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Abstract
The equations of motion of the planar elliptic restricted three-body problem are transformed
to four decoupledHill’s equations.Byusing theFloquet theorem, a perturbative solution to the
oscillator equations with time-dependent periodic coefficients are presented. We clarify the
transformation details that provide the applicability of themethod. The form of newly derived
equations inherently comprises the stability boundaries around the triangular Lagrangian
points. The analytic approach is valid for system parameters 0 < e ≤ 0.05 and 0 < μ ≤ 0.01
where e denotes the eccentricity of the primaries, while μ is the mass parameter. Possible
application to known extrasolar planetary systems is also demonstrated.

Keywords ERTBP · Hill’s equation · Floquet theorem

1 Introduction

In the era of exoplanets and specifically designed space missions, the co-orbital motion in the
vicinity of the equilateral points L4 and L5 has become again the focus of attention (Kumar
and Ishwar 2015; Elshaboury et al. 2016; Singh and Tyokyaa 2016; Barbosu et al. 2017;
Zahra et al. 2017; Qian et al. 2018; Singh and Amuda 2019; Suraj et al. 2020). Since the
seminal work of Szebehely (1967), the orbits near the libration points have been discussed
extensively by the community. The analytic description of the Trojan-like resonant dynamics
in the elliptic case of the restricted three-body problem (ERTBP) is based mainly on the
averaged motion (Duffy 2012; Liang et al. 2018). Erdi (1977, 1978) showed the perturbation
effects up to second order in Jupiter’s eccentricity, perihelion and ascending node precession
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by using a three-parameter expansion. Morais (2001) considered an averaged disturbing
potential to describe the secular variation of the Trojans’ orbital elements in case of an oblate
primary. Recently, Robutel et al. (2016) and Páez et al. (2016) have investigated the co-orbital
resonance based on Hamiltonian formalism whereby the fast angles have been averaged out.
These latter analytic studies are also capable to locate higher-order resonances as well as
very slow secular frequencies.

It has been demonstrated (Tschauner 1971; Erdi 1974; Meire 1981; Matas 1982) that
the coupled equations of the ERTBP can be written in the form of independent ordinary
differential equationswith variable coefficients. The primary goal of these studies is to explore
the stability map of eccentricity–mass parameter dated back to Danby (1964). Interestingly,
the analysis given by Erdi (1977) and Robutel et al. (2016) also leads to a pendulum-like
equation; however, they do not attempt to solve it by classical techniques such as Floquet
theorem (Lichtenberg and Lieberman 1983). Here we propose a detailed derivation of Hill’s
equations of the ERTBP and make a comprehensive analysis of their applicability which is
still out of literature. Furthermore, analytic expressions for the solution of Hill’s equations
are given in the regime of moderate eccentricities and mass parameter with good agreement
with numerical calculations.

2 Basic context

In this paper, we mainly follow the notations used in, e.g., Tschauner (1971), Meire (1980),
Meire (1982). We use a dimensionless non-uniformly rotating coordinate system (x1, x2)
fixed to the primaries. The primaries having the mass m1 and m2 are located at (−μ, 0) and
(1−μ, 0), respectively, where μ is the mass ratio, μ = m2/(m1 +m2) (the origin coincides
with the center of mass). The dimensionless (x1, x2) coordinates are obtained by dividing
the original dimensional coordinates of the problem by the variable distance between the
primaries. The linear motion of the third body around the Lagrangian points L4 and L5 is
determined by the coupled differential equations (Szebehely 1967)

x ′′
1 − 2x ′

2 = r · c1 · x1, (1)

x ′′
2 + 2x ′

1 = r · c2 · x2, (2)

where x1 and x2 are the synodic Cartesian rectangular dimensionless coordinates of the third
body; furthermore,

r = 1

1 + e cos(v)
, g = 3μ(1 − μ) and ci = 3

2

(
1 + (−1)i

√
1 − g

)
(i = 1, 2). (3)

Here primes denote the derivation with respect to the true anomaly v. A new form of Eqs. (1)
and (2) can be introduced as

x′ = M · x, (4)

where x = (x1, x2, x ′
1, x

′
2)

T , and

M =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
rc1 0 0 2
0 rc2 −2 0

⎞
⎟⎟⎠ =

(
0 12
rC 2D

)
, with C =

(
c1 0
0 c2

)
, D =

(
0 1

−1 0.

