attitude stability, only the attitude part of the monodromy
matrix, MAtt , is taken into account (n.b. the same can be done for the orbital part):

MAtt =
[
Mqq Mqω

Mωq Mωω

]
. (12)

Each sub-matrix Mi j is a 3-by-3 matrix. The terms Mqq andMqω are, respectively, the blocks
of themonodromymatrix representing the influence of quaternion and angular velocity on the
attitude quaternion periodicity. Similarly, the terms Mωq and Mωω represent the respective
influence of quaternion and angular velocity on the angular velocity periodicity. The attitude
modes are associated with the eigenstructure of MAtt, which is composed by 6 eigenvalues
λatti . Those with magnitude less than one are related to stable modes, while those with mag-
nitude greater than one correspond to unstable modes. Attitude eigenvalues with

∥∥λatti

∥∥ = 1
are paired to marginally stable modes. As a consequence, if

∥∥λatti

∥∥ ≤ 1 for any i , the periodic
attitude solution is marginally stable. On the contrary, if at least one

∥∥λAtti

∥∥ > 1, the periodic
solution is unstable. A dedicated attitude stability index, νatt , is defined analogously to the
classic stability index ν:

νatt = 1

2

(
‖λattmax‖ + 1

‖λattmax‖
)

. (13)

The larger the value of the stability index (i.e. νatt or ν) is the more the evolution of a small
perturbation of the nominal solution would likely result in a faster departure behaviours
from the reference LPO Perko (2001). Note that the separation between attitude and orbital
stability can be done only if the assumption of one-way inertial coupling holds, otherwise the
eigenvalues and eigenvectors cannot be separately identified for orbital and attitude motions.

Each orbital and attitude eigenmode e j obtained from the monodromy matrix M is a
12-dimensional vector which represents the “local” direction of the corresponding invariant
manifold surrounding the nominal reference solution.

e j = [
δx; δy; δz; δvx ; δvy; δvz; δq1; δq2; δq3; δω1; δω2; δω3

]
. (14)

The first six elements describe the direction of the Floquet mode in the orbital space, while
the last six elements represent the direction in the attitude space. It should be highlighted
that the six orbital modes include a significant component in both the orbital and the attitude
subspace due to the inertial cross-coupling determined by the gravity gradient torque. The
remaining six attitude modes are solely constituted by the attitude component. Again, the
existence of these purely attitude modes is directly linked to the adopted simplification of the
dynamical model, where attitude variation does not affect the trajectory of the spacecraft.

The “global” invariant manifolds can be approximated in the proximity of the nominal
reference solution via their “local” directions (Perko 2001). The propagation of the dynamics
starting from the “local” eigenstructure discover the approximated “global” surfaces of the
corresponding manifolds. Even if the space surface of each orbit-attitude manifolds is 12-
dimensional, it can be travelled only in a particular direction which are identified by the
corresponding mode. Therefore, the numerical method to identify the region belonging to
each manifold is based on the discretisation of their eigenstructure and it can be summarised
via the following steps:

1. Discretisation of the nominal orbit-attitude periodic solution in n points;
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2. Evaluation of the “local” direction of the desired orbital or attitude mode (i.e. stable,
unstable, periodic, centre) at each discretised point;

3. Perturbation of the nominal solution in the 12-dimensional space along the “local” direc-
tion of the mode;

4. Propagation in time (forward or backward) of the natural dynamics from the perturbed
initial condition to obtain the numerical approximation of the trajectory constituting the
invariant manifold.

It should be highlighted that the presented algorithm can be applied for both orbital and
attitude modes. Only the perturbation magnitude has to be tuned in order to obtain a repre-
sentative approximation of the “local” direction of the manifold. Moreover, this algorithm
can also be implemented in problems where the orbit and attitude behaviours are fully cou-
pled in the dynamics, e.g. asteroids mission or large area-to-mass ratio sailcraft (Guzzetti
et al. 2019), where the monodromy matrix M is not simplified as lower triangular.

The orbital modes (labelled as “orb-”) can be related to the invariant manifolds discussed
in the classical CR3BP literature, even if the current investigation is extended to the coupled
rotational dynamics as well. These orbital modes have been applied for 6DOF rendezvous
to non-Keplerian orbit in a previous work of the authors (Colombi et al. 2021). The natural
attitude motion is synchronised with the periodic solution, if the orbit-attitude dynamics is
evolving on orbital manifolds close to the reference trajectory. The distance threshold to keep
the synchronisation has been found in the order of few hundreds of kilometres considering
large-amplitude halo orbits in the Earth–Moon system.

The attitude modes (labelled as “att-”) are the focus of the analyses in this investigation, to
highlight representative rotational behaviours which develop in the surrounding of periodic
orbit-attitude LPOs, and to extrapolate useful information for the attitude stabilisation design.

