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Abstract
This paper presents a collection of analytical formulae that can be used in the long-term
propagation of the motion of a spacecraft subject to low-thrust acceleration and orbital per-
turbations. The paper considers accelerations due to: a low-thrust profile following an inverse
square law, gravity perturbations due to the central body gravity field and the third-body
gravitational perturbation. The analytical formulae are expressed in terms of non-singular
equinoctial elements. The formulae for the third-body gravitational perturbation have been
obtained starting from equations for the third-body potential already available in the lit-
erature. However, the final analytical formulae for the variation of the equinoctial orbital
elements are a novel derivation. The results are validated, for different orbital regimes, using
high-precision numerical orbit propagators.

Keywords First-order expansion · Analytical solutions · Low-thrust trajectories

1 Introduction

This paper is an extension of the work presented in Zuiani and Vasile (2012) and Zuiani
and Vasile (2015) and in Di Carlo et al. (2017b). In these works, analytical formulae were
derived for the motion of a spacecraft subject to constant tangential acceleration, constant
acceleration in the radial–transverse–normal reference frame, constant acceleration in an
inertial reference frame, and orbital perturbations due to the second-order zonal harmonic of
the central body gravitational perturbation, J2. The analytical formulae were obtained using
a first-order expansion in the perturbing acceleration.
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In this paper, the analytical formulae presented in Zuiani and Vasile (2012, 2015) and Di
Carlo et al. (2017b) are extended in two ways: we derive first-order analytical expressions for
the zonal harmonics J3, J4, J5 and the third-body gravitational perturbation, and we derive
analytical formulae for the effect of an acceleration profile following an inverse square law.
This acceleration profile is typically provided by solar electric propulsion systems or solar
sails and will be referred to, in the rest of this paper, as low-thrust acceleration. Analytical
formulae for the atmospheric drag were previously presented in Di Carlo et al. (2017b) and
included the coupling with J2.

One of the first works, in the literature, on the definition of analytical solutions for the
orbital motion subject to Earth’s asymmetric gravitational perturbations was presented in
Brouwer (1959). Brouwer proposed analytical solutions in canonical Delaunay variables for
all inclinations but the critical value of 63.4 degrees. Contributions of zonal harmonics up
to J5 were considered, and equations were derived for the secular terms, the long periodic
terms and the short periodic terms. In Kozai (1959), solutions were proposed in classical
orbital elements for the perturbations of J2, J3 and J4, using a different set of equations
for the specific cases of small eccentricity and small inclination. Deprit (1981) proposed the
elimination of the parallax, a technique bywhich, when the perturbation affecting aKeplerian
motion is proportional to r−n with n ≥ 3, a canonical transformation of Lie type will convert
the system into a quasi Keplerian one. In this system, the perturbation is proportional to
r−2. The theory was originally formulated in Hill variables, but it was later shown in Lara
et al. (2014) that it can be achieved in Delaunay variables Lara et al. (2014). Kechichian
(2008) presented analytical expressions for the accelerations due to J3 and J4 expressed in
equinoctial elements; he then derived analytical derivatives of the accelerations with respect
to the equinoctial elements. No closed-form solution for the variation of the orbital elements
was derived starting from the analytical equations presented by Kechichian. On the contrary,
in this paper, closed-form solutions for the variation of the equinoctial elements are presented,
for zonal harmonics up to J5.

An expression for the gravitational potential of a third-body perturbing object was pre-
sented in Kaula (1962) as an expansion in the classical orbital elements, using Hansen
functions. Cefola et al. (1974) presented equations for the third-body potential in non-singular
equinoctial elements. In particular, the potential was expressed as the sum of terms dependent
on Legendre polynomials of cosψ , where ψ is the angle between the spacecraft vector and
the third-body vector. The angle ψ was expressed in terms of the true longitude and of two
direction cosines of the third-body position vector relative to the equinoctial frame. Cefola
provided equations for different terms of the expansion of the potential and for their deriva-
tives with respect to the equinoctial elements, but he did not provide closed-form solutions
for the variation of the orbital elements due to the third-body gravitational perturbations.
An expansion in non-singular elements using Legendre polynomials was also presented in
Giacaglia (1975). The mathematical formulation was, however, different from the one pre-
sented by Cefola.

Recent work by Bombardelli et al. (2011) derived analytical asymptotic equations for the
motion of satellites under the effect of constant tangential acceleration in regularised orbital
parameters.

This brief survey of the existing literature on the derivation of analytical formulas for the
perturbed motion of a spacecraft shows that a number of solutions already exist in different
parameterisations. However, to the author’s knowledge, analytical equations in non-singular
equinoctial elements for the motion of a spacecraft subject to the forces considered in this
paper are not present in the literature.
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The paper is structured as follows: the theoretical background for the development of the
analytical solutions is presented in Sect. 2. Sections 3, 4 and 5 present the mathematical
derivation of the equations relative to the perturbations and low-thrust acceleration included
in this work. Finally, Sect. 6 discusses the validation of the analytical formulae against high-
precision numerical orbit propagators. Section 7 concludes the paper.

2 First-order analytical solution in non-singular equinoctial parameters

In this work, the motion of the spacecraft is described in non-singular equinoctial elements,
in order to avoid singularities when the eccentricity or inclination of the orbit is zero. The
set of equinoctial elements, as defined by Broucke and Cefola (1972), is

a,

P1 = e sin (� + ω) ,

P2 = e cos (� + ω) ,

Q1 = tan
i

2
sin�,

Q2 = tan
i

2
cos�,

L,

(1)

where L = � + ω + θ is the true longitude. The perturbing acceleration is expressed in a
radial–transverse–normal reference frame (RTN).

Any perturbing acceleration to the Keplerian orbital motion (including low-thrust propul-
sion actions) is, therefore, expressed in the RTN frame as:

f =
⎡
⎣
fR
fT
fN

⎤
⎦ . (2)

The Gauss’ planetary equations, expressed in terms of equinoctial elements, equinoctial
elements, are, as presented in Battin (1987):

da

dt
= 2

B

√
a3

μ
[(P2 sin L − P1 cos L) fR + �(L) fT ] ,

dP1
dt

= B

√
a

μ

[
− fR cos L +

(
P1 + sin L

�(L)
+ sin L

)
fT − P2

Q1 cos L − Q2 sin L

�(L)
fN

]
,

dP2
dt

= B

√
a

μ

[
fR sin L +

(
P2 + cos L

�(L)
+ cos L

)
fT + P1

Q1 cos L − Q2 sin L

�(L)
fN

]
,

dQ1

dt
= B

2

√
a

μ

(
1 + Q2

1 + Q2
2

) sin L

�(L)
fN ,

dQ2

dt
= B

2

√
a

μ

(
1 + Q2

1 + Q2
2

) cos L
�(L)

fN .

(3)
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Fig. 1 Terms of Eq. (6) for
different values of L: SSO orbit
(Table 2) subject to J2 and to
low-thrust acceleration directed
along N
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In Eq. (3), B and �(L) are defined as:

B =
√
1 − e2 =

√
1 − P2

1 − P2
2 , (4)

�(L) = 1 + e cos θ = 1 + P1 sin L + P2 cos L . (5)

The sixth Gauss’ equation for dL/dt is, as presented in Kechichian (1997):

dL

dt
=

√
μ

a

�2

B3 −
√
a3

μ

B

�
fN (Q1 cos L − Q2 sin L) . (6)

Under the assumption that the perturbing acceleration is small compared to the local cen-
tral body’s Keplerian gravitational acceleration, Zuiani et al. (2012) obtained the following
approximation of Eq. (6):

dt

dL
≈

√
a3

μ

B3

�2(L)
. (7)

The validity of the approximation in Eq. (7) is shown in Fig. 1. Figure 1 shows the first and
second terms of Eq. (6), representing, respectively, the effect of the central body’s Keplerian
gravitational acceleration and the effect of the perturbations fN . The results are relative to
the SSO orbit defined in Table 2 and are obtained considering the perturbations due to J2 and
to a low-thrust acceleration aligned along the N direction. These accelerations are expected
to be the biggest among the ones considered in this work; therefore, any other acceleration
will have a smaller contribution to the second term of Eq. (6). Figure 1 shows that the second
term of Eq. (6) is more than 3 order of magnitudes smaller than the first term.