)
. (5)
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By introducing the notation x̃ = (x1, x2)T and the vector x = (x̃, x̃ ′)T , the system of Eqs. (1)
and (2) can be written in a more compact hypermatrix form as

x′ =
(
x̃
x̃ ′

)′
=

(
0 12
rC 2D

)
·
(
x̃
x̃ ′

)
=

(
0 12
rC 2D

)
· x, (6)

where 12 is the two-dimensional identity matrix and 0 is the zero matrix.

2.1 Hill’s equation

Hill’s equation has the form of

ξ ′′(v) + J (v) · ξ(v) = 0, (7)

where J (v) is a periodic function—in our case—with theminimal period of 2π . It is important
to note that the first derivative term, ξ ′, is missing in Eq. (7). In order to obtain Eq. (7) from
a general second-order ODE

y′′(v) + a(v) · y′(v) + b(v) = 0, (8)

the term of y′ can be eliminated by the substitution

y(v) = A · ξ(v) · e
− 1

2

v∫
v0

a(x)dx

, (9)

where A and v0 are arbitrary constants.
Wewill show thatEqs. (1) and (2) canbe rewritten as four coupled second-order differential

equations. Let us introduce four new functions y(1)
1 (v), y(1)

2 (v), y(2)
1 (v), y(2)

2 (v) and their

matrix functions as ỹi = (y(i)
1 , y(i)

2 )T , i = 1, 2 and y = (ỹ1, ỹ2)T with the following two
properties. The first property makes possible that the new system of differential equations of
y-s splits into two independent parts, namely

ỹi
′ = Pi · ỹi , i = 1, 2 where Pi =

(
p(i)
11 p(i)

12

p(i)
21 p(i)

22

)
. (10)

The separation is more obvious if we write Eq. (10) in the form of

y′ =
(
ỹ1′
ỹ2′

)
=

(
P1 0
0 P2

)
·
(
ỹ1
ỹ2,

)
=

(
P1 0
0 P2

)
· y. (11)

The second property links the new and original variables,

x̃ = ỹ1 + ỹ2 = (
12 12

) ·
(
ỹ1
ỹ2,

)
, (12)

or simply xi = y(1)
i + y(2)

i . We will see that by this choice, the equations of the system can
be rewritten into the form of Hill’s equation. From the first (10) and second (12) properties,
we have

x̃ ′ = ỹ1
′ + ỹ2

′ = P1 · ỹ1 + P2 · ỹ2 = (
P1 P2

) ·
(
ỹ1
ỹ2,

)
(13)

which means that from Eq. (12) and Eq. (13) the relationship between x and y can be written
as

x =
(
x̃
x̃ ′

)
= T ·

(
ỹ1
ỹ2,

)
= T · y with T =

(
12 12
P1 P2

)
. (14)
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We have to calculate the elements of the matrices Pi . On the one hand from Eq. (6) and
Eq. (14),

x′ =
(

0 12
rC 2D

)
· x =

(
0 12
rC 2D

)
·
(
12 12
P1 P2

)
· y =

(
P1 P2

rC + 2DP1 rC + 2DP2

)
· y; (15)

on the other hand from the derivatives of Eq. (11) and Eq. (14),

x′ =
(
12 12
P1 P2

)′
y +

(
12 12
P1 P2

)
y′ =

(
0 0
P1

′ P2
′
)
y

+
(
12 12
P1 P2

) (
P1 0
0 P2

)
y =

(
P1 P2

P1
′ + P2

1 P2
′ + P2

2

)
y. (16)

In the last two equations, the multiplication factors of ymust be equal; thus, from the equality
of the elements in the second rows we can write