3.1 Attitudemodes of cislunar NRHO

Analyses on the natural attitude modes are relevant to investigate the stability of the periodic
orbit-attitude solutions. Moreover, their results allow to better characterise the 6DOF relative
motion, with respect to a reference periodic trajectory, highlighting the attitude contribution
to the coupled natural dynamics.

The analysis on attitude modes can be performed on any family of periodic orbit-attitude
solutions in the orbit-attitude CR3BP. However, because of its practical relevance, the inves-
tigation starts from the linear stability analysis of the attitude dynamics for a reference family
of periodic orbit-attitude NRHOs, which is reported in Fig. 5.

The attitude stability index, νatt , rises as the member of the NRHO family increases its ver-
tical amplitude, Az . Therefore, the periodic librating attitude motion becomes more sensitive
to instability perturbations, as the orbit of the NRHO family has a closer perilune passage.
Moreover, NRHOs are likely to have two pairs of stable/unstable attitude modes with com-
parable magnitude in their eigenvalues. In Fig. 5b is also observed an eigenvalue bifurcation
at Az 
80×103 km, which leads to a pair of complementary complex stable/unstable eigen-
values. These are further indicators of high sensitivity to unstable behaviours. The unstable
manifold surface is constituted by the combination of the surfaces generated by the two
unstable modes.

A representative member of the family, with Az 
 78.8 × 103 km and only two dis-
tinct pairs of real stable/unstable attitude eigenvalues, is selected to present some theoretical
generalisation. Consider the first of the two unstable attitude modes, labelled as att-U1, of
the reference solution of this NRHO family. Its corresponding eigenvalue has the highest
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Fig. 5 Stability analysis of the
orbit-attitude Earth–Moon L1
Northern NRHO family as a
function of the vertical amplitude
Az . The points highlighted with a
different colour and a vertical line
refer to the reference solution
discussed in Sect. 3.1

(a)

(b)

absolute value. The mode approximations are generated via a perturbation with an equiva-
lent magnitude in the order of 0.1 degree along the unstable attitude mode, and their natural
orbit-attitude dynamics has been propagated over 2-orbital periods. The small value of the
perturbation has been selected due to the high stability index associated with the periodic
solution, expecting high rate of divergence. Its rotational dynamics is reported in Fig. 6. It is
representing the evolution of the attitude quaternion, which is expressed with respect to the
synodic {r̂}-frame, and of the absolute angular velocity.

The solid black line in Fig. 6a represents the attitude behaviour of the reference periodic
solution in the 3-dimensional quaternion space. Each dashed line in Fig. 6a corresponds to
the attitude evolution of the unstable mode att-U1 starting from a different position along
the periodic solution. The dashed lines in Fig. 6b correspond to the absolute angular velocity
of the mode. During the first period of propagation, they are very close to the reference
periodic solution. These dynamics allow to visualise, via discretisation, the eigen-surface
of the corresponding manifold, which is, respectively, projected in the quaternion and in
the angular velocity subspaces. Different paths are generated because the dynamics starts
from different initial conditions along the periodic solution and, as a consequence, the local
direction of the manifold characterised by the attitude mode is changing.
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Fig. 6 Absolute attitude
dynamics of unstable attitude
manifolds att-U1 propagated over
2-orbital periods. Earth–Moon
L1 Northern NRHO with
Az 
 78.8 × 103 km (
 0.205
[ndim]). Initial perturbation
equivalent to 
 0.1 deg. Vertical
dashed lines indicate the perilune
crossing event for the reference
solution

(a)

(b)

It should be highlighted that the unstable attitude motions quickly diverge from the peri-
odic motion even if the attitude perturbations introduced are very small. The angular velocity
presents an increasing divergence after each perilune passage, which can be easily distin-
guished at the second perilune transit in Fig. 6b. As a consequence, all the unstable attitude
manifolds begin to have a significant divergence at the perilune zone of the orbit, which is
characterised by a distance of ∼ 103 km from the centre of the Moon, remarking the high
dynamical sensitivity of this region.

The same considerations can be extended to the second unstable attitudemanifold, labelled
as att-U2, associated with the reference NRHO, for which the attitude dynamics are shown
in Fig. 7.

As is apparent from the difference in the scale of the plots in Figs. 6 and 7, the attitude
mode att-U2 shows slowly diverging behaviour with respect to the attitude mode att-U1.
This behaviour is expected because the module of the eigenvalue and, as a consequence,
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Fig. 7 Absolute attitude
dynamics of unstable attitude
manifolds att-U2 propagated over
2-orbital periods. Earth–Moon
L1 Northern NRHO with
Az 
 78.8 × 103 km (
 0.205
[ndim]). Initial perturbation
equivalent to 
 0.1 deg. Vertical
dashed lines indicate the perilune
crossing event for the reference
solution

(a)

(b)

the stability index associated with the attitude mode att-U2, are lower with respect to those
associated with the attitude mode att-U1. Moreover, Fig. 7a allows to visualise the toroidal
surface structure of the attitude manifold projected in the 3-dimensional quaternion space in
proximity of the reference periodic solution.