Combining Eqs. (3) and (7), the variations of the equinoctial elements with the true
longitude can be expressed as:
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da

dL
=2a3B2

μ

[
(P2 sin L − P1 cos L)

�2(L)
fR + 1

�(L)
fT

]
,

dP1
dL

=a2B4

μ

{[
− cos L

�2(L)
fR +

(
P1 + sin L

�3(L)
+ sin L

�2(L)

)
fT

]
− P2

Q1 cos L − Q2 sin L

�3(L)
fN

}
,

dP2
dL

=a2B4

μ

{[
sin L

�2(L)
fR +

(
P2 + cos L

�3(L)
+ cos L

�2(L)

)
fT

]
+ P1

Q1 cos L − Q2 sin L

�3(L)
fN

}
,

dQ1

dL
=a2B4

2μ

(
1 + Q2

1 + Q2
2

) sin L

�3(L)
fN ,

dQ2

dL
=a2B4

2μ

(
1 + Q2

1 + Q2
2

) cos L

�3(L)
fN .

(8)

A first-order analytical solution to Eq. (8) can be generated with the method of perturbations,
as presented inVallado (2007). The idea at the basis of themethodof perturbations is that small
disturbing forces cause small deviations from the known solution to the unperturbed problem.
The small perturbing forces can be associated with small parameters which characterise the
magnitude of the disturbing forces. If one calls X the state of the spacecraft expressed in
terms of equinoctial elements,X = [a, P1, P2, Q1, Q2, L]T , and the reduced vector with no
true longitude X̃ = [a, P1, P2, Q1, Q2]T , Eqs. (8) can be rewritten in compact form as

dX̃
dL

= εF
(
X̃, L

)
, (9)

where ε = ‖f‖. One can then look for the first-order approximation of the solution to Eq.
(8) in the form

X̃ ≈ X̃0 + εX̃1
(
X̃0, L0, L, F

)
, (10)

where

X̃1 =
∫ L

L0

F
(
X̃0,L

)
dL , (11)

and X̃0 represents the vector of initial conditions X̃0 = [a0, P10, P20, Q10, Q20]T . An ana-
lytical solutions of Eq. (11) was previously presented in Zuiani and Vasile (2015) and in Di
Carlo et al. (2017b) for some orbital perturbations and low-thrust profiles. In particular, in
Zuiani and Vasile (2015) it was shown that the analytical formulas in osculating elements
can be used to efficiently propagate moderately long spirals composed of several tens of
orbital revolutions. In this case, an analytical formula can be derived also for the variation
of time with the true longitude L (see Eq. (7)). However, in this work the time equation is
integrated with a quadrature method, as proposed in Zuiani and Vasile (2015) because it does
not increase the computational time and provides accurate results.

For longer spirals, an averaged propagation of the orbital elements is implemented; the
variation of the equinoctial elements is, in this case, computed as

X̄(t) = X̄0 +
∫ t

t0

˙̄X (
τ, X̄ (τ )

)
dτ, (12)

where ˙̄X = ε F̄(X̄0), (13)

and

F̄(X̄0) = 1

2π

∫ 2π

0
F(X̄0,L)dL . (14)
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We note that if one takes X̃0 = X̄0, then integral (11) can be used to compute integral (14)
analytically. According to Verhulst (1990) (see page 161 and following), the approximation
is O(ε2) and remains small on a time scale that is proportional to 1/ε.

While the integrals in Eq. (11) are computed analytically, the time integral in Eq. (12)
is computed numerically; the resulting averaged propagator is, therefore, a semi-analytical
method. In the remainder of this paper, we will focus on the averaged formulation only. By
using this approach, the authors have derived analytical formulae for the following acceler-
ations and orbital perturbations:

1. second zonal harmonic of the Earth’s gravitational perturbation, J2 (as in Zuiani and
Vasile 2015);

2. third, fourth and fifth zonal harmonics of the Earth’s gravitational perturbation, J3, J4, J5
(Sect. 3);

3. atmospheric drag (as in Di Carlo et al. 2017b);
4. solar radiation pressure, including eclipses (as in Zuiani and Vasile 2015);
5. third-body gravitational perturbation (Sect. 4);
6. constant tangential acceleration (as in Zuiani and Vasile 2015);
7. constant acceleration in a radial–transverse–normal reference frame (as in Zuiani and

Vasile 2015);
8. acceleration with constant direction in a radial–transverse–normal reference frame, and

with magnitude of the acceleration proportional to 1/r2�, where r� is the distance from
the central body (Sun) (Sect. 5);

9. constant acceleration in an inertial reference frame (as in Zuiani and Vasile 2015).

In the following sections, we will present only the development of the analytical formulae
for the zonal harmonic J3, J4 and J5, the third-body gravitational attraction and the inverse-
square low-thrust acceleration. In the examples that follow, we will demonstrate the validity
of our formulae at computing an averaged solution as in Eq. (12), including all the effects
presented in this paper and in previous works.

3 Analytical formulae for the effects of J3, J4 and J5

The potential due to the zonal terms of the Earth’s gravity field is given in Vallado (2007):

U = −Gm⊕
r

∞∑
l=2

Jl

(
R⊕
r

)l

Pl (sin δ) . (15)

In Eq. (15), r is the distance of the considered point from the centre of mass of the Earth, δ is
its declination,G is the gravitational constant,m⊕ is the mass of the Earth, R⊕ its radius, and
Pl are the Legendre polynomials of order l in sin δ as reported in Abramowitz and Stegun
(1972):

Pl(x) = 1

2l l!
dl

dxl

[(
x2 − 1

)l]
. (16)

The expression for the coordinate z, z = r sin δ, is used to substitute sin δ = z/r in Eq. (15).
The perturbing acceleration due to Jl can be computed from the gradient of the associated
potential UJl as

fJl = ∇UJl = ∂UJl

∂r
îR + ∂UJl

∂z
k̂ , (17)
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Table 1 Non-normalised values of J2, J3, J4 and J5 for Earth, Moon, Mars and Venus (Moon gravity model:
LP165P, Mars gravity model: GMM-1 and Venus gravity model: Magellan 180U)

Earth Moon Mars Venus

J2 1.0826e-3 2.0323e-4 1.9555e-3 4.4044e-6

J3 −2.5327e-6 8.4759e-6 −3.1501e-5 2.1082e-6

J4 −1.6196e-6 9.5919e-6 1.5448e-5 2.1474e-6

J5 −2.2730e-7 -7.1541e-7 −5.8489e-6 -4.6694e-7

where îR is the versor of theRTN reference frame and k̂ is the z-component versor of the Earth
Centred Inertial (ECI) reference frame, as presented in Vallado (2007). The components of
the perturbing acceleration due to Jl can be expressed, in the RTN reference frame, as:

f Jl R = fJl · îR = ∂UJl

∂r
+ ∂UJl

∂z
k̂ · îR,

f Jl T = fJl · îT = ∂UJl

∂z
k̂ · îT ,

f Jl N = fJl · îN = ∂UJl

∂z
k̂ · îN .

(18)

The scalar products in the previous equations are

k̂ · îR = sin i sin u,

k̂ · îT = sin i cos u,

k̂ · îN = cos i ,

(19)

where u is the argument of latitude. The analytical formulae for the variation of the equinoctial
orbital elements under the effect of J3, J4 and J5 perturbations are derived in the following
subsections.

