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Abstract
The interest in the problem of small asteroids observed shortly before a deep close approach
or an impact with the Earth has grown a lot in recent years. Since the observational dataset of
such objects is very limited, they deserve dedicated orbit determination and hazard assessment
methods. The currently available systems are based on the systematic ranging, a technique
providing a two-dimensional manifold of orbits compatible with the observations, the so-
called Manifold Of Variations. In this paper we first review the Manifold Of Variations
method, to then show how this set of virtual asteroids can be used to predict the impact
location of short-term impactors, and compare the results with those of already existent
methods.

Keywords Imminent impactors · Impact location · Manifold Of Variations · Mathematical
modelling

1 Introduction

Astronomers observe the sky every night to search for new asteroids or for already known
objects. The Minor Planet Center (MPC) collects the observations coming from all over the
world and then tries to compute orbits and to determine the nature of the observedobjects.New
discoveries which could be near-Earth asteroids (NEAs) are posted in the NEOConfirmation
Page (NEOCP1), which thus contains observational data of unconfirmed objects. They could
be real asteroids aswell as non-real objects and cannot be officially designated until additional
observations are enough to compute a reliable orbit and confirm the discovery.

Some asteroids with an Earth-crossing orbit may impact our planet, and the goal of impact
monitoring is to identify potentially hazardous cases and solicit follow-up observations. Two
automated and independent systems continually scan the catalogue of known NEAs with

1 https://minorplanetcenter.net/iau/NEO/toconfirm_tabular.html.
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this purpose, namely clomon-22 and Sentry3, which are, respectively, operational at the
University of Pisa/SpaceDyS and at the NASA JPL. Nevertheless, also objects waiting for
confirmation in the NEOCP could be on a collision trajectory with the Earth, sometimes with
the impact occurring just a few hours after the discovery. This is exactly what happened for
asteroids 2008 TC3, 2014 AA, 2018 LA, and 2019 MO, all discovered less than one day
prior to striking the Earth and prior to being officially designated by the MPC. Thus, being
able to perform a reliable hazard assessment also in these cases is a fundamental issue, but
needs dedicated techniques due to the very different nature of the problem. Indeed, when an
asteroid is first observed, the available astrometric observations are few and cover a short
time interval. This amount of information is usually not enough to allow the determination
of a well-constrained orbit and in fact the orbit determination process shows some kind
of degeneracies. The few observations constrain the position and motion of the object on
the celestial sphere, but leave practically unknown the topocentric range and range rate.
As a consequence the set of orbits compatible with the observations forms a region in the
orbital elements space which has a two-dimensional structure, so that every one-dimensional
representation of the region such as the Line Of Variations (LOV, Milani et al. 2005b) would
be unreliable.

Two systems are now publicly operational and dedicated to the orbit determination and
hazard assessment of unconfirmed objects: Scout at the NASA JPL (Farnocchia et al. 2015)
and NEOScan at SpaceDyS (Spoto et al. 2018). They are both based on the systematic
ranging, an orbit determination method which explores a subset of admissible values for the
range and range rate. NEOScan4 makes use of the Admissible Region (AR, Milani et al.
(2004)) as a starting point to explore the range and range-rate space. Then the short arc
orbit determination process ends with the computation of the Manifold Of Variations (MOV,
Tommei 2006), a two-dimensional compact manifold of orbits parameterised over the AR.
A finite sampling of the MOV is thus a suitable representation of the confidence region,
because it accounts for its two-dimensional structure, and thus the resulting set of virtual
asteroids can be used for the short-term hazard assessment of such objects (Spoto et al. 2018;
Del Vigna 2020). A part of this activity is the prediction of the impact location of a potential
impactor, especially when the associated impact probability is high. A method to predict
the impact corridor of an asteroid has been developed in Dimare et al. (2020), by which the
impact region is given by semilinear boundaries on the impact surface at a given altitude
above the Earth and corresponding to different confidence levels. The algorithm is conceived
to be a continuation of the impact monitoring algorithm at the basis of the clomon-2 system,
since the semilinear method requires a nominal orbit obtained by full differential corrections
and an impacting orbit,5 as provided by the LOV method (Milani et al. 2005a). When the
observational arc is very short and the object is waiting for confirmation in the NEOCP, the
semilinear method could become inapplicable because very often a reliable nominal orbit
simply does not exist. In this paper we propose a method which uses the MOV to predict
the impact location of an imminent impactor, and we then test this technique using the data
available for the four impacted asteroids so far, namely 2008 TC3, 2014 AA, 2018 LA, and
2019 MO.