The perilune of the NRHO has been identified as a catalyst of the unstable behaviour of the
attitude modes. Therefore, the spacecraft has to be oriented minimising the gravity gradient
perturbing torque to keep the natural periodic motion. Otherwise, the large gravity gradient
at perilune pulls away the rotational motion from the periodic equilibrium, by exciting the
unstable attitude modes. This suggests that some sort of stabilisation (passive or active) shall
be provided, especially in the perilune region of the NRHO. On the contrary, any natural
periodic rotational motion would eventually diverge. Moreover, the unstable attitude mode
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Fig. 8 Orbital motion of the
periodic orbit-attitude
Earth–Moon L1 halo family with
vertical amplitude
Az ∈ [58 − 71] × 103 km and
period T ∈ [10.3 − 11.8] d.
Reference initial condition at
t = 0, corresponding to apolune,
with r(0) = [0.861, 0.000,
0.185][ndim] and v(0) =
[0.000, 0.252, 0.000][ndim]. The
Moon position is indicated with a
grey dot

identifies the unstable axes of rotation of a periodic librating/spinning solution along the
orbital motion.

A combination of active control torques with stable and unstable natural attitude modes
could be exploited to perform low-cost large slew manoeuvres. However, considering the
Earth–Moon system, this kind of manoeuvres cannot be performed in a short time, since the
natural dynamics of the modes is directly associated with the orbital period of the reference
orbit (e.g. about 8 days for the reference case).

3.2 Attitudemodes of cislunar halo

A family of orbit-attitude halo orbits is under investigation in this section, allowing further
theoretical generalisation. The spacecraft is assumed with an equivalent cylinder-like shape
with inertia ratio Ka = It/Ia = 0.7, and its axis of symmetry is aligned to b̂3. Note that this
is different from the NRHO solution, where the symmetry axis was b̂1. This configuration
has been discovered to be a periodic orbit-attitude solution with a less unstable behaviour for
the halo family.

The initial condition for the correction algorithm assumes a spacecraftmoving along a halo
orbit with Az = 58×103 km and having the attitude aligned with the synodic frame, similarly
to the discussion about the NRHO case. Then, the periodic solution has been continued with
the pseudo arc-length continuation algorithm. The resulting orbit-attitude family, shown in
Figs. 8 and 9, presents a librating rotational behaviour of the spacecraft about the synodic
{r̂}-frame for relatively large-amplitude halo orbits with Az ranging from 58×103 km to
71×103 km.

Relevant comments can be stated by examining the linear stability index associated with
both orbital and attitude dynamics of the periodic solution of this halo family. They have
been represented, respectively, as blue and red dots, as a function of the vertical amplitude
Az in Fig. 10. The stability index associated with the orbital motion νorb decreases as the
orbit increases in amplitude, as expected from the literature, implying that larger halo orbits
become more stable (Howell 1984). By contrary, the attitude stability index νatt tends to
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Fig. 9 Attitude evolution with
inertia ratio Ka = 0.7 of the
periodic orbit-attitude
Earth–Moon L1 halo family.
Librating reference initial
condition at t = 0, corresponding

to apolune, with î qb̂(0) =
[0.016, 0.041, 0.366, 0.929] and
îωb̂(0) = [−0.057, 0.053,
0.986][ndim]. Vertical dashed
lines indicate the perilune
crossing event for the reference
solution

(a)

(b)

increase for halo orbits with larger vertical amplitude. This is related to the closer passage of
the orbital path of the halo to the secondary attractor, namely theMoon, which induces higher
angular rates in the periodic solution and higher sensitivities to perturbation, especially in
the perilune zone. However, the attitude stability index ranges from 2 to 6 over a quite large
span of halos along the investigated Az values. Note that νatt ∼ 30 for the NRHOs discussed
in Sect. 3.1. Therefore, a perturbation of the periodic attitude solution is expected to present
relatively slow diverging exponential behaviour with respect to the nominal periodic solution
for the whole family.

The investigated family of orbit-attitude halo orbits presents the same modal structure for
both orbital and attitude dynamics over the whole set of continued periodic solutions. They
are constituted by one pair of stable/unstable modes, one pair of periodic and one pair of
centre quasi-periodic ones. The family has similar eigenstructure characteristics for thewhole
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Fig. 10 Orbital and attitude linear
stability index of the Earth–Moon
L1 Northern halo family as a
function of the vertical amplitude
Az . The points highlighted with a
different colour and a vertical line
refer to the reference solution
discussed in Sect. 3.2

Fig. 11 Orbit-attitude
eigenvalues in the complex plane
of an Earth–Moon L1 halo orbit
with Az 
 68.8 × 103 km
(
 0.178 [ndim])

set of orbit-attitude halo orbits, therefore, a representative member is selected to show the
general behaviour of the attitude modes characterising also the other members of its family.
The eigenvalues associated with the orbital and attitude modes of the reference Earth–Moon
L1 halo solution, with Az 
68.8 ×103 km, are shown in Fig. 11.