Note that for Earth’s orbits, the value of the zonal coefficients are such that the terms J3
and J4 are of order J 22 . However, this is not true for other celestial bodies. Table 1 reports
the value of the zonal coefficients from J2 to J5, for Earth, Moon, Mars and Venus. Table 1
shows that for Moon and Venus, J5 is larger than J 22 , while for Mars J4 is larger than J 22 .

3.1 Analytical formulae for the effect of J3

The potential due to J3 is

UJ3 = −μ⊕
r

J3

(
R⊕
r

)3

P3 (sin δ) = −μ⊕
r

J3

(
R⊕
r

)3 (5

2

z3

r3
− 3

2

z

r

)
, (20)

where μ⊕ = Gm⊕ is the Earth’s gravitational parameter and P3(x) is:

P3 (x) = 1

2

(
5x3 − 3x

)
. (21)

The derivatives of the potential with respect to r and z are:

dUJ3

dr
= 1

2
μ⊕ J3

R3⊕
r5

(
z3

r3
− 15

z

r

)
, (22)
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dUJ3

dz
= 3

2
μ⊕ J3

R3⊕
r5

(
1 − 5

z2

r2

)
. (23)

Using Eqs. (18), the components of the perturbing acceleration due to J3 are:

f J3R = 2μ⊕ J3
R3⊕
r5

sin i sin u
(
5 sin2 i sin2 u − 3

)
,

f J3T = 3

2
μ⊕ J3

R3⊕
r5

sin i cos u

(
1 − 5

z2

r2

)
,

f J3N = 3

2
μ⊕ J3

R3⊕
r5

cos i

(
1 − 5

z2

r2

)
.

(24)

The terms in i and u in Eqs. (24) can be expressed in terms of the equinoctial elements.
Moreover, using

r = a(1 − e2)

1 + e cos θ
= aB2

�(L)
, (25)

it is possible to obtain the three components of the perturbing acceleration expressed in terms
of equinoctial elements:

f J3R = 4μ⊕ J3R
3⊕

�5(L)

a5B10

(
Q2 sin L − Q1 cos L

S

)[
20 (Q2 sin L − Q1 cos L)2

S2
− 3

]
,

f J3T = 3μ⊕ J3R
3⊕

�5(L)

a5B10

(
Q2 cos L + Q1 sin L

S

)[
1 − 20 (Q2 sin L − Q1 cos L)2

S2

]
,

f J3N = 3

2
μ⊕ J3R

3⊕
�5(L)

a5B10

(
1 − Q2

1 − Q2
2

)
S

[
1 − 20 (Q2 sin L − Q1 cos L)2

S2

]
,

(26)

where S = 1 + Q2
1 + Q2

2. The accelerations in Eqs. (26) are substituted in Eq. (8). After

integration, the following expression for X̃J3
1 (Eq. 10) is obtained:

X̃J3
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

a0
(
B8
0 S

3
0

)−1 (
8 IJ3,a,1 + 6 IJ3,a,2

)
(
B6
0 S

3
0

)−1 [
IJ3,P1 − (3/2) P20

(
1 − Q2

10 − Q2
20

)
IJ3,P1,P2

]
(
B6
0 S

3
0

)−1 [
IJ3,P2 + (3/2) P10

(
1 − Q2

10 − Q2
20

)
IJ3,P1,P2

]
(3/4)

(
B6
0 S

2
0

)−1 (
1 − Q2

10 − Q2
20

)
IJ3,Q1

(3/4)
(
B6
0 S

2
0

)−1 (
1 − Q2

10 − Q2
20

)
IJ3,Q2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (27)

The contribution of J3 to Eq. (10) can be obtained using X̃J3
1 and εJ3 = J3R3⊕a−3

0 . The
integrals IJ3,a,1, IJ3,a,2, IJ3,P1 , IJ3,P2 , IJ3,P1,P2 , IJ3,Q1 and IJ3,Q2 in Eqs. (27) are reported in
“Appendix A”. They are computed analytically using the software Wolfram Mathematica1

3.2 Analytical formulae for the effect of J4

The potential due to J4 is expressed as:

UJ4 = μ⊕ J4
8

R4⊕
r5

[
35

z4

r4
− 30

z2

r2
+ 3

]
. (28)

1 https://www.wolfram.com/mathematica/
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Following the same approach used for J3, the components of the perturbing accelerations
are:

f J4R =μ⊕ J4R
4⊕

8B12a6
�(L)6

[
2800

S4
(Q2 sin L − Q1 cos L)4 − 600

S2
(Q2 sin L − Q1 cos L)2 + 15

]
,

f J4T = − μ⊕ J4R
4⊕

S2B12a6
�6(L)

[
280

S2
(Q2 sin L − Q1 cos L)2 − 30

]
(Q2 cos L + Q1 sin L)

(Q2 sin L − Q1 cos L) ,

f J4N = − μ⊕ J4R
4⊕

S2B12a6

(
1 − Q2

1 − Q2
2

)
�(L)6

[
140

S2
(Q2 sin L − Q1 cos L)2 − 15

]

(Q2 sin L − Q1 cos L) .

(29)

The resulting expression for X̃J4
1 is:

X̃J4
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

a0
(
B10
0 S40

)−1 (
(1/4) IJ4,a,1 − 2IJ4,a,2

)
− (

B8
0 S

4
0

)−1 [
IJ4,P1 + P20(1 − Q2

10 − Q2
20)IJ4,P1,P2

]
(
B8
0 S

4
0

)−1 [
IJ4,P2 + P10(1 − Q2

10 − Q2
20)IJ4,P1,P2

]
(1/2)

(
2B8

0 S
3
0

)−1 (
1 − Q2

10 − Q2
20

)
IJ4,Q1

(1/2)
(
2B8

0 S
3
0

)−1 (
1 − Q2

10 − Q2
20

)
IJ4,Q2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (30)

The contribution of J4 to Eq. (10) can be obtained using X̃J4
1 and εJ4 = J4R4⊕a−4

0 . The
integrals in Eqs. (30) are reported in Appendix A.

3.3 Analytical formulae for the effect of J5

The potential due to J5 is:

UJ5 = −μ⊕ J5R5⊕
8

z

r7

(
63

z4

r4
− 70

z2

r2
+ 15

)
. (31)

The components of the corresponding perturbing acceleration are:

f J5R =μ⊕ J5R5⊕
2SB14a7

�7(L) (Q2 sin L − Q1 cos L)

[
3024

S4
(Q2 sin L − Q1 cos L)4 +

−840

S2
(Q2 sin L − Q1 cos L)2 + 45

]
,

f J5T = − μ⊕ J5R5⊕
4SB14a7

�7(L) (Q2 cos L + Q1 sin L)

[
5040

S4
(Q2 sin L − Q1 cos L)4 +

−840

S2
(Q2 sin L − Q1 cos L)2 + 15

]
,

f J5N = − μ⊕ J5R5⊕
8SB14a7

�7(L)
(
1 − Q2

1 − Q2
2

) [5040
S4

(Q2 sin L − Q1 cos L)4 +

−840

S2
(Q2 sin L − Q1 cos L)2 + 15

]
.

(32)
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The resulting expression for X̃J5
1 is:

X̃J5
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

a0
(
S50 B

12
0

)−1
IJ5,a

−(1/2)
(
S50 B

10
0

)−1 [
IJ5,P1 − (1/4)P20

(
1 − Q2

10 − Q2
20

)
IJ5,P1,P2

]
−(1/2)

(
S50 B

10
0

)−1 [
IJ5,P2 + (1/4)P10

(
1 − Q2

10 − Q2
20

)
IJ5,P1,P2

]
− (1/16)

(
B10S40

)−1 (
1 − Q2

10 − Q2
20

)
IJ5,Q1

− (1/16)
(
B10S40

)−1 (
1 − Q2

10 − Q2
20

)
IJ5,Q2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (33)

The contribution of J5 to Eq. (10) can be obtained using X̃J5
1 and εJ5 = J5R5⊕a−5

0 . The
integrals in Eqs. (33) are reported in Appendix A.