Pi
′ + P2

i = rC + 2DPi , (17)

which are matrix differential equations of Riccatti type. Based on Tschauner’s argument
(Tschauner 1971), the following matrix elements satisfy Eq. (17)

p(i)
11 = −1

2
re sin(v)(1 + ke cos(v)), (18)

p(i)
12 = r

(
a(i)
2 + e cos(v) − 1

4
ke2 cos(2v)

)
, (19)

p(i)
21 = −r

(
a(i)
1 + e cos(v) + 1

4
ke2 cos(2v)

)
, (20)

p(i)
22 = −1

2
re sin(v)(1 − ke cos(v)), (21)

where

k = 1√
1 − g

, c =
√
1 − 9g + 2e2 + k2e4, a(i)

j = 1

4

(
1 + 2c j + (−1)i c

)
(22)

Using these results, the inverse of the matrix T (T−1) can be calculated. This matrix is
necessary to get the vector y from the vector x (y = T−1 · x), see Eq. (14). It is easy to verify
that

detT =
(r · c

2

)2
, (23)

and

T−1 = 2

r · c

⎛
⎜⎜⎜⎝

−p(2)
21 −p(2)

22 0 1
p(2)
11 p(2)

12 −1 0
p(1)
21 p(1)

22 0 −1
−p(1)

11 −p(1)
12 1 0

⎞
⎟⎟⎟⎠ . (24)
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Since all elements of Pi contain a multiplicative factor of r , we can define the matrices
Qi as Qi = Pi/r with the following elements

q(i)
11 = −1

2
e sin(v)(1 + ke cos(v)) (25)

q(i)
12 = a(i)

2 + e cos(v) − 1

4
ke2 cos(2v) (26)

q(i)
21 = −

(
a(i)
1 + e cos(v) + 1

4
ke2 cos(2v)

)
(27)

q(i)
22 = −1

2
e sin(v)(1 − ke cos(v)). (28)

Let detQi be the determinant of matrix Qi with the above elements. It can be shown that

detQi = 1

2r

[
(−1)i c + 1 + 3e cos(v)

]
. (29)

According to Eq. (10) ỹi ′ = Pi ỹi , its derivative reads ỹi ′′ = Pi
′ ỹi + Pi ỹi ′ = (Pi

′ + P2
i )ỹi =

(rC + 2DPi )ỹi . Consequently,

y(i)
1

′′ = (
rc1 + 2p(i)

21

)
y(i)
1 + 2p(i)

22 y
(i)
2 , (30)

y(i)
2

′′ = −2p(i)
11 y

(i)
1 + (

rc2 − 2p(i)
12

)
y(i)
2 . (31)

If we use the relations

y(i)
1 = y(i)

2
′ − p(i)

22 y
(i)
2

p(i)
21

(32)

and

y(i)
2 = y(i)

1
′ − p(i)

11 y
(i)
1

p(i)
12

(33)

derived from Eq. (11), we get

y(i)
1

′′ − 2q(i)
22

q(i)
12

y(i)
1

′ − 1

q(i)
12

(
q(i)
12 rc1 − 2r detQi

)
y(i)
1 = 0, and (34)

y(i)
2

′′ + 2q(i)
11

q(i)
21

y(i)
2

′ − 1

q(i)
21

(
q(i)
21 rc2 + 2r detQi

)
y(i)
2 = 0. (35)

We have to emphasize that these two equations are not independent from each other. Equa-
tions (32) and (33) make connection between them. For this reason, to solve the problem, it
is not necessary to integrate both of them. For example, we can integrate the equations for
y(1)
1 and y(2)

1 ; then, by using the relation Eq. (33) the calculations of y(1)
2 and y(2)

2 are possible
without any integration.