The first two attitude modes analysed correspond to the pair of unstable and stable
behaviours associated with the attitude manifolds. Figure 12 shows the evolution of the
rotational dynamics associated with the unstable attitude mode, labelled as att-U, of the
selected representative halo orbit. The manifold has been propagated over 2-orbital periods
starting from a perturbation offset along the “local” manifold direction, i.e. the unstable
attitude mode, of an equivalent magnitude equal to about 1 degree.

The attitude motion is presented in the 3-dimensional space {q1, q2, q3} of the quaternion
r̂q b̂. The periodic solution is highlighted as a black solid line, while the unstable attitude
manifold are displayed as red dashed lines. The absolute angular rates of the mode are
unfolded along the time of propagation. It should be noticed that even a very small attitude
perturbation can lead to chaotic behaviours within two orbital periods. In particular, the
divergence from the reference solution starts to be significant during a perilune passage due
to the higher gravitational sensitivity. This behaviour can be easily seen in Fig. 12b starting
from the second perilune passage (i.e. t 
 4 in non-dimensional time units).

Specular results are obtained from the analysis of the stable attitude mode, labelled as att-
S. Figure 13 shows the rotational dynamics evolution of the stable attitude manifold which
has been obtained from a backward propagation over 2-orbital periods.
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Fig. 12 Absolute attitude
dynamics of unstable attitude
manifolds att-U propagated over
2-orbital periods. Earth–Moon
L1 Northern halo with
Az 
 68.8 × 103 km (
 0.178
[ndim]). Initial perturbation
equivalent to 
 1 deg. Vertical
dashed lines indicate the perilune
crossing event for the reference
solution

(a)

(b)

In this case the perilune region corresponds to the zone where the attitude of the stable
attitude manifold closely reaches the rotational synchronisation with respect to its reference
periodic solution.

The periodic attitude modes, labelled as att-P1 and att-P2, are associated with the periodic
rotational behaviour of the reference solution. The attitude dynamics of the attitude mode att-
P1 associated with the reference halo orbit is shown in Fig. 14. Again, the initial perturbation
along the manifold direction of about 1 degree has been propagated over 2-orbital periods.
The rotational dynamics of the attitudemanifold is presented in the 3-dimensional quaternion
space and in the relative angular velocity with respect to the reference solution.Moreover, the
relative distance has been reported as a function of the propagation time. Here, the perilune
occurrence has been highlighted with a dashed vertical line, while the apolune has been
marked with a dashed-dot vertical line.
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Fig. 13 Absolute attitude
dynamics of stable attitude
manifolds att-S propagated
backwards for 2-orbital periods.
Earth–Moon L1 Northern halo
with Az 
 68.8 × 103 km
(
 0.178 [ndim]). Initial
perturbation equivalent to 
 1
deg. Vertical dashed lines
indicate the perilune crossing
event for the reference solution.
Note that stable modes approach
the reference trajectories

(a) Quaternion 3D space. Stable attitude mode in blue and reference
periodic attitude in black.
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(b) Angular velocity

The projection of the manifold att-P1 in the 3-dimensional quaternion space in Fig. 14a
shows that this mode approximates a slightly different rotational periodic behaviour with
respect to the referenceperiodic solution.The attitude evolution is shifted in the 3-dimensional
quaternion space with respect to the original periodic solution. Therefore, the behaviour dis-
covered by this attitude mode represents a similar periodic solution along the same reference
halo orbit. However, as can be seen in Fig. 14b, instabilities quickly appear in the propagated
dynamics of the attitude due to the high sensitivity of the nonlinear rotational dynamics to
numerical errors. Indeed, a further step could include a numerical correction to obtain an
accurate periodic orbit-attitude solution and evaluate the angular deviation which identifies
similar periodic attitude behaviours, giving an additional index to parametrise the orbit fam-
ily. Moreover, it should be highlighted that the numerical approximation of the eigenmode
att-P1 generates an infinitesimal perturbation in the orbital component. This perturbation
is approximately directed along the reference orbit, even if its relative displacement is in
practice negligible. The orbital perturbation distance in Fig. 14b, as well as in Figs. 15b, 16b
and 17b, is computed as the norm of the relative vector with respect to the periodic motion.
The distance is expressed in non-dimensional units, which can be converted considering that
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Fig. 14 Attitude dynamics of
periodic attitude manifolds att-P1
propagated over 2-orbital periods.
Earth–Moon L1 Northern halo
with Az 
 68.8 × 103 km
(
 0.178 [ndim]). Initial
perturbation equivalent to 
 1
deg. Vertical dashed lines
indicate the perilune crossing
event for the reference solution,
dashed-dot lines represent the
apolune crossing event

(a)Quaternion 3D space. Periodic attitude mode in violet and reference periodic
attitude in black.
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(b) Relative angular velocity and distance

a distance of 1 × 10−10 ndim corresponds to ∼ 4 cm. Indeed, a similar orbital behaviour
in the relative orbital motion is obtained by the propagation of the orbital mode, labelled as
orb-P1. Its dynamical evolution is reported in Fig. 15. The nominal reference solution has
been perturbed along the direction of the periodic orbital mode with an equivalent magnitude
equal to 5 km.