4 Third-body perturbations

Similarly to the aspherical gravitational potential of the previous section, the third-body
potential is commonly written as a sum of Legendre polynomials written using the Legendre
polynomialsPn (Eq. 35), as in Vallado (2007). Our work here is similar to that of Cefola et al.
(1974); however, instead of using the Lagrange VOP equations, we obtain the corresponding
accelerations and introduce them in the Gauss VOP equations. Furthermore, instead of just
obtaining averaged solutions, we also obtain osculating solutions.

In this section, n refers to the order of the polynomial. The quantities r and r̂ refer to
the norm and normalised vector of the position of the satellite relative to the Earth. The
third-body disturbing potential can be written as

R3rd =
∞∑
n=2

RPn , (34)

where RPn refers to the disturbing third-body potential of Legendre polynomial order n and
is given by:

RPn = −μ3

R3

∑
n

(
r

R3

)n

Pn(r̂ · R̂3) . (35)

In Eq. (35), R3 and R̂3 are the norm and normalised vector of the position of the third-body
relative to Earth. We can now obtain fPn , the acceleration vector caused by this perturbation,
by taking its gradient:

fPn = μ3

R3

(
r

R3

)n 1

r

(
nr̂Pn(r̂ · R̂3) + (R̂3 − r̂(R̂3 · r̂))P ′

n(r̂ · R̂3)
)

, (36)

where P ′
n is the derivative of the Legendre polynomial. The exact third-body acceleration is

f3rd = ∑∞
n=2 fPn . We approximate to order n = 5.

To obtain these accelerations in the RTN frame, they are first calculated in the equinoctial
frame and then rotated. Therefore, in the following equations, the vector r̂ will be expressed
in the equinoctial reference frame. The equinoctial reference frame is defined as having the
x axis pointing towards the satellite when L = 0, the z direction along the direction of the
angular momentum, and y, in order to complete the right-handed system, pointing towards
the satellite when L = π/2. In this frame, the quantity r̂ in Eq. (36) is

r̂ = [cos L, sin L, 0]T , (37)
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and we use the same direction cosines as in Cefola et al. (1974):

R̂3 = [
α3rd , β3rd , γ3rd

]T
,

r̂ · R̂3 = α3rd cos L + β3rd sin L ,

(R̂3 − r̂(R̂3 · r̂)) =
⎡
⎣

−β3rd cos L sin L + α3rd sin2 L
−α3rd cos L sin L + β3rd cos2 L
γ3rd

⎤
⎦ .

(38)

Introducing the equations above into the formula for the acceleration will give us the accel-
eration in the equinoctial reference frame, which can be converted to RTN using

f RT N
3rd = Rz[−L]fequin

3rd
, (39)

where Rz[−L] is the rotation matrix that rotates about the z axis of an angle L . Defining the
function F as

F (n)
l (L; cmn, smn) = 1

�n+l(L)

∑
m

cmn cosmL + smn sinmL , (40)

the acceleration can be written as:

f R3rd =
5∑

n=2

μ3(aB2)n−1

Rn+1
3

F (n)
−1 (L; cRmn, s

R
mn) ,

f T3rd =
5∑

n=2

μ3(aB2)n−1

Rn+1
3

F (n)
−1 (L; cTmn, s

T
mn) ,

f N3rd =
5∑

n=2

μ3(aB2)n−1

Rn+1
3

F (n)
−1 (L; cNmn, s

N
mn) .

(41)

The values of the coefficients c and s are presented in Appendix B.1. These formulas were
obtained using Wolfram Mathematica. Using the following properties of the function F ,

�k Fl(L; cmn, smn) = Fl−k(L; cmn, smn) ,

cos L Fl(L; cmn, smn) = 1

2
Fl(L; cm−1;n + cm+1;n, sm−1;n + sm+1;n) ,

sin L Fl(L; cmn, smn) = 1

2
Fl(L; sm+1;n − sm−1;n, cm−1;n − cm+1;n) ,

(42)
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we can insert the formula for the acceleration in the Gauss’ equations, multiply by dt/dL
(Eq. (7)) and obtain the following equations:

da

dL
= 2ε3rd a

5∑
n=2

B2n an+1

a20R
n−1
3

F (n)
1 (L; c(1)

mn, s
(1)
mn) ,

dP1
dL

= ε3rd

5∑
n=2

B2n+4 an+1

a20R
n−1
3

(
F (n)
2 (L; c(2)

mn, s
(2)
mn) + F (n)

1 (L; c(3)
mn, s

(3)
mn)

)
,

dP2
dL

= ε3rd

5∑
n=2

B2n+4 an+1

a20R
n−1
3

(
F (n)
2 (L; c(4)

mn, s
(4)
mn) + F (n)

1 (L; c(5)
mn, s

(5)
mn)

)
,

dQ1

dL
= 1

4
ε3rd S

5∑
n=2

B2n+4 an+1

a20R
n−1
3

F (n)
2 (L; sNm+1,n − sNm−1,n, c

N
m+1,n + cNm−1,n) ,

dQ2

dL
= 1

4
ε3rd S

5∑
n=2

B2n+4 an+1

a20R
n−1
3

F (n)
2 (L; cNm+1,n + cNm−1,n,−sNm+1,n + sNm−1,n) ,

(43)

where ε3rd is given by

ε3rd = μ3

μ

a20
R2
3

, (44)

and the coefficients are defined as, using cm as short hand for cmn :

c(1)
m = 1

2

(
P1(−cRm+1 − cRm−1 − sTm−1 + sTm+1)

+P2(s
R
m+1 − sRm−1 + cTm−1 + cTm+1)

)
+ cTm ,

s(1)
m = 1

2

(
P1(s

R
m+1 − sRm−1 + cTm−1 − cTm+1)

P2(−cRm+1 + cRm−1 + sTm−1 + sTm+1)
)

+ sTm ,

c(2)
m = P1c

T
m + 1

2

(
sTm+1 − sTm−1 − P2(+(cNm+1 + cNm−1)Q1 − (sNm+1 − sNm−1)Q2)

)
,

s(2)
m = P1s

T
m + 1

2

(
cTm+1 + cTm−1 − P2(−(cNm+1 + cNm−1)Q2 − (sNm+1 − sNm−1)Q1)

)
,

c(3)
m = 1

2

(
−cRm+1 − cRm−1 + sTm+1 − sTm−1

)
,

s(3)
m = 1

2

(
+sRm+1 − sRm−1 + cTm+1 + cTm−1

)
,

c(4)
m = P2c

T
m + 1

2

(
cTm+1 + cTm−1 + P1(+(cNm+1 + cNm−1)Q1 − (sNm+1 − sNm−1)Q2)

)
,

s(4)
m = P2s

T
m + 1

2

(
−sTm+1 + sTm−1 + P1(−(cNm+1 + cNm−1)Q2 − (sNm+1 − sNm−1)Q1)

)
,

c(5)
m = 1

2

(
sRm+1 − sRm−1 + cTm+1 + cTm−1

)
,

s(5)
m = 1

2

(
cRm+1 + cRm−1 − sTm+1 + sTm−1

)
. (45)
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Because the third-body moves along its orbit, the coefficients c and s, which depend solely
on the direction cosines, vary as well as the value of R3. In order to capture this effect, one
would have to express the motion of the third-body as a function of L . Alternatively, one can
split the calculation of integral (11) into segments and change the position of the third-body
on each segment. In this paper, however, we use the simplifying assumption that the third-
body moves slowly with respect to the orbital motion of the spacecraft. Thus, the averaging
integral is computed keeping the position of the third-body constant. By applying integral
(11) to the right hand side of Eqs. (43), one obtains the system

X̃3rd
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2a0
∑5

n=2 B
2n
0

(
a0
R3

)n−1
G(n)

1 (L; c(1)
mn, s

(1)
mn)

∑5
n=2 B

2n+4
0

(
a0
R3

)n−1 (
G(n)