2 https://newton.spacedys.com/neodys/index.php?pc=0.
3 http://cneos.jpl.nasa.gov/sentry/.
4 https://newton.spacedys.com/neodys2/NEOScan/.
5 More precisely a representative of the virtual impactor, a connected subset of the asteroid confidence region
made up of impacting orbits.
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In Sect. 2 we give a brief recap about the AR and theMOVmethod. In Sect. 3 we introduce
the impact surface at a given height over the Earth and the impact map, to then describe how
to exploit theMOV sampling for impact location predictions. Section 4 contains the results of
our method applied to the impacted asteroids 2008 TC3, 2014 AA, 2018 LA, and 2019 MO.
When possible, we also compare the impact regions with those computed with the semilinear
method (Dimare et al. 2020) and with a Monte Carlo simulation. Lastly, Sect. 5 is dedicated
to the conclusions.

2 TheManifold Of Variations method

Suppose we have a short arc of observations, typically 3 to 5 observations over a time span
shorter than one hour. In most cases the arc is too short to allow the determination of a full
orbit and it is called a too short arc (TSA, Milani et al. 2007). When in the presence of a
TSA, either preliminary orbit methods fail or the differential corrections do not converge to
a nominal orbit. Nevertheless, as anticipated in Introduction, the little information contained
in the arc can be summarised in the attributable, the vector

A := (α, δ, α̇, δ̇) ∈ S
1 × (−π

2 , π
2

) × R
2

formed by the angular position and velocity of the object at themean observational time. Note
that if there is at least one measurement of the apparent magnitude, the attributable could
also contain an average value for this quantity. The topocentric range ρ and range-rate ρ̇ are
thus not known; otherwise, we would have had a full orbit. The AR comes into play here,
to provide a set of possible values of (ρ, ρ̇) by imposing general conditions on the object’s
orbit. It can be shown that the AR is a compact subset ofR≥0×R, which can have at most two
connected components. For the precise definition of the AR and the proof of its properties
the reader can refer to Milani et al. (2004); here we limit ourselves to the general idea. We
essentially impose that the object is a Solar System body and that it is sufficiently large to
be source of meteorites. Indeed short-term impactors are usually very small asteroids, with a
fewmeters in diameter; thus the main interest in such objects is not for planetary defence, but
rather to observe them during the last part of their impact trajectory and possibly to recover
meteorites on ground, as it happened for asteroid 2008 TC3.

The AR is sampled by a finite number of points and with different techniques. In case of
a TSA we explore the whole AR with rectangular grids: first we cover the entire region and
compute the corresponding sample of orbits, then we identify the subregion corresponding
to the best-fitting orbits with respect to the observations, and lastly we cover this subregion
with a second grid. The two-step procedure is shown in Fig. 1. Even if this is not the most
common case, it may happen that the short arc of observations allows the computation of a
preliminary orbit and even of a full orbit. In this case we consider the nominal solution as
reliable only if the arc curvature is significant (Milani et al. 2007). Given its importance for
orbit determination purposes, we give more weight to the geodesic curvature with respect to
the along-track acceleration, imposing that the signal-to-noise ratio of the geodesic curvature
is greater than 3. In this casewe switch to a different samplingmethod to exploit the additional
strong information coming with the reliable nominal orbit. Indeed we consider the marginal
covariance of the orbit in the range and range-rate space, whose probability density function
has level curves which are concentric ellipses around the nominal range and range rate. We
select a maximum confidence threshold and sample the AR by following these ellipses up
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Fig. 1 Admissible region sampling with the rectangular grids. Left. First step, with the rectangular grid
covering the entire AR. Right. Second grid, covering the subregion of good orbits identified in the first step.
In both plots the sample points are marked in blue when χ ≤ 2 and in green when 2 < χ < 5. The orange
cross marks the orbit with the minimum χ value

Fig. 2 Sampling of the AR with a
cobweb around the nominal
solution . The sample points are
marked in blue when χ ≤ 2 and
in green when 2 < χ < 5. The
orange cross marks the orbit with
the minimum χ value

to this confidence level. This cobweb technique is shown in Fig. 2. Full details about the
sampling of the AR in the various cases can be found in Spoto et al. (2018).