This mode identifies a temporal shift along the same reference periodic orbit-attitude
solution. Differently from the attitude mode att-P1, the orbital displacement of the mode
orb-P1 constitutes the main perturbation component. Indeed, relative attitude component of
orb-P1 is negligible. It should be highlighted that the mode orb-P1 follows the same attitude
evolution of the reference solution, as can be observed in Fig. 15a. Moreover, Fig. 15b shows
that the rotational motion is synchronised according to the temporal shift along the reference
orbit.
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Fig. 15 Attitude dynamics of
periodic orbital manifolds orb-P1
propagated over 2-orbital periods.
Earth–Moon L1 Northern halo
with Az 
 68.8 × 103 km
(
 0.178 [ndim]). Initial
perturbation equivalent to 5 km.
Vertical dashed lines indicate the
perilune crossing event for the
reference solution, dashed-dot
lines represent the apolune
crossing event
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(a) Quaternion 3D space. Periodic attitude mode in violet and reference periodic

attitude; note that they are coincident for the orbital manifold.

(b) Relative angular velocity and distance

Figure 16 shows the attitude dynamics of the second periodic attitude mode, labelled as
att-P2, which has been propagated over 2-orbital periods starting from an initial perturbation
equivalent to about 1 degree along the attitude mode.

This mode approximates the direction in the attitude subspace where spinning solution
is likely to be present. Indeed, the obtained relative attitude dynamics with respect to the
reference solution shows a slowly spinning behaviour pivoting to the axis b̂3 of the spacecraft,
as evident in Fig. 16b. It should be noticed that the numerical errors immediately excite
the unstable behaviour of the orbital component, increasing the difficulties to accurately
approximate this modal attitude behaviour.

The centre attitude modes, labelled as att-C1 and att-C2, are associated with oscillating
attitude behaviours about the reference periodic attitude solution. Note that, these oscillating
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Fig. 16 Attitude dynamics of
periodic attitude manifolds att-P2
propagated over 2-orbital periods.
Earth–Moon L1 Northern halo
with Az 
 68.8 × 103 km
(
 0.178 [ndim]). Initial
perturbation equivalent to 
 1
deg. Vertical dashed lines
indicate the perilune crossing
event for the reference solution,
dashed-dot lines represent the
apolune crossing event

(a) Quaternion 3D space. Periodic attitude mode in violet and reference periodic
attitude in black.
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(b) Relative angular velocity and distance

behaviours exist while the spacecraft is moving on the same periodic orbit of the reference
solution.

Figure 17 shows the attitude manifold att-C1 projected in the 3-dimensional quaternion
space and in the relative angular velocity as a function of the time of propagation over 2-
orbital periods. The initial perturbation along the manifold direction is about 1 degree. From
the relative distance plot in Fig. 17b, it should be remarked that the attitude modes associated
with a specific reference solution do not have, in practice, orbital component. This is due to
the assumption which considers the dimensions of the spacecraft as negligible with respect
to those of the Earth–Moon system. Note that the infinitesimal magnitude of the orbital
component in the attitude mode is due to the numerical approximation of the mode and to
the numerical errors in the propagation.
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Fig. 17 Attitude dynamics of
centre attitude manifolds att-C1
propagated over 2-orbital periods.
Earth–Moon L1 Northern halo
with Az 
 68.8 × 103 km
(
 0.178 [ndim]). Initial
perturbation equivalent to 
 1
deg. Vertical dashed lines
indicate the perilune crossing
event for the reference solution,
dashed-dot lines represent the
apolune crossing event

(a) Quaternion 3D space. Centre attitude mode in light blue and
reference periodic attitude in black.
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(b) Relative angular velocity and distance