2 (L; c(2)
mn, s

(2)
mn) + G(n)

1 (L; c(3)
mn, s

(3)
mn)

)

∑5
n=2 B

2n+4
0

(
a0
R3

)n−1 (
G(n)

2 (L; c(4)
mn, s

(4)
mn) + G(n)

1 (L; c(5)
mn, s

(5)
mn)

)

1
4 S0

∑5
n=2 B

2n+4
0

(
a0
R3

)n−1
G(n)

2 (L; sNm+1 − sNm−1, c
N
m+1 + cNm−1)

1
4 S0

∑5
n=2 B

2n+4
0

(
a0
R3

)n−1
G(n)

2 (L; cNm+1 + cNm−1,−sNm+1 + sNm−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (46)

where
G(n)

l (L; cmn, smn) =
∑
m

cmn I
c
m,n+l + smn I

s
m,n+l . (47)

The integrals I cm,n+l and I sm,n+l are defined as

I cm,n+l =
∫ L

L0

cosmL
�n+l(L)

dL ,

I sm,n+l =
∫ L

L0

sinmL
�n+l(L)

dL ,

(48)

and their formulas are presented in Appendix B.2. The third-body perturbation is obtained
by using X̃3rd

1 and ε3rd in Eq. (10).

5 Low-thrust propulsion following an inverse square law

For solar electric propulsion (SEP) applications or solar sails, it is assumed that the accel-
eration of the propulsion system decreases as the distance from the Sun increases. This is
modelled by considering the following inverse square law expression for the magnitude of
the acceleration

ε = ε̃/(r/r̃)2 , (49)

where ε̃ is a reference acceleration, delivered by the propulsion system at a distance from the
Sun equal to r̃ . The distance of the spacecraft from the central body, r , can be expressed as
in Eq. (25). The magnitude of the acceleration is, therefore,

ε̃r̃2
�(L)2

a2B4 , (50)

and the acceleration vector can be expressed as:

fLT = ε̃r̃2
�(L)2

a2B4

⎡
⎣
cosβ cosα′
cosβ sin α′

sin β

⎤
⎦ . (51)
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Fig. 2 Perturbing acceleration in
the RTN reference frame and
representation of the angles α, α′
and β

In Eq. (51), α′ and β are the in-plane azimuth and out-of-plane elevation angle of the acceler-
ation vector in the RTN reference frame. In this paper, the notation is consistent with Zuiani,
Zuiani and Vasile (2015), who measured the in-plane angle of the perturbing acceleration
from the radial direction, rather than from the classic transverse direction. In order to avoid
confusion with the notation traditionally used in the literature, in this paper the in-plane thrust
angle will be therefore identified as α′, where α′ = π/2 − α and α is the angle measured
from the transverse direction (see Fig. 2).

Due to the introduction of the angles α′ and β, in the case of low-thrust acceleration, Eqs.
(9) and (11) are replaced, respectively, by

dX̃
dL

= εF
(
X̃, L, α′, β

)
(52)

and

X̃1 =
∫ L

L0

F
(
X̃,L, α′, β

)
dL . (53)

Substituting Eq. (51) into Eqs. (8) and integrating from L0 to L with constant azimuth angle
α′ and elevation angle β results in the following components for X̃1 due to the low-thrust
acceleration:

X̃LT
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2a0B
−1
0 cosβ

[(
P20 cosα′ + P10 sin α′) (cos L0 − cos L)−(

P10 cosα′ − P20 sin α′) (sin L − sin L0) + sin α′ (L − L0)
]

[− cosα′ cosβ (sin L − sin L0) + sin α′ cosβ (− cos L + cos L0)+(
sin α′ cosβ + P20Q20 sin β

)
Is1 − Q10P20 sin β Ic1 + P10 sin α′ cosβ I11

]

[
cosα′ cosβ (cos L0 − cos L) + sin α′ cosβ (sin L − sin L0) +(

sin α′ cosβ + P10Q10 sin β
)
Ic1 − Q20P10 sin β Is1 + P20 sin α′ cosβ I11

]

(1/2) sin βS0 Is1

(1/2) sin βS0 Ic1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(54)

The contribution of the low-thrust acceleration to Eq. (10) can be obtained using X̃LT
1 and

εLT = ε̃r̃2/μ. The expression for I11 is reported in Zuiani and Vasile (2015). The integrals
Is1 and Ic1 are

Is1 = P10
e20

(L − L0) − P20
e20

log
�(L)

�(L0)
− P10

e20
I11 , (55)

and

Ic1 = P20
e20

(L − L0) + P10
e20

log
�(L)

�(L0)
− P20

e20
I11 . (56)
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If e0 ≈ 0, the following non-singular expressions are used:

Is1 = cos L0 − cos L , Ic1 = sin L − sin L0 . (57)

6 Validation against high-precision numerical propagators

The equations presented in the previous sections and in Zuiani andVasile (2012) andDi Carlo
et al. (2017b) constitute the core of a semi-analytical propagation tool called CALYPSO
(Computational AnaLYtical Propagator of Space Orbits). CALYPSO includes the orbital
perturbations and low-thrust acceleration summarised in Sect. 2.

In this section, we validate the averaged semi-analytical propagation in CALYPSO by
comparing its results against the direct numerical integration of the Gauss’ equations (Eq.
(3)) and against the NASA open-source software General Mission Analysis Tool (GMAT) 2.
As a further validation, we compared our results on the effects of J2 against the J2 propagator
of the AGI software Systems Tool Kit (STK) 3. While the averaged propagator CALYPSO
provides the mean orbital elements of the orbit, GMAT gives as output a set of osculating
orbital elements. In order to be able to compare the results, the initial osculating orbital
elements, used to define the initial state of the orbit in GMAT, are converted into mean orbital
elements. These are then used as initial conditions for the averaged propagator. The method
used to convert from osculating to mean elements is described in Sect. 6.1.

The validation against GMAT accounted for the perturbations due to J2, J3, J4 and J5,
the third-body effect of Sun and Moon, and solar radiation pressure with eclipses. GMAT
was used with the Runge–Kutta 89 integrator with default values for accuracy and step size.4

The direct numerical integration of the Gauss’ planetary equations was used to validate only
the equations resulting from the low-thrust acceleration presented in Sect. 5. The numerical
integration was performed using MATLAB ode113, a variable-step, variable-order Adams–
Bashforth–Moulton predict-evaluate-correct-evaluate solver of order 13. In the following,
therefore, the validation of the low-thrust acceleration is presented separately from the val-
idation of the other analytical formulae. For the low-thrust acceleration, in fact, the aim is
only to verify that the proposed analytical solutions are accurate. Therefore, a comparison
with the numerical integration of the Gauss’ equations is deemed sufficient. For the orbital
perturbations, instead, other factors, such as orbital transformation or ephemeris computa-
tion, might influence the final results. The perturbation due to the atmospheric drag is not
included in the comparison against GMAT, because the analytical solution introduced in Di
Carlo et al. (2017b) would require extracting specific data on the computation of the air
density in GMAT which could not be directly accessed at the time of the comparison. For
more information on the validation of the propagation with atmospheric drag perturbation
against numerical integration of the Gauss’ equations, the interested reader is referred to Di
Carlo et al. (2017b).

2 https://gmat.gsfc.nasa.gov/.
3 https://www.agi.com/products/engineering-tools.
4 http://gmat.sourceforge.net/doc/R2017a/html/Propagator.html.
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6.1 Conversion from osculating tomean elements

This section describes the method used to convert from osculating to mean orbital elements.
Corresponding osculating and mean orbital elements are used as initial conditions for GMAT
and CALYPSO, respectively.