Now we describe how to obtain a sampling of orbits, namely the MOV, once a sampling
of the AR is given. We start with some notation. The target function is

Q(x) := 1

m
ξ(x)�ξ(x),

where x are the orbital elements, m is the number of observations used for the fit, and ξ

is the vector of the normalised observed-computed debiased astrometric residuals. Let A0

be the attributable computed from the arc of observations. The AR sampling is a set K of
admissible values of the range and range rate. For each ρ0 = (ρ0, ρ̇0) ∈ K we consider the
full orbit (A0, ρ0, ρ̇0) and fit only the first four components, that is, the attributable part, with
a constrained differential corrections procedure.

Definition 1 Let K be a subset of the AR. TheManifold Of Variations is the setM of points
(A∗(ρ0), ρ0) such that ρ0 ∈ K and A∗(ρ0) is the local minimum of the target function
Q(A, ρ)|ρ=ρ0

, when it exists.
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Wecall K ′ ⊆ K the set of values of (ρ, ρ̇) such that the constrained differential corrections
converge, giving an orbit on M. To estimate the goodness of the fit to the observations, for
each orbit x ∈ M we compute

χ(x) := √
m(Q(x) − Q∗),

where Q∗ is the minimum value of the target function over K ′. We always consider MOV
orbits having χ < 5, thus corresponding at most to the 5σ confidence level. For hazard
assessment, this guarantees to find impact possibilities with a probability > 10−3, the so-
called completeness level of the impact monitoring system (Del Vigna et al. 2019a).

Hereafter we summarise the main steps of the Manifold Of Variations method, as it is
implemented in the software system NEOScan.

(i) TheMPCNEOConfirmation Page is scanned every twominutes to look for new objects
or for new observations to add to previous detections.

(ii) Computation of the attributable and sampling of theAdmissibleRegionwith rectangular
grids or with the cobweb technique, depending on the existence of a reliable nominal
solution.

(iii) Computation of the Manifold Of Variations by constrained differential corrections,
obtaining a set of virtual asteroids with a two-dimensional structure.

(iv) Propagation of the virtual asteroids for 30 days and projection of the propagated MOV
sampling on the Modified Target Plane.6

(v) Searching for impacting solutions and, if any, computation of the impact probability.
The computation of this quantity is done with a propagation of the probability density
function from the normalised residuals space to the sampling space and by integrating
the resulting density over the set of impacting sample points (Del Vigna 2020).

3 Impact location prediction

Before describing how to exploit the MOV sampling for impact predictions, we emphasise a
key difference in the treatment of short-term impactors with respect to the long-term hazard
monitoring of known asteroids. TheMOVmethod does not use interpolation of the sample to
find impacting orbits as it is done for the LOVmethod (Milani et al. 2005a), but just considers
the impacting orbits of the sampling. For instance, if none of theMOV sample points impacts
the Earth, we assign a null impact probability. Indeed we adopt a dense sampling; thus if a
set of impacting orbits is not detected by the sampling, it has a too small probability to be
interesting. This is a crucial difference with respect to the LOV method at the basis of long-
term impact monitoring. Many of the NEAs in the catalogue are big objects, and thus also
impact eventswith probability of few parts permillion areworth detecting. Since nearby LOV
orbits are separated by the chaotic dynamics introduced by close approaches, the prediction
of impacts with such low probabilities, especially if far in time with respect to the time of
the observations, would require an extremely high number of sample points along the LOV.
Hence if we limited the analysis to the sample points only, the computations would be too

6 For an asteroid having a hyperbolic close approach with a planet, the Modified Target Plane is the plane
passing through the centre of the planet and orthogonal to the velocity of the body at the time of closest
approach.
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heavy. As a consequence, interpolation of the LOV sampling is essential,7 but with the MOV
method we are allowed to consider just the impacting orbits of the sampling.

On the basis of the above comment, the short-term hazard analysis performed with the
MOV method ends with the identification of a subset V of impacting orbits among the MOV
sampling (see step (v) at the end of the previous section). The idea of our location prediction
method is actually very simple: once the set V is given, we just propagate the orbits of V
until the impact and compute the geodetic coordinates of the impacting points.