According to Eq. (9), the elimination of the first-order terms in Eqs. (34) and (35) is
possible. The coefficient is a(v) = −2q(i)

22 /q(i)
12 in case of y(i)

1 . Furthermore, as we know that

2q(i)
22 = q(i)′

12 , one can write
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Fig. 1 Studied region in the
(μ, e) parameter plane (shaded),
and its subregions I, II and III
defined by the sign of the minima

and maxima of q(1)
21 and q(2)

21 .
The curved border line of the
shaded region is determined by
the equation c(μ, e) = 0. This
border and the solid black line(s)
are tangential at red star. Below
and above the tangential point,
the solid black line is determined
by the equations min q(1)

21 = 0

and max q(2)
21 = 0, respectively

y(i)
1 = A · ξ

(i)
1 (v) · exp

⎛
⎝1

2

v∫

v0

q(i)′
12 (x)

q(i)
12 (x)

dx

⎞
⎠

= A · ξ
(i)
1 (v) · exp

(
1

2

[
log q(i)

12 (x)
]v

v0

)
=

√
q(i)
12 · ξ

(i)
1 , (36)

where we chose A =
√
q(i)
12 (v0) (and similarly, y(i)

2 =
√
q(i)
21 · ξ

(i)
2 ). Equation (36) describes

the original transformation used by Tschauner (Tschauner 1971). The derivatives of y(i)
1 are

y(i)
1

′ = q(i)
22√
q(i)
12

ξ
(i)
1 +

√
q(i)
12 ξ

(i)
1

′
, and

y(i)
1

′′ = q(i)
22

′
q(i)
12 − q(i)

22
2

q(i)
12

3/2 ξ
(i)
1 + 2q(i)

22√
q(i)
12

ξ
(i)
1

′ +
√
q(i)
12 ξ

(i)
1

′′
.

(37)

By using the above equations, and similar derivatives for y(i)
2 , finally, Eqs. (34) and (35) can

be written in the form of Hill’s equation as

ξ
(i)
1

′′ + J (i)
1 · ξ

(i)
1 = 0, where J (i)

1 = −
⎛
⎝rc1 + 2 − 3r detQi + c2

q(i)
12

+ 3q(i)
22

2

q(i)
12

2

⎞
⎠ , (38)

ξ
(i)
2

′′ + J (i)
2 · ξ

(i)
2 = 0, where J (i)

2 = −
⎛
⎝rc2 + 2 + 3r detQi + c1

q(i)
21

+ 3q(i)
11

2

q(i)
21

2

⎞
⎠ , (39)

where the coefficients J (i)
j (i, j = 1, 2) are periodic functions with period of 2π . At this

point, it is necessary to consider the numerical solvability of these equations. In this study, we
focus on the parameter range only where the value of c(μ, e) in Eq. (22) is a strictly positive
real number (c > 0) and μ < 1/3. This parameter range is the shaded region in Fig. 1.

The numerical solvability of Eqs. (38) and (39) depends on the denominators of the factors
J (i)
j . The numerical solution cannot be stable if the denominator ever goes through zero or
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Table 1 Signs of the minimum
and maximum values of the
functions q(i)

21 .

q(1)
21 q(2)

21
Min Max Min Max

I. − − − −
II. − + − −
III. − + − +

Fig. 2 Numerical solutions
around the L4 and L5 points. The
parameters are e = 0.048,
μ = 0.000954 (the case of
Jupiter), and the initial conditions
are v = 0, x1 = 1, x2 = 1,
x ′
1 = 0, x ′

2 = 0

just reaches it, because then the factor J (i)
j diverges. For this reason, we have studied the sign

of the minima and maxima of expressions q(i)
12 and q(i)

21 . We have found that q(i)
12 -s are always

strictly positive, which means that Eqs. (38) are always solvable in the shaded region.
In contrast to the analysis of q(i)

21 , the shaded region can be divided into three subregions,
which are denoted by I, II and III in Fig. 1. For brevity, Table 1 shows the signs of the
minimum and maximum values in the different subregions. We can see that q(1)

21 changes its
sign (and therefore goes through zero) in the subregions II and III during the integration,
which means that it is not recommended to solve the equation for ξ

(1)
2 in these subregions.