The formula that relates the mean orbital elements X̄(t) to the osculating orbital elements
X(t) is, as in Vallado (2007):

X(t) = X̄(t) + η(X̄(t), t) , (58)

where η contains the short-periodic variations and is defined such that its average over one
orbital period is zero. We write it as

η(t) = X(X0, t) − X̄(X̄0, t) , (59)

whereX0 and X̄0 are the initial osculating andmean orbital elements. The quantitiesX(X0, t)
and X̄(X̄0, t) are the osculating and mean elements, obtained from the integration of Eq. (9)
and Eq. (13), respectively, using X0 and X̄0 as initial conditions. An iterative process is used
to estimate X̄0. Let X̄

(k)
0 be the k-th estimate of the initial mean elements. Since the estimate

X̄(k)
0 is not exact, the difference X(X0, t) − X̄(X̄(k)

0 , t) does not have a zero average over an
orbital period. Thus, the short-periodic variation η is estimated such that its average over a
period is zero by subtracting the average of this quantity, that is,

η(t) ≈ X(X0, t) − X̄(X̄(k)
0 , t) − 1

T

∫ t0+T

t0

[
X(X0, t) − X̄(X̄(k)

0 , t)
]
dt . (60)

The (k + 1)-th estimate of the initial mean elements is then obtained by solving Eq. (58)
with t = t0 for X̄(t0) = X̄0, using Eq. (60):

X̄(k+1)
0 = X̄(k)

0 + 1

T

∫ t0+T

t0

[
X(X0, t) − X̄(X̄(k)

0 , t)
]
dt . (61)

The process starts by using the initial osculating elements X0 as first estimate for X̄(0)
0 . The

iterative process stops when the difference between consecutive estimates is less than 10−6.
This condition is always met for k ≤ 2. For the purpose of obtaining the initial conditions
of CALYPSO, the integral in Eq. (61) and the osculating elements X(X0, t) are computed
numerically.

6.2 Numerical test set-up

Seven different types of orbits are considered in this test set: two low earth orbits (LEO), sun-
synchronous orbit (SSO), medium earth orbit (MEO), geostationary transfer orbit (GTO),
geostationary equatorial orbit (GEO) and high elliptic orbit (HEO). The initial osculating
orbital elements of each orbit are reported in Table 2. These orbits were selected because
they are the orbital regions where Earth orbiting spacecraft operate, and because different
orbit perturbations are preponderant in different orbital regimes.

A 1000 kg mass spacecraft with initial propagation date 21 March 2030, 00:00, is consid-
ered. The spacecraft reflectivity coefficient for the solar radiation pressure coefficient is set to
Cr = 1.3. The area-to-mass ratio for the solar radiation pressure is 0.1 m2/kg. A cylindrical
shadow model is considered for the solar radiation pressure. For the low-thrust acceleration,
the thrust is assumed to be 0.1 N at r̃ = R⊕. The azimuth and elevation angles are set to
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Table 2 Initial osculating orbital
element of the different orbits
used for the validation of the
semi-analytical propagator

a [km] e i [deg] � [deg] ω [deg]

LEO 1 7000 0 45 0 –

LEO 2 8000 0.15 0 – 0

SSO 7200 0.01 98.7183 0 0

MEO 29600 0 56 0 –

GTO 24505 0.725 7 0 0

GEO 42165 0 0 – –

HEO 42165 0.4 63.4 0 270

α′ = 90 deg and β = 30 deg. The variations of the equinoctial elements, for propagations of
one year starting from the initial orbits described in Table 2, are shown in the next subsections.
The analytical equations presented in this paper were developed with the aim of being used
in the context of the optimisation of low-thrust trajectories (as presented in Di Carlo et al.
(2017a, b) and Di Carlo et al. (2017c)), rather than for long-term propagations on times of
the order of hundreds of year. Therefore, a propagation time of one year is deemed sufficient
for validation purposes.

Table 3 reports the computational time, in seconds, required by CALYPSO and by the
numerical integration of the osculating Gauss’ equations (Eq. (3)). Both integrations were
performed using ode45 on MATLAB R2018b, with absolute and relative tolerance equal
to 10−10, on a system with Intel(R) Core(TM) i7-8700 CPU 3.20 GHz with 8GB RAM.
Different sets of perturbations were considered, as reported in Table 3; the last column of
the table gives the reference to the figure where the results of CALYPSO are presented. It
is important to stress that the implementation of CALYPSO was not optimised, and future
work will focus on refactoring it for greater efficiency. At the same time, the advantage of
CALYPSO in terms of computational time is already evident, especially at low altitudes
(LEO1, LEO2, SSO). At higher altitudes on circular orbits, the advantage is less evident.
This is due to the fact that a lower number of integration steps are required by the osculating
numerical integration for high-altitude circular orbits, thus bringing its computational cost
closer to the one of CALYPSO.

The following sections present the comparison of the results of the semi-analytical prop-
agator CALYPSO with those of GMAT and of the numerical integration of the equations of
Gauss, for the orbits defined in Table 2.

6.3 Results for the LEO 1 Orbit Type

In order to show the effect of the different zonal harmonics on orbit LEO 1, Figures from 3
to 6 represent the results of the propagation considering J2 only (Fig. 3), J2 and J3 (Fig. 4),
J2, J3 and J4 (Fig. 5) and J2, J3, J4 and J5 (Fig. 6). It is evident that the biggest contributions
come from J2 and J3; J4 and J5 introduce minor changes.

Figure 7 shows the results of the propagation considering the Earth’s zonal harmonics J2,
J3, J4, J5, Sun andMoon gravitational perturbation and solar radiation pressurewith eclipses;
the results of the semi-analytical propagator (in blue) are in agreement with those of GMAT
(in red), thus demonstrating the validity of the method presented in Sects. 3 and 4 and in
Zuiani and Vasile (2015). Figure 8 presents the results of the propagation with low-thrust
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Fig. 3 Validation against GMAT for orbit LEO 1: J2

Fig. 4 Validation against GMAT for orbit LEO 1: J2 and J3
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Fig. 5 Validation against GMAT for orbit LEO 1: J2, J3 and J4

Fig. 6 Validation against GMAT for orbit LEO 1: J2, J3, J4 and J5
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Fig. 7 Validation against GMAT for orbit LEO 1: J2 to J5, Sun, Moon, SRP and eclipses

acceleration following an inverse square law 1/r2 (Sect. 5). In this case the comparison is
against a numerical integration of the Gauss’ equations.

6.4 Results for the LEO 2 Orbit type

Figure 9 shows the results of the propagation considering the Earth’s zonal harmonics J2, J3,
J4, J5, Sun and Moon gravitational perturbation and solar radiation pressure with eclipses
for orbit LEO 2. Note the long-term effects in the semi-major axis that were captured by
splitting the integral (14) to properly model eclipses. The error in Q1 is due to the fact
that nutation and precession are not modelled in the semi-analytical averaged propagator
CALYPSO; the absence of a model for the nutation and precession affects the acceleration
of the Earth’s gravitational perturbations. The Earth’s gravitational accelerations presented
in Sect. 3 are, in fact, expressed in an Earth-fixed reference frame and should be transformed
into an inertial reference frame before the propagation, as presented inMontenbruck and Gill
(2000). The transformation to the inertial reference frame would take into account Earth’s
nutation and precession. These phenomena are not currently modelled in CALYPSO, but
will be the subject of future works. The effect caused by the lack of model for nutation
and precession will be further discussed for the MEO orbit in Sect. 6.6. Figure 10 presents
the results of the propagation with low-thrust acceleration following an inverse square law
(Sect. 5).
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Fig. 8 Validation against numerical propagation for orbit LEO 1: low-thrust acceleration (Sect. 5)

6.5 Results for the SSO orbit type

Figure 11 shows the results of the propagation with Earth’s zonal harmonic perturbations
due to J2, J3, J4, J5, Sun and Moon gravitational perturbation and solar radiation pressure
with eclipses for the SSO. Figure 12 presents the results of the propagation with low-thrust
acceleration following an inverse square law 1/r2 (Sect. 5).

6.6 Results for theMEO orbit type

This section presents the comparison of the results of the averaged propagator CALYPSO
against those of GMAT and of the direct numerical integration of the equations of Gauss for
a MEO (Table 2). In addition, in this section comparisons against STK are also presented.