For such predictions we consider the WGS 84 model (NIMA - National Imagery and
Mapping Agency 2000), for which the Earth surface is approximated by a geocentric oblate
ellipsoid with semimajor axis equal to 6378.137 km and flattening parameter f defined by
1/ f = 298.257223563. The eccentricity e of the ellipsoid can be computed as e2 = f (2− f ).

Definition 2 Let h ≥ 0. The impact surface Sh at altitude h above ground is the set of points
at altitude h above the WGS 84 Earth ellipsoid.

The impact region will be a subset of the impact surface Sh for a given value of the altitude
h and points on Sh are given by means of the geodetic coordinates. To compute this region
we use the impact map introduced in Dimare et al. (2020), that is,

Fh : V ⊆ M → Sh .

This map takes an impacting orbit x ∈ V , computes the time t(x) at which the orbit reaches
the surface Sh , applies the integral flow of the system to propagate the orbit to the time t(x),
and lastly converts the state vector into the geodetic coordinates on Sh . Thus ourMOV impact
region is the set Fh(V) ⊆ Sh , that is, the set of impacting MOV orbits propagated to the
surface Sh .

3.1 Semilinear boundaries for the impact corridor prediction

We briefly recap the semilinear method applied to the problem of the impact location pre-
diction, described in Dimare et al. (2020).

LetX be the orbital elements space, letY ⊆ R
2 be the target space, and let F : W → Y be

a differentiable function defined on an open subsetW ⊆ X , to be thought of as the prediction
function. The dimension N of X is 6 if we consider the six orbital elements or is > 6 if some
dynamical parameter is included.8 Furthermorewe consider a nominal orbit x∗ ∈ X provided
with its N × N covariance matrix �X . The uncertainty of x∗ can be described through the
confidence region

Z X (σ ) :=
{
x ∈ X : Q(x) − Q(x∗) ≤ σ 2

m

}
,

where σ > 0 is the confidence parameter. The prediction function F maps the orbital
elements space onto the target space and thus maps the confidence region Z X (σ ) to

7 Actually in some extremely nonlinear cases this is not enough, and LOV sampling densification techniques
have been developed to overcome the problem and to guarantee that the preset completeness level is reached
(Del Vigna et al. 2020).
8 A typical situation is N = 7 and consists in the inclusion of the Yarkovsky effect in the dynamical model.
The relevance of this non-gravitational perturbation for the impact monitoring of some NEAs is well known.
Recent examples are presented in Del Vigna et al. (2019b) for asteroid (410777) 2009 FD and in Tholen
and Farnocchia (2020) for asteroid Apophis, in both cases succeeding in ruling out the most relevant virtual
impactors.
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ZY (σ ) := F(Z X (σ )). The semilinear method provides an approximation of the boundary
∂ZY (σ ) of the nonlinear prediction region (Milani and Valsecchi 1999).

To explain the construction of the semilinear boundaries we start with the notion of linear
prediction. The inverse of �X , that is CX = �−1

X , is the normal matrix and defines the linear
confidence ellipsoid

Z X
lin(σ ) := {

x ∈ X : (x − x∗) · CX (x − x∗) ≤ σ 2} .

The differential DFx∗ , assumed to be full rank, maps Z X
lin(σ ) to the ellipse

ZY
lin(σ ) := {

y ∈ Y : (y − y∗) · CY (y − y∗) ≤ σ 2} ,

where y∗ = F(x∗) is the nominal prediction,CY = �−1
Y , and�Y = DFx∗�X DF�

x∗ according
to the covariance propagation law.When F is strongly nonlinear, this linear prediction region
is a poor approximation of ZY (σ ) and here the semilinear method comes into play. The
boundary ellipse ∂ZY

lin(σ ) is the image by the linear map DFx∗ of an ellipse EX (σ ) ⊆ X
which lies on the surface ∂Z X

lin(σ ). The semilinear boundary K (σ ) is the nonlinear image
in the target space of the ellipse EX (σ ), that is,

K (σ ) := F(EX (σ )).