4 Attitude stabilisation

Considering the perilune passage for elongated halo orbits and NRHOs, the gravity gradient
of the Moon is source of attitude instability. As outlined in the previous section, an attitude
stabilisation strategy is desired to be actuated on-board, to avoid the progressive loss of
periodicity of natural orbit-attitude motion. In particular, this is relevant for extended space
structures in the lunar vicinity, whose attitude dynamics should be controlled and stabilised.
In general, the capability to regulate the stability performances of a natural periodic motion
is a positive asset to enlarge the design space. For instance, there might be the need to reduce
the control budgets to keep a certain attitude state, or to manoeuvre the spacecraft exploiting
the natural dynamics along a non-gyroscopically rigid axis (Colagrossi and Lavagna 2017a).
The constraint that should be enforced while designing the attitude control system imposes
a strong limitation in the consumption of non-recoverable resources while controlling the
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dynamics, such as propellants. In fact, the cislunar space station will be operative for a long
time, with limited supplies and rare refuelling opportunities. For these reasons, this research
work focuses its attention on an attitude control system based on angular momentum man-
agement with no propellant consumption. Thus, single-spin or dual-spin attitude stabilisation
techniques are considered.

Spin stabilisation techniques are based on the gyroscopic effect of the angular momentum
storedwithin the bodywithmassmB . In single-spin stabilisationmethod, thewhole spacecraft
is spinning and the rotating mass of the spacecraft acts as attitude stabilising system. While
dual-spin stabilisation methods are based on spinning wheels (i.e. rotors) that are able to
store a large amount of angular momentum needed to stabilise the system. Nevertheless,
they can have a different rotation speed with respect to the main body and, thus, there is one
additional degree of freedom that can be exploited while designing the stabilisation strategy.
Furthermore, momentum wheels attitude stabilisation methods can also be extended and
modified to consider variations in spinning rate or direction, allowing attitude manoeuvres
and enhanced control capabilities.

The stored angular momentum, which is eventually due to a spinning spacecraft or the
presence ofmomentumwheels, affects the dynamic of the system. Indeed, the internal angular
momentum is:

h = I îωb̂ + hw, (15)

where I is the inertia tensor of the spacecraft, which does not take into account the inertia of
themomentumwheels, and hw is the angularmomentum of thewheels expressed in reference
body-fixed {b̂}-frame. Single-spin techniques increase the internal angular momentum acting
on the first term on the right side of (15), being the whole spacecraft spinning with angular

velocity îωb̂, while dual-spin techniques have an impact on the second term, which is solely
related to internal rotors.

Assuming three different momentum storage devices, aligned with the principal axes of
the spacecraft, the angular momentum of the wheels is:

hw = [I1wω1w , I2wω2w , I3wω3w ], (16)

where I1w , I2w , I3w are the moments of inertia of the rotors, respectively, aligned with b̂1,
b̂2 and b̂3; ω1w , ω2w and ω3w are the relative angular velocities of three momentum wheels
with respect to the body frame.

Therefore, Euler’s equations of rotational motion have to include the terms due to the
presence of the rotating momentum wheels that can be evaluated as described in classic
literature about rigid body dynamics (Markley and Crassidis 2014):

η = îωb̂ × hw =
⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦

⎡
⎣I1wω1w

I2wω2w

I3wω3w

⎤
⎦ . (17)

The three components, η1, η2 and η3, of the vector η are then, respectively, divided by the
moments of inertia of the body with mass mB (i.e. I1, I2, I3). The resulting terms η1/I1,
η2/I2 and η3/I3 are successively subtracted from the right-hand side of the angular velocity
dynamics in (6). The momentum wheels are assumed to be operated with constant spinning
rate and axis and, thus, no additional term, such as derivative of the angular momentum of
the rotors ḣw has to be included in the present model. Moreover, the additional equations of
motion for the momentum wheels are trivial, being:

ω̇iw = 0 ←→ ωiw = const, with i = 1, 2, 3. (18)

123



34 Page 26 of 33 F. Colombi et al.

Single-spin attitude stabilisation can be analysed exploiting the same model formulation:
momentum wheels can be forced to have zero angular velocity or zero inertia (e.g. ωiw = 0
or Iiw = 0 with i = 1, 2, 3). It must be noted that the differential correction scheme, briefly
introduced in Sect. 2, should be slightly modified. In fact, the system now contains the terms
due to the presence of the momentum wheels, which have to be included into the numerical
corrector dynamical equations. However, the periodicity constraints are not affected by the
inclusion of the spinning rotors, since the motion of the momentum wheels is not forced
to be periodic along an orbital period. The detailed mathematical formulation of the orbit-
attitude differential correction algorithms is thoroughly described in (Guzzetti and Howell
2016; Colagrossi and Lavagna 2017b).

4.1 Single-spin attitude stabilisation

The single-spin attitude stabilisation is a very simple and effective technique to increase the
stability of the rotational motion. The general characteristics of single-spin periodic dynam-
ics are introduced in this section, analysing the results with the attitude stability methods
discussed in (3).