It is interesting to note that in the subregion I the sign is always negative, which means that√
q(1)
21 is purely imaginary. Because of the former equality y(1)

2 =
√
q(1)
21 · ξ (1)

2 , where y(i)
2 is

real, ξ (1)
2 must also be purely imaginary. Fortunately, this does not mean that the equation for

ξ
(1)
2 is unsolvable but we have to consider that ξ

(1)
2 remains always purely imaginary; thus,

multiplying the equation by the imaginary unit solves this problem. The situation is similar
in the case of q(2)

21 , but the sign change happens only in the subregion III (see Table 1).
Following the above analysis, the numerical integration has been performed in order to

validate the results. Figure 2 depicts the trajectory for e = 0.048, μ = 0.000954 (the case
of Jupiter). The solution of Eqs. (1) and (2) and Eqs. (38) originating from the appropriate
initial conditions perfectly overlap. This means that Hill’s equations can be applied to solve
the equations of motion around the L4 and L5 points.

3 Perturbative solution

In this section, we give the perturbative solution of the differential equations. Hill’s equations
(Eqs. (38) for i = 1, 2), as they are second-order differential equations with periodic coef-
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ficients, can be solved by Floquet theorem (Hagel 1992). We seek the solution in the form
of

ξ(v) = aw(v) cos(ψ(v) + b), (40)

where w(v) is the so-called Floquet function, which has the same period as J (v). Constants
a and b are determined by the initial conditions. Since the derivation for both ξ

(1)
1 and ξ

(2)
1

are the same, we omit the indices in the rest part of the paper. Let us rewrite Eqs. (38) for
w(v) and ψ(v)

ξ ′(v) = aw′(v) cos(ψ(v) + b) − aw(v) sin(ψ(v) + b)ψ ′(v), (41)

ξ ′′(v) = aw′′(v) cos(ψ(v) + b) − 2aw′(v) sin(ψ(v) + b)ψ ′(v)

− aw(v) cos(ψ(v) + b)ψ ′2(v) − aw(v) sin(ψ(v) + b)ψ ′′(v). (42)

The above differential equations split into two parts with the coefficients of sin and cos

w′′(v) − w(v)ψ ′2(v) + J (v)w(v) = 0, (43)

2w′(v)ψ ′(v) + w(v)ψ ′′(v) = 0. (44)

From Eq. (44), we obtain

2
w′(v)

w(v)
= −ψ ′′(v)

ψ ′(v)
⇒ log(w2(v)) = log

(
1

ψ ′(v)

)
+ C, (45)

where C is a constant of integration. At the end of the calculation, we will see that a2 = eC

that is

ψ ′(v) = a2

w2(v)
. (46)

With this equation, Eq. (43) becomes

w(v)′′ + J (v)w(v) − a4

w3(v)
= 0. (47)

Now we are looking for the solution of w(v) in a third-order Taylor series in the eccentricity
e

w(v) = w(0)(v) + ew(1)(v) + e2w(2)(v) + e3w(3)(v) + O(e4), (48)

where w(i) are 2π periodic functions of v.

3.1 Taylor series of J(1)1 (v) and J(2)1 (v)

The periodic coefficients to be solved have complicated forms; therefore, the solution can
be obtained by a third-order Taylor expansion in the eccentricity. Let us utilize J (1)

1 and J (2)
1

together (J (i)
1 ), as the expressions are really similar:

J (i)
1 (v)=−

{
c1r+2−

3
2 (1+(−1)i c+3e cos(v))+c2

1
4 (2c2+1+(−1)i c)+e cos(v)− 1

4ke
2 cos(2v)

+ 3

(
− 1

2e sin(v)(1−ke cos(v))

1
4 (2c2+1+(−1)i c)+e cos(v)− 1

4ke
2 cos(2v)

)2
⎫
⎬
⎭ , (49)
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byusing the earlier introducednotations.Useful expressionswill be Bi≡(2c2 +1+ (−1)i λ)−1

and λ ≡ √
1 − 9g. The third-order Taylor expansion of J (i)