If the curve K (σ ) is simple (no self-intersections) and closed, then by the Jordan curve
theorem it is the boundary of a connected subset Z(σ ) ⊆ Y , whichweuse as an approximation
of ZY (σ ).

Remark 1 The differential DFx0 is clearly not injective. More precisely, each point of Y has
a (N − 2)-dimensional fibre in X , and thus in principle the selection of the ellipse EX (σ )

could be done in infinitely many ways. The choice foreseen in the semilinear method consists
in selecting as EX (σ ) the ellipse resulting from the intersection between a suitable regression
subspace in X and the confidence ellipsoid Z X

lin(σ ). See Milani and Valsecchi (1999) for all
the details.

The application of this method to the impact corridor problem is described in Dimare et al.
(2020) and works as follows. We have a nominal orbit x0 of an asteroid with a non-negligible
chance of impacting the Earth, and thus a virtual impactor representative ximp as provided
by the LOV method. In this problem the prediction map is the impact map

Fh : W → Sh

defined as above, where W ⊆ X is an open neighbourhood of ximp . The semilinear method
can now be applied, with the following adaptation. For the linear prediction on the impact
surface and the selection of the ellipse EX (σ )we use the differential (DFh)ximp of the impact
map at the virtual impactor representative orbit ximp . The result of this method is curves on
the surface Sh corresponding to different values of σ . Note that these curves need not be
closed in this context, because in general not all the orbits on EX (σ ) impact.

4 Numerical tests

We test the MOV method for the impact location prediction of four asteroids, namely
2008 TC3, 2014 AA, 2018 LA and 2019 MO. When we have a reliable nominal solution
we also compare these results with those of the semilinear method and, additionally, to an
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Fig. 3 Impact location prediction on ground for asteroid 2008 TC3. Left: Comparison between the impact
region computed with the MOV orbits having χ < 3 and the semilinear boundaries corresponding to the
confidence levels 1, 2, and3.Right:Comparisonbetween aMonteCarlo run and the same semilinear boundaries

observational Monte Carlo simulation. The latter amounts to adding noise to each observa-
tion to then compute a new orbit based upon the revised observations and use this orbit as a
virtual asteroid. When the observed arc is short, the uncertainty in the orbit determination is
typically so large that the true uncertainty is not represented by the confidence ellipsoid. In
this case the observational Monte Carlo is the best approach to follow, definitely better than
an orbital Monte Carlo, which works well when the orbital uncertainty is fairly good.

4.1 Asteroid 2008 TC3

The small asteroid 2008 TC3 was discovered by Richard A. Kowalski at the Catalina Sky
Survey on 6October 2008. The preliminary orbit computations done at theMPC immediately
revealed that the object was going to impact the Earth within 21 hours. Thus the astronomical
communitymade a great effort to observe it and the currently available dataset contains nearly
900 observations, though not all of them are of high quality, and need to be properly treated
for a precise estimate of the trajectory of 2008 TC3 (Farnocchia et al. 2017).

When asteroid 2008 TC3 was recognised to be an impactor, it only had few observations
and for our analysis we consider its first seven observations. They are enough to compute a
reliable nominal solution, so that our algorithm samples the AR with the cobweb technique.
The application of the MOVmethod results in an impact probability of 99.7%, which means
that the vast majority of the MOV orbits impacts the Earth. We then propagate the MOV
sampling to the Earth surface, i.e. we set h = 0, and obtain the result shown in Fig. 3. Since
the impact region is very extended, we limit our analysis to the MOV orbits with χ < 3. In
the left figure we show the geodetic coordinates of the impacting points, with different shades
of grey depending on the χ value. In the right figure we show the results of a Monte Carlo
simulation with 10,000 sample points, to compare with the MOV impact region. Moreover,
thanks to the existence of a nominal orbit we can also apply the semilinear method; thus in
both plots shown in Fig. 3 we also draw the semilinear boundaries on ground corresponding
to the confidence levels 1, 2, and 3. The result is a strong agreement of the three methods.