Periodic orbit-attitudemotion in cislunar environment has to satisfy periodicity constraints
in both orbital and attitude variables and, moreover, the attitude evolution should be compat-
ible and periodic with the gravity gradient torques due to the presence of the primaries. In
fact, the effects of the gravitational attraction on the rotational motion strongly characterises
the periodic dynamics. This is true in particular for non-Keplerian orbits with a low perilune
altitude, such as NRHOs or elongated halo orbits. During the low perilune passage, the atti-
tude dynamics experiences a large gravity gradient torque, resulting in a relevant angular
acceleration on the extended body. As discussed in the previous section, this is a source of
instability for the attitude dynamics. For this reason, the reference Earth–Moon L1 halo orbit,
whose natural dynamics was analysed in Sect. 3.2, is used as a reference orbit to analyse
the features of single-spin and dual-spin attitude stabilisation. The analysis can be repeated
with attitude stabilised solutions on NRHOs. The effects and results of spinning stabilisation
methods on this family of orbit are analogous to the ones discussed in this paper. However,
they are not presented here since they would not provide further insight.

Considering, for example, the attitude stability index for different single-spin attitude
solutions reported in Fig. 18, the stability improvement due to the spinning stabilisation
method is clearly evident. Indeed, the stability index, which was equal to ∼ 3.6 for the
librating solution, highlighted in Fig. 10 and here associated with n-spin= 0, approaches the
value 1 for all the spinning dynamics, with n-spin≥ 1. The n-spin value indicates the number
of rotations the spacecraft completes in one orbital period. This result confirms that the
single-spin dynamics improves the stability of the attitude motion in the multi-body cislunar
environment. Small differences in the value of νatt for the different spinning solutions are not
influent for practical stability purposes.

Three periodic solutions for single-spin dynamics on Earth–Moon L1 halo orbit are shown
in Fig. 19. They are initialised as in the reference librating solution and the inertia parameter of
the body is Ka = 0.7. The only difference is the spinning rate around b̂3 that, in the first case
in Fig. 19a, allows one overall rotation along one orbit, while in the other two simulations in
Fig. 19c and e determines, respectively, two and three overall rotations in one orbital period.
This peculiarity is also evident from the Euler angles evolution in Fig. 19b, d and f. Note
that Euler angles are used here, in place of quaternions, to have a more direct visualisation
of the spinning evolution of the body frame with respect to the synodic {r̂}-frame. The Euler
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Fig. 18 Stability index for
single-spin attitude stabilisation
solutions. Earth–Moon L1
Northern halo orbit with
Az 
 68.8 × 103 km (
 0.178
[ndim])

angles, ϕrx , θry and ψrz are formalised according to the Tait–Bryan angles definition, with
rotation sequence “x–y–z” (Markley and Crassidis 2014).

The angular accelerations due to the gravity gradient of the Moon are evident also in the
spinning periodic solutions, looking at the variation of the angular velocity in correspondence
with the perilune passages. However, this effect is relatively weaker, if compared to the global
magnitude of the angular velocity, as can be observed in Fig. 19a, c and e. Furthermore, the
larger angular momentum makes the spinning body more stable, as also confirmed by the
stability index analysis in Fig. 18, where the spinning solutions are associated with a lower
stability index.

4.2 Dual-spin attitude stabilisation

The operational constraints imposed by the single-spinning attitude stabilisationmethods can
be easily overcome with a separate angular momentum storage device, which can be spun at
a different angular rate with respect to the main body. Thus, there are additional degrees of
freedom that can be exploited to stabilise the attitude dynamics without imposing constraints
on the overall attitude of the spacecraft. In this researchwork, the spinningmomentumwheels
mounted on spacecraft are used at a constant spinning rate. The increased angular momentum
of the whole space system is the classical foundation for the dual-spin attitude stabilisation
technique.

The stability index analysis, discussed for single-spin solutions, is also possible for dual-
spin attitude stabilisation. In fact, similarly to single-spin dynamics, the stability of the
attitude motion is favourably increased by a larger internal angular momentum, due to the
presence of a faster wheel. However, dual-spin dynamics allows a progressive variation of
νatt . In the proposed examples, a single wheel aligned with b̂3 is considered, allowing a direct
comparison between the single-spin and the dual-spin solutions with spinning direction along
the same body axis. The rotating inertia ratio of the wheel, with respect to the body moment
of inertia, is I3w/I3 = 1/100.

Figure 20 reports the stability index for different dual-spin solutions on the Earth–Moon
L1 halo orbit. The dual-spin range is ω3w ∈ [−250, 300] ndim, selected only for example
purposes. An increase in themagnitude of the angular rate of thewheel determines an increase
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(a) (b)

(c)

(e) (f)

(d)

Fig. 19 Periodic single-spin attitude dynamics on Earth–Moon L1 Northern halo orbit with Az 
 68.8× 103

km (
 0.178 [ndim])

in the stability of the periodic motion, confirmed by the decreasing value of the attitude
stability index. Note that, in Fig. 20, the higher attitude stability index value corresponds
to ω3w 
 50 ndim. This result is in line with classical dual-spin attitude stability analyses,
where the stability of attitude dynamics is minimum for ω3w = 0 (Markley and Crassidis

123



Floquet modes and stability analysis of periodic... Page 29 of 33 34

Fig. 20 Stability index for
dual-spin attitude stabilisation
(ω3w ∈ [−250, 300] ndim)
solutions. Earth–Moon L1
Northern halo orbit with
Az 
 68.8 × 103 km (
 0.178
[ndim])

2014). The attitude stability index with slow spinning wheel is comparable to the one without
any attitude stabilisation technique.