1 is then

J (i)
1 (v; e, μ) = αi + βi cos(v)e + (γi + δi cos(2v))e2 + (εi cos(v) + ηi cos(3v))e3 + O(e4),

where

αi = −c1 − 2 + Bi (6 + (−1)i6λ + 4c2),

βi = c1 + 18Bi − 8B2
i (3 + (−1)i3λ + 2c2),

γi = B2
i

λ

(
(−1)i+1(6 + 4c2) − 12λ

) + (−1)i
6Bi
λ

− c1
2

− 4B3
i (10c2 − 3 + (−1)i+13λ),

δi = B2
i k

(
6 + (−1)i6λ + 4c2 + 6

k

)
− c1

2
− 4B3

i (10c2 − 3 + (−1)i+13λ),

εi = B4
i

λ

{
(−1)i+1(20c2 − 6 + 3λ2k) + 30λ + 10c2λk − 3λk

Bi

+ 6kλ

B2
i

+ (−1)i+1(64c22 + 32c2+

+ 24k − 216gk + 32c2k − 288kc2g + 72 − 648g
) + 208c2λ

− 32c2kλ − 12kλ − 12kλ3 − 16c22kλ−

− 72λ

}
+ 3c1

4
,

ηi = B4
i

λ

{
10c2λk − 3λk + (−1)i+13λ2k + 24λ

Bi
+ 6kλ

B2
i

+ (−1)i+1(24k − 216gk + 32c2k − 288c2gk+

+ 24 − 216g
) − 32c2kλ − 12kλ − 12kλ3 − 16c22kλ + 80λc2 − 24λ

}
+ c1

4
.

Let us write back the results of the Taylor expansions into Eq. (46), and use the fact that

1

(w(0)(v)+ew(1)(v)+e2w(2)(v)+e3w(3)(v))3
= 1

w(0)3(v)

−3w(1)(v)

w(0)4(v)
e+6w(1)2(v)−3w(0)(v)w(2)(v)

w(0)5(v)
e2+

+ −3w(0)2(v)w(3)(v) + 12w(0)(v)w(1)(v)w(2)(v) − 10w(1)3(v)

w(0)6(v)
e3 + O(e4).

(50)

Then we can collect the terms for e0, e1, e2 and e3; thus, 4 new differential equations can be
obtained (also for i = 1, 2, so for simplicity we omit index i) for the terms of w(v):

w(0)′′(v) + w(0)(v)α − a4

w(0)3(v)
= 0, (51)

w(1)′′(v) + w(0)(v)β cos(v) + w(1)(v)α + 3a4w(1)(v)

w(0)4(v)
= 0, (52)

w(2)′′(v) + w(0)(v)
(
γ + δ cos(2v)

)
+ w(1)(v)β cos(v) + w(2)(v)α

123



23 Page 10 of 14 B. Boldizsár et al.

− 6a4w(1)2(v)

w(0)5(v)
+ 3a4w(2)(v)

w(0)4(v)
= 0, (53)

w(3)′′(v) + w(0)(v)
(
ε cos(v) + η cos(3v)

)
+ w(1)(v)

(
γ + δ cos(2v)

)

+ w(2)β cos(v) + w(3)(v)α+

+ 3a4w(3)(v)

w(0)4(v)
− 12a4w(1)(v)w(2)(v)

w(0)5(v)
+ 10a4w(1)3(v)

w(0)6(v)
= 0. (54)

It can be seen that a particular solution corresponding to 2π periodicity for Eq. (51) is

w(0)(v) = a

α1/4 ≡ w0,0. (55)

The differential equations (52)–(54) are second-order linear differential equations; therefore,
the solution can be written up as the sum of the solution of the homogeneous equation,
w

( j)
h (v), and a particular solution of the inhomogeneous equation,w( j)

ih (v). The homogeneous
part of Eq. (52) is

w
(1)′′
h (v) + 4αw

(1)
h (v) = 0, (56)

which is a harmonic oscillator with frequency (4α)1/2; thus, the solution of the equation is

w
(1)
h (v) = K1 sin(

√
4αv) + K2 cos(

√
4αv). (57)