Figure 13 shows the results of a propagation with perturbations due to the Earth’s zonal
harmonic J2, J3, J4, J5, Sun andMoongravitational perturbations and solar radiation pressure
with eclipses. Results in Fig. 13 show a 0.076 % relative error in the equinoctial parameter
Q2 at the end of the propagation. This value was obtained by comparing the values of Q2

provided by CALYPSO and by GMAT at the end of the propagation period. The error in
Q2 is due to the fact that nutation and precession are not modelled in the semi-analytical
averaged propagator CALYPSO, as explained in Sect. 6.3.

To further analyse the effect of the absence of a model for nutation and precession, Fig. 14
shows that the same kind of error can be also seenwhen considering only the perturbation due
to the second Earth’s zonal harmonic, J2. However, this error is not present in Fig. 15, which
shows a comparison of the results produced by the semi-analytical propagator CALYPSO

123



Extended analytical formulae for the perturbed Keplerian motion Page 23 of 39 13

0 100 200 300
Time [days]

7994

7996

7998

8000

8002
a 

[k
m

]
GMAT
Averaged semi-analytical propagator

0 100 200 300
Time [days]

-0.2

-0.1

0

0.1

0.2

P
1

0 100 200 300
Time [days]

-0.2

-0.1

0

0.1

0.2

P
2

0 100 200 300
Time [days]

-2

-1

0

1

2

Q
2

10-3

0 100 200 300
Time [days]

-2

-1

0

1

2

3

4

Q
1

10-3

Fig. 9 Validation against GMAT for orbit LEO 2: J2 to J5, Sun, Moon, SRP and eclipses

against those of STK using the option “J2 propagator”5. In this case, the results of the two
propagators for Q2 are in agreement.

In order to further demonstrate that the difference in Q2 in Fig. 13 is due only to the
way in which the Earth’s gravitational acceleration is modelled, Figs. 16 and 17 show the
comparison of the results obtained considering the third-body gravitational perturbations
only (Sun and Moon) and solar radiation pressure. Neither the third-body perturbations nor
the solar radiation pressure shows an error in Q2.

The comparison considering solar radiation pressure (SRP) only (Fig. 17) shows some
differences, mostly in Q1. Further investigation has revealed that these differences are mostly
due to the variation of the SRP with the distance from the sun (r�). In Fig. 18, an osculating
numerical propagationwhich intentionally neglects this variation is introduced. It is clear that
our averaged semi-analytical propagator follows this curve much more closely than GMAT.
We have verified that if this numerical propagator is made to model the variation of the SRP
with r�, the curve does approximate GMAT’s results.

Finally, Fig. 19 presents the results of the propagation with low-thrust acceleration chang-
ing with 1/r2 (Sect. 5).

5 https://www.agi.com/products/engineering-tools.
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Fig. 10 Validation against numerical propagation for orbit LEO 2: low-thrust acceleration (Sect. 5)
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Fig. 11 Validation against GMAT for SSO: J2 to J5, Sun, Moon, SRP and eclipses
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Fig. 12 Validation against numerical propagation for orbit SSO: low-thrust acceleration (Sect. 5)
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Fig. 13 Validation against GMAT for MEO: J2 to J5, Sun, Moon, SRP and eclipses
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Fig. 14 Validation against GMAT for MEO: J2
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Fig. 15 Validation against STK “J2 propagator” for MEO
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Fig. 16 Validation against GMAT for MEO: Sun and Moon gravitational perturbations

Fig. 17 Validation against GMAT for MEO: SRP and eclipses
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Fig. 18 Validation against GMAT and a numerical integrator for MEO: SRP and eclipses. The numerical
integrator neglects the variation of the SRP force with the distance to the Sun

0 100 200 300
Time [days]

2.95

3

3.05

3.1

3.15

3.2

a 
[K

m
]

104

0 100 200 300
Time [days]

-1

0

1

2

3

4

5

P
1

10-5

0 100 200 300
Time [days]

-3

-2

-1

0

1

2

3

P
2

10-5

0 100 200 300
Time [days]

-2

0

2

4

6

8

Q
1

10-6

Osculating numerical propagator
Averaged semi-analytic propagator

0 100 200 300
Time [days]

0.531704

0.531706

0.531708

0.53171

0.531712

0.531714

Q
2

Fig. 19 Validation against numerical propagation for orbit MEO: low-thrust acceleration (Sect. 5)
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Fig. 20 Validation against GMAT for GTO: J2 to J5, Sun, Moon, SRP and eclipses

6.7 Results for the GTO orbit type

Figure 20 shows the results of a propagation with perturbations due to the Earth’s zonal
harmonics J2, J3, J4, J5, Sun and Moon gravitational perturbations and solar radiation
pressure with eclipses for the GTO. Also in this case, as for the MEO test case (Sect. 6.6),
results in Fig. 20 show an error in the equinoctial parameter Q2 at the end of the propagation.
This is due to the absence of the modelling of nutation and precession, and the variation of
SRP with distance from the Sun, as explained in Sects. 6.3 and 6.6. The apparent shift of
the semi-major axis of the averaged semi-analytical propagator with respect to the average
of the GMAT solution is caused by the behaviour of the short-periodic oscillation, as shown
in more details in Fig. 21. It is evident that the short-periodic oscillations spend most of the
time near their minimum; therefore, the average will be close to the minimum as well.

Finally, Fig. 22 presents the results of the propagation with low-thrust acceleration fol-
lowing the inverse square law 1/r2 (Sect. 5).

6.8 Results for the GEO orbit type

Figure 23 shows the results of a propagation with perturbations due to J2, J3, J4, J5, Sun
and Moon and solar radiation pressure with eclipses for the GEO. Also in this case, as for
the MEO and GTO test cases (Sects. 6.6 and 6.7), results in Fig. 23 show an error in the
equinoctial parameter Q2 at the end of the propagation.

Figure 24 presents the results of the propagation with low-thrust acceleration following
the inverse square law 1/r2 (Sect. 5).

6.9 Results for the HEO orbit type

Figure 25 shows the results of a propagation with perturbations due to J2, J3, J4, J5, Sun
and Moon and solar radiation pressure with eclipses for the orbit HEO. Also in this case, as
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Fig. 21 Validation against GMAT
for GTO: J2 to J5, Sun, Moon,
SRP and eclipses. Zoom-in of the
semi-major axis
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Fig. 22 Validation against numerical propagation for orbit GTO: low-thrust acceleration (Sect. 5)

for the MEO, GTO and GEO test cases, results in Fig. 25 show an error in the equinoctial
parameter Q2 at the end of the propagation.

Figure 26 presents the results of the propagation with low-thrust acceleration changing as
1/r2 (Sect. 5).
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Fig. 23 Validation against GMAT for GEO: J2 to J5, Sun, Moon, SRP and eclipses
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Fig. 24 Validation against numerical propagation for GEO: low-thrust acceleration (Sect. 5)

123



13 Page 32 of 39 M. Di Carlo et al.

Time [days]
0 100 200 300

a 
[k

m
]

×104

4.216

4.2165

4.217

4.2175

4.218

Time [days]
0 100 200 300

P
1

-0.406

-0.404

-0.402

-0.4

-0.398

Time [days]
0 100 200 300

P
2

-0.06

-0.04

-0.02

0

0.02 GMAT

Averaged semi-analytical propagator

Time [days]
0 100 200 300

Q
2

0.615

0.616

0.617

0.618

Time [days]
0 100 200 300

Q
1

-0.06

-0.04

-0.02

0

0.02

Fig. 25 Validation against GMAT for HEO: J2 to J5, Sun, Moon, SRP and eclipses
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Fig. 26 Validation against numerical propagation for orbit HEO: low-thrust acceleration (Sect. 5)
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7 Conclusion

This paper has presented a collection of analytical formulae for the propagation of the motion
of a spacecraft under the effect of a number of disturbing accelerations. The analytical formu-
lae were derived from a first-order expansion in the magnitude of the perturbing acceleration.