We notice that the semilinear boundaries enclose a regionwhich is larger than that obtained
with the MOVmethod. This happens also in most of the other examples which we present in
the next sections. We can explain this behaviour as follows. Recall that the basic idea of the
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Fig. 4 Impact region on ground of asteroid 2014 AA computed with the MOV method and by the semilinear
method. Left: comparison between the impact region computed with the MOV orbits having χ < 5 and the
semilinear boundaries corresponding to the confidence levels 1, 3, and 5. Right: comparison between a Monte
Carlo run and the same semilinear boundaries

semilinear method is to select a curve in the orbital elements space to propagate nonlinearly
to approximate the boundary of the nonlinear prediction region. The choice of this curve is
made by considering the boundary of the marginal uncertainty on a suitable space, which
is equivalent to considering the corresponding regression subspace (see Remark 1). The
marginal covariance is the largest projected uncertainty on a given space and thus, so to say,
is the most conservative choice.

4.2 Asteroid 2014 AA

Asteroid 2014 AA was discovered by R. Kowalski at the Catalina Sky Survey on 1 January
2014 at 06:18 UTC. Similarly to 2008 TC3, also 2014 AA impacted the Earth just 21 hours
after its first detection. But very differently from 2008 TC3, due to the particular night in
which 2014 AA was spotted, it was not recognised to be an impactor. As a consequence the
astrometric dataset is very limited, containing just 7 observations.

Also in this casewe canfit a nominal orbit and thus theMOVmethod startswith the cobweb
sampling of the AR. All the MOV orbits are impacting, resulting in an impact probability
of 100%. The impact regions on ground of 2014 AA computed with the MOV or with the
Monte Carlo method are shown in Fig. 4. Again we also show the semilinear boundaries for
comparison, this time corresponding to the confidence levels σ = 1, 3, and 5.

Theplot deserves somecomment to avoidmisunderstandings, due to the particular shape of
the impact region. It is known that semilinear boundaries are not necessarily simple curves.
As a consequence, if this is the case, the curve cannot be the boundary of the nonlinear
prediction and indeed the impact regions extend outside the drawnboundaries. This behaviour
is confirmed by the fact that, in the vicinity of the torsion, the boundaries with lower σ extend
outside the ones with higher σ . With a heuristic approach we can state that the impact region
extends outside the region delimited by the boundary, on the side of the lower confidence
level boundaries. As a consequence this result is somewhat unsatisfactory, because we can
just guess the actual impact area. Of course this issue disappears as soon as we start with a
sampling of the whole confidence region and not with just the sampling of a curve. As we
can see, the impact region computed with the MOV gives a clear representation of the impact
area and also shows why the semilinear boundaries are twisted. Indeed the confidence region
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Fig. 5 Impact region at
h = 28.7 km of 2018 LA
computed with the MOV method
starting from all the 14
observations. The black star
marks the location of the fireball
event
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Fig. 6 Impact location prediction at h = 28.7 km for asteroid 2018 LA, with all the 14 observations. Left:
comparison between the impact region computed with the MOV orbits having χ < 5 and the semilinear
boundaries corresponding to the confidence levels 1, 3, and 5. Right: comparison between a Monte Carlo run
and the same semilinear boundaries. The star marks the location of the fireball event

folds on itself before being projected on the impact surface Sh , and this is a consequence of
the nonlinear effects due to the ongoing close approach. This behaviour is also confirmed by
the Monte Carlo simulation shown in the right plot shown in Fig. 4.

4.3 Asteroid 2018 LA

Asteroid 2018 LA was discovered by the Mt. Lemmon Observatory of the Catalina Sky
Survey just 8 hours before its impact in Botswana. For this asteroid we also have the fireball
report shown in Table 1, which took place at 28.7 km of altitude.

The astrometric dataset contains 14 observations, which are enough to compute a full orbit
and to apply the cobweb sampling. The impact probability computed with the MOV method
gives the certainty of the impact and all the MOV orbits impact the Earth. Figure 5 shows
the MOV impact region at h = 28.7 km, together with the fireball event. Figure 6 shows the
comparison between the MOV impact region or the Monte Carlo impact region against the
semilinear boundaries computed at the height of the fireball event. Also in this case we have
full agreement among the methods.