Generally, in order to fulfill the 2π periodicity of w(v), the constants must be chosen as
follows K1 = K2 ≡ 0. For the inhomogeneous solution, we use the following trial function

w
(1)
ih (v) = w1,1 cos(v) + w1,0, (58)

where w1,1 are w1,0 constants. By calculating the derivatives from the coefficients, we can
simply obtain the values of w1,1 and w1,0, namely

w1,1 = − w0,0β

4α − 1
, w1,0 = 0. (59)

We use the same steps for the solution of Eq. (53). By using trigonometric identities, it can
be seen that the differential equation has the following form

w(2)′′(v)+4αw(2)(v)=
(

−w0,0γ−1

2
w1,1β+3αw2

1,1

w0,0

)

−
(

w0,0δ+1

2
w1,1β−3αw2

1,1

w0,0

)
cos(2v). (60)

Like in the previous case the solution of the homogeneous part is

w
(2)
h (v) = K1 sin

(√
4αv

)
+ K2 cos

(√
4αv

)
, (61)

where again K1 and K2 must disappear for the 2π periodicity, K1 = K2 ≡ 0. The trial
function of the particular solution of the inhomogeneous equation is:

w
(2)
ih (v) = w2,2 cos(2v) + w2,0. (62)
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Again by calculating the appropriate derivatives, the equality of the coefficients implies:

w2,2 =
3αw2

1,1

w0,0
− w0,0δ − 1

2
w1,1β

4α − 4
, w2,0 =

3αw2
1,1

w0,0
− w0,0γ − 1

2
w1,1β

4α
. (63)

Only the solution of Eq. (54) is left

w(3)′′(v) + 4αw(3)(v)=−
(

w0,0ε + w1,1γ + 1

2
w1,1δ + w2,0β + 1

2
w2,2β−12αw1,1w2,0

w0,0
−

− 6αw1,1w2,2

w0,0
+ 15αw3

1,1

2w2
0,0

)
cos(v)

−
(

w0,0η + 1

2
w1,1δ + 1

2
w2,2β − 6αw1,1w2,2

w0,0
+ 5αw3

1,1

2w2
0,0

)
cos(3v).

(64)

The homogeneous solution reads

w
(3)
h (v) = K1 sin(

√
4αv) + K2 cos(

√
4αv), (65)

where again the constants are K1 = K2 ≡ 0 due to the periodicity ofw(v). The trial function
for the particular solution of the inhomogeneous equation is

w
(3)
ih (v) = w3,1 cos(v) + w3,3 cos(3v), (66)

where the forms for w3,1 and w3,3 coefficients are

w3,1 = −
w0,0ε + w1,1γ + 1

2
w1,1δ + w2,0β + 1

2
w2,2β − 12αw1,1w2,0

w0,0
− 6αw1,1w2,2

w0,0
+ 15αw3

1,1

2w2
0,0

4α − 1
,

w3,3 = −
w0,0η + 1

2
w1,1δ + 1

2
w2,2β − 6αw1,1w2,2

w0,0
+ 5αw3

1,1

2w2
0,0

4α − 9
.

(67)

Then by using the fact that ψ ′(v) = a2w−2(v) (see Eq. (46)), ψ(v) can be calculated if we
again expand ψ ′(v) into Taylor series in e up to third order

1

a2
ψ(v) = v

w2
0,0

−2
w1,1 sin(v)

w3
0,0

e

+ 1

w4
0,0

{
3w2

1,1

(
sin(2v)

4
+v

2

)
−w0,0w2,0v− sin(2v)w0,0w2,2

2

}
e2−

− 1

w5
0,0

{
2

3
w3
1,1

(
9

4
sin(v)+ sin(3v)

4

)

+ sin(v)w2
0,0w3,1+

sin(3v)w2
0,0w3,3

3
−2 sin(v)w0,0w1,1w2,0−

− 2w0,0w1,1w2,2

(
sin(v)

2
+ sin(3v)

6

)
+ 2

3
w1,1

(
w2
1,1

4
− w0,0w2,2

2

)
sin(3v)+
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Fig. 3 Analytic and numerical
solution in the Sun–Jupiter
system. The relative difference,
Δr/r , of the two methods until
the integration time (T=20) is
�5%. Initial conditions are the
same as in Fig. 2