The periodic solutions shown in Fig. 21 refer to three distinct angular rates of the spinning
momentum wheel. They have been initialised on the reference Earth–Moon L1 halo orbit,
starting from the reference librating attitude solution and considering a bodywith inertia ratio
Ka = 0.7. The three proposed periodic solutions differ for the spinning rate of themomentum
wheel. In the first case (Fig. 21a), the wheel is slowly spinning with ω3w = 100 ndim and
the stabilisation effect is not so evident, except for the additional rotational motion around
b̂2 due to the gyroscopic coupling. The dual-spin behaviour starts to be more evident with a
larger angular velocity of the momentumwheel in Fig. 21c. In this case, the increased angular
momentummakes the system stiffer and the gyroscopic coupling frequency is high, with fast
oscillations around the rotation axis of the body. The effect due to the large gravity gradient
of the Moon is mitigated and the attitude is stable in its pulsating evolution. However, a
great improvement in attitude stabilisation is achieved by further increasing the spin rate of
the momentum wheel. In Fig. 21e, the momentum wheel is spinning at a fast rate, ω3w =
1000 ndim, and the attitude dynamics is greatly stabilised with limited angular acceleration
at the perilune. For this solution, the attitude stability index is νatt 
 1.1. With dual-spin
attitude stabilisation, it is therefore possible to stabilise the attitude, limiting the effect of
the gravity gradient torque, with the body that is no more rotating in the synodic reference
frame. In fact, comparing Figs. 21b, d, f and 19b, d, f, a spinning momentum wheel allows
to increase the stability of the attitude dynamics, while maintaining the cislunar station just
librating around an equilibrium condition. Thus, no constraints are imposed on the body
frame orientation. Moreover, the proposed stabilisation is feasible with current technological
capabilities since ω3w = 1000 ndim corresponds in dimensional units to ω3w = 0.003 rad/s.

5 Conclusion

The paper discussed a novel perspective on the dynamical phase space structure constituting
the orbit-attitude motion of a spacecraft in proximity of a non-Keplerian cislunar orbit.
Attitude manifolds were presented and related to the coupled orbit-attitude dynamics in the
circular restricted three-body problem (CR3BP), according to Floquet theory. The proposed
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(a) (b)

(c) (d)

(e) (f)

Fig. 21 Periodic dual-spin attitude dynamics on Earth–Moon L1 Northern halo orbit with Az 
 68.8 × 103

km (
 0.178 [ndim])

methodology was applied to orbit-attitude families of cislunar orbits to characterise their
attitude stability and the natural structure of their dynamics. Particular attention has been
dedicated to halo orbits and near-rectilinear halo orbit (NRHOs) of the Earth–Moon system,
in order to address favourable dynamics and challenging problems that would affect the
design of the future cislunar space gateway.
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The investigation on natural orbit-attitude dynamics in cislunar space gave insights on
the motions that are sustainable and exploitable in the lunar vicinity. In fact, the design of
new missions or proximity operations may beneficially exploit the features of the natural
motion to accomplish 6DOF station-keeping or slewing manoeuvres. The perilune region is
characterised by fast and sensitive orbit-attitude dynamics due to the high gravity gradient
torque of the Moon. This generates large instabilities characterising the natural librating
attitude motion discovered for the periodic orbit-attitude families in the Earth–Moon system.
Any diverging behaviour, which could start anywhere along the orbit, significantly shows
its unstable departure from the reference periodic solution at the perilune passage due to the
gravitational gradient of theMoon. This suggest the implementation of a control action during
or just before the perilune passage in order to preserve the reference periodic orbit-attitude
behaviour.

In these regards, the orbit-attitude spin-stabilised solutions presented in this paper laid a
foundation for attitude stabilisation and control of modular and large space structures in the
lunar vicinity. In fact, the attitude stabilisation methods help the implementation of the future
cislunar gateway, broadening the space of periodic orbit-attitude solutions suitable to host an
extended spacecraft with a very simple control strategy.

Further studies are needed to extend the range of the presented analyses and results. The
investigation of an active control system with variable internal angular momentum is of
interest, considering that the main driver is always the minimisation of maintenance and
station-keeping costs. In these regards, the attitude control technique should be as simple and
efficient as possible; the proposed spin-stabilised solutions showed a first positive result in
this direction.
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