As pointed out in Introduction, the MOV method can be applied for impact location
predictions also when the amount of information provided by the observational arc is not
enough to constrain a full orbit. In this case the semilinear method of Dimare et al. (2020)
cannot be used, because it requires a nominal orbit and a virtual impactor representative, as
provided through the LOVmethod. To show an example of such computation, we applied the
MOV method to 2018 LA with its first 12 observations. In this case the observations are not
enough to compute a reliable nominal orbit; thus the AR is sampled with rectangular grids.
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Fig. 7 Second step of the
admissible region grid sampling
for asteroid 2018 LA with 12
observations. The sample points
are marked in blue when χ ≤ 2
and in green when 2 < χ < 5
(note that the blue points are
contained in the narrow region
delimited by the green points).
The red circles mark the
impacting orbits

Fig. 8 Impact region at altitude
h = 28.7 km of asteroid 2018 LA
computed with the MOV method
and using the first 12
observations. The star marks the
location of the fireball event
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The second grid samples a subregion of the AR, with the orbits having χ < 5 spanning a
quite narrow strip (see Fig. 7). The propagation of the impacting MOV orbits gives the result
shown in Fig. 8, with the impact region being quite elongated due to the poor constraint on
the asteroid orbit.

4.4 Asteroid 2019MO

Asteroid 2019MOwas discovered from theATLASMaunaLoa observatory on 22 June 2019,
less than 12 hours before impacting the Earth between Jamaica and the south American coast.
Also in this case we have a fireball event reported in Table 1, which took place at 25 km of
altitude.

Figure 9 shows theMOV impact region at h = 25 km extending above the south American
coast, together with the fireball location. Figure 10 shows the comparison between the MOV
method, the semilinear boundaries and a Monte Carlo run with 10,000 sample points, which
are fully compatible.

5 Conclusions

Very small asteroids can be only observed during a deep close approach with the Earth, and
it may be the case that an impact occurs a few days after the discovery. In this paper we
considered the problem of predicting the impact location of such objects by exploiting the
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Table 1 Fireball reports corresponding to 2018 LA and 2019 MO impacts, extracted from the JPL web page
https://cneos.jpl.nasa.gov/fireballs/

Name Peak brightness date/time (UTC) Latitude (◦) Longitude (◦) Altitude (km)

2018LA 2018-06-02 16:44:12 21.2S 23.3E 28.7

2019MO 2019-06-22 21:25:48 14.9N 66.2W 25.0

Fig. 9 Impact region at altitude
h = 25 km of asteroid 2019 MO.
The black star marks the location
of the fireball event

-110 -100 -90 -80 -70 -60 -50 -40

East Longitude [deg]

10

20

30
La

tit
ud

e 
[d

eg
]

 <1
1 <  <3
3 <  <5
Fireball location

-110 -100 -90 -80 -70 -60 -50 -40
East Longitude [deg]

10

12

14

16

18

20

22

La
tit

ud
e 

[d
eg

]

 <1
1 <  <3
3 <  <5
IC1 sigma
IC3 sigma
IC5 sigma
Fireball location

-110 -100 -90 -80 -70 -60 -50 -40
East Longitude [deg]

10

12

14

16

18

20

22

La
tit

ud
e 

[d
eg

]

Monte Carlo points
IC1 sigma
IC3 sigma
IC5 sigma
Fireball location

Fig. 10 Impact location prediction at altitude h = 25 km for asteroid 2019 MO. Left: Comparison between
the impact region computed with the MOV orbits having χ < 5 and the semilinear boundaries corresponding
to the confidence levels 1, 3, and 5. Right: Comparison between a Monte Carlo run and the same semilinear
boundaries. The star marks the location of the fireball event

MOV, a set of virtual asteroids representing the orbital uncertainty. Once a MOV sampling is
available, it suffices to propagate each orbit for a given amount of time and, for the impacting
orbits, to compute the geodetic coordinates of the impacting points. The impact region is
thus given by a set of points on the impact surface at a certain height over the Earth.

The advantage of the MOVmethod with respect to already existing techniques, for exam-
ple, the semilinear method of Dimare et al. (2020), is that it can be used even when it is
impossible to fit a nominal orbit to the few available astrometric observations (see the exam-
ple presented in Sect. 4.3 and shown in Fig. 8).

We tested ourmethod using the data available for the four impacted asteroids so far, namely
2008TC3, 2014AA, 2018LA, and 2019MO. Since these data are also enough to constrain
a full orbit, we compared the results of the MOV method with the semilinear boundaries
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and with the outcome of an observational Monte Carlo simulation, getting a very strong
consistency among the three methods.
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