+ 2w1,1

(
3

4
w2
1,1 − 1

2
w0,0w2,2 − w0,0w2,0

)
sin(v)

}
e3 + O(e4). (68)

Now we have the expressions for w(v) and ψ(v); thus, ξ(v) = aw(v) cos
(
ψ(v) + b

)
can

be calculated. It is left to determine the constants a and b, which are controlled by the
initial conditions ξ(0) ≡ ξ0 and ξ ′(0) ≡ ξ ′

0. As the differential equations are second-order
linear differential equations with periodic coefficients, the initial conditions can be arbitrary;
therefore, we use the simple conditions of x0 = 1, y0 = 1, vx0 = 0, vy0 = 0, from which
ξ1,0, ξ ′

1,0, ξ2,0 and ξ ′
2,0 can be easily achieved. By using the values ξ0 and ξ ′

0,

ξ0 = aw(0) cos
(
ψ(0) + b

)
, ξ ′

0 = aw′(0) cos
(
ψ(0) + b

) − 1

w(0)
sin

(
ψ(0) + b

)
, therefore

a =
√

(
w′(0)ξ0 − ξ ′

0w(0)
)2 +

(
ξ0

w(0)

)2
, b = arccos

(
ξ0

aw(0)

)
− ψ(0).

(69)

At the end, the only task is to use the transformations detailed in Eqs. (37), calculate y(1)
2 and

y(2)
2 with Eq. (33), then turn back to the x, y coordinates as x = y(1)

1 +y(2)
1 and y = y(1)

2 +y(2)
2 .

4 Illustrations and discussion

The prominent example of co-orbital dynamics is the Sun–Jupiter–Trojan configuration in our
own Solar system. We apply the perturbative solution described in Sect. 3.1 to this structure
first. Figure 3 depicts the trajectory around the Sun–Jupiter triangular Lagrangian point. The
integration time is 20 periods of Jupiter (ca. 240 years). The analytic and numerical solutions
match perfectly, although after some time (∼ 38 − 40 periods) they start to deviate.

Recently, Lillo-Box et al. (2018) have studied the physical parameters and dynamical
properties of possible exo-Trojans in systems with close-in (orbital period < 5 days) planets.
We selected two of them, HAT-P-20b (e = 0.015, μ = 0.0091) and WASP-36b (e =
0.0, μ = 0.0021), to provide the analytic solution in these regimes1. The orbits are plotted
in Fig. 4a and b, respectively. The panels show the paths for T=20 periods again. Due to the
zero eccentricity of the planet, the analytic solution for WASP-36b remains very close to the
numerical outcome for much longer times.

1 The orbital periods are HAT-P-20b : 2.87 days, WASP-36b : 1.53 days.
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Fig. 4 Perturbative solution for particular exoplanetary systems. Initial conditions are the same as in Fig. 2.
For parameters, see the main text

Considering the Earth–Moon system with e = 0.054 and μ = 0.012, it falls close to the
limit of third-order solution. The analytic solution diverges after 5–6 revolutions (∼ 130−150
days) of the Moon. We have seen that for the Sun–Jupiter system the analytic curve traces
the numerical method reasonably well, while the eccentricity falls into the same range.
In addition, we have found that the rather large mass parameter—compared to planetary
systems—does not affect the precision of the analytic solution provided the eccentricity is
small enough, practically zero. This is, however, not the case for the Moon. Consequently,
systems with moderate nonzero eccentricity and mass parameter of the same size require an
improved analytical solution, e.g., higher-order expansion in mass.

In this work, we described the motion around the triangular Lagrangian points using
Hill’s equations. As a perturbative solution, a third-order expansion of Floquet function
w(v) in eccentricity was presented. This method is capable to follow analytically the orbit
of a massless particle around the equilibrium points L4 and L5 in the ERTBP. A precise
trajectory forecast for moderate eccentricity (e ≤ 0.05) and mass parameter (μ ≤ 0.005) is
achievable for tens of secondary’s orbital periods.
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