It was shown how the analytical formulae can be used to compute the average variation of
the orbital elements. The average variation was then propagated numerically forward in time.
The propagation of the average variation of the orbital elements was validated against high-
precision numerical orbit propagators (including the NASA open-source software GMAT).
It was shown that all types of orbits could be propagated over moderate lengths of time faster
thanwithGMAT.All comparisons show a good agreementwith the numerical propagation for
all the perturbations and accelerations in LEO and SSO, while inMEO, GTO, GEO and HEO
a small error is evident in the analytical formulae due to the absence of a model for nutation
and precession and the assumption of a constant distance of the Sun. This will be addressed
in future works, by periodically updating the orientation between reference frames during
the propagation and adjusting for the actual distance from the Sun. The analytical formulae
proposed in this paper allow for the direct solution of the averaging integral in closed form
over a complete revolution. In doing so, it was assumed that the motion of the third body was
contained and could be considered constant. This assumption limits the use of the averaged
solution to cases in which the orbital motion is faster than the motion of the third body in
the sky. Furthermore, effects induced by the motion of the third body are not captured. It
was, however, suggested that one could partition the orbital period in segments and apply
the analytical formulae on each segment with a different position of the third body. This
procedure would allow one to compute the full averaging integral accounting for the motion
of the third body, although at a higher computational expense.

Future works will also consider a higher-order expansion of the variation of the orbital
parameters, the effect of the perturbation on the true longitude, the motion of the third-body
during averaging and possibly the effect of the variation of the SRP force with the distance
from the Sun. In addition, the implementation of the code will be optimised for increased
efficiency.

Compliance with ethical standards

Conflict of Interest The authors declare that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Integrals

This appendix gives the expressions for the integrals used to compute the analytical equations
for the motion of the satellite subject to the Earth’s gravitational potential perturbations.
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The integrals reported in the following subsections have been solved analytically using the
software Mathematica; the results, too cumbersome to be reported here, have been exported
directly from Mathematica to MATLAB. The complete results can be found at: https://doi.
org/10.15129/0d41a34d-2558-4eaf-96a7-4bfd5942f42c.

A.1 Integrals for J3

IJ3,a,1 =
∫ L

L0

{
�3

0 (L) (P20 sinL − P10 cosL) (Q20 sinL − Q10 cosL)

× [
20 (Q20 sinL − Q10 cosL)2 − 3S20

]}
dL (62)

IJ3,a,2 =
∫ L

L0

{
�4

0 (L) (Q20 cosL + Q10 sinL)

× [
S20 − 20 (Q20 sinL − Q10 cosL)2

]}
dL (63)

IJ3,P1 =
∫ L

L0

{−4 cos(L)�3
0(L) (Q20 sinL − Q10 cosL)

× [
20 (Q20 sinL − Q10 cosL)2 − 3S20

]+
+3�2

0(L) (Q20 cosL + Q10 sinL) (P10 + sinL + �0(L) sinL)

× [
S20 − 20 (Q20 sinL − Q10 cosL)2

]}
dL (64)

IJ3,P1,P2 =
∫ L

L0

{
(Q10 cosL − Q20 sinL) �2

0(L)

× [
S20 − 20 (Q20 sinL − Q10 cosL)2

]}
dL (65)

IJ3,P2 =
∫ L

L0

{
4 sin(L)�3

0(L) (Q20 sinL − Q10 cosL)

[
20 (Q20 sinL − Q10 cosL)2 − 3S20

]+
3�2

0(L) (Q20 cosL + Q10 sinL) (P20 + cosL + �0(L) cosL)[
S20 − 20 (Q20 sinL − Q10 cosL)2

]}
dL (66)

IJ3,Q1 =
∫ L

L0

sin(L)�2
0(L)

[
S20 − 20 (Q20 sinL − Q10 cosL)2

]
dL (67)

IJ3,Q2 =
∫ L

L0

cos(L)�2
0(L)

[
S20 − 20 (Q20 sinL − Q10 cosL)2

]
dL (68)

A.2 Integrals for J4

IJ4,a,1 =
∫ L

L0

{
�4
0(L)

[
2800 (Q20 sinL − Q10 cosL)4

−600S20 (Q20 sinL − Q10 cosL)2 + 15
]

× (P20 sinL − P10 cosL)} dL (69)

IJ4,a,2 =
∫ L

L0

{
�5
0(L) (Q20 cosL + Q10 sinL) (Q20 sinL − Q10 cosL)
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×
[
280 (Q20 sinL − Q10 cosL)2 − 30S20

]}
dL (70)

IJ4,P1 =
∫ L

L0

{
cos(L)

�4
0(L)

8

[
2800 (Q20 sinL − Q10 cosL)4

−600S20 (Q20 sinL − Q10 cosL)2 +
× 15G4

0

]
+ �3

0(L) (P10 + sinL + �0(L) sinL) (Q20 cosL + Q10 sinL)

× (Q20 sinL − Q10 cosL)
[
280 (Q20 sinL − Q10 cosL)2 − 30S20

]}
dL (71)

IJ4,P1,P2 =
∫ L

L0
�3
0(L) (Q10 cosL − Q20 sinL)2

[
140 (Q20 sinL − Q10 cosL)2 − 15S20

]
dL (72)

IJ4,P2 =
∫ L

L0

{
sin(L)

�4
0(L)

8

[
2800 (Q20 sinL − Q10 cosL)4 − 600S20 (Q20 sinL − Q10 cosL)2 +

× 15S40

]
− �3

0(L) (P20 + cosL + �0(L) cosL) (Q20 cosL + Q10 sinL)

× (Q20 sinL − Q10 cosL)
[
280 (Q20 sinL − Q10 cosL)2 − 30S20

]}
dL (73)

IJ4,Q1 =
∫ L

L0
�3
0(L) sinL (Q20 sinL − Q10 cosL)

[
15S20 − 140 (Q20 sinL − Q10 cosL)2

]
dL (74)

IJ4,Q2 =
∫ L

L0
�3
0(L) cosL (Q20 sinL − Q10 cosL)

[
15S20 − 140 (Q20 sinL − Q10 cosL)2

]
dL (75)

A.3 Integrals for J5

IJ5,a =
∫ L

L0

{
�5

0(L)
[
3024 (Q20 sinL − Q10 cosL)4 − 840S20 (Q20 sinL − Q10 cosL)2 + 45S40

]

(Q20 sinL − Q10 cosL) (P20 sinL − P10 cosL) − 1

2
�6

0(L) (Q20 cosL + Q10 sinL))

[
5040 (Q20 sinL − Q10 cosL)4 − 840S20 (Q20 sinL − Q10 cosL)2 + 15S40

]}
dL (76)

IJ5,P1 =
∫ L

L0

{
�5

0(L) cos L
[
3024 (Q20 sinL − Q10 cosL)4 840G2

0 (Q20 sinL − Q10 cosL)2 + 45G4
0

]

(Q20 sinL − Q10 cosL) + 1

2
�4

0(L) (Q20 cosL + Q10 sinL) (P10 + sinL + �0(L) sinL)

[
5040 (Q20 sinL − Q10 cosL)4 + −840G2

0 (Q20 sinL − Q10 cosL)2 + 15G4
0

]}
dL (77)

IJ5,P1,P2 =
∫ L

L0

{
�4

0(L)
[
5040 (Q20 sinL − Q10 cosL)4 − 840S20 (Q20 sinL − Q10 cosL)2 + 15S40

]

(Q10 cosL − Q20 sinL)} dL (78)

IJ5,P2 =
∫ L

L0

{
−�5

0(L) sinL
[
3024 (Q20 sinL − Q10 cosL)4 + 840S20 (Q20 sinL − Q10 cosL)2 + 45S40

]

(Q20 sinL − Q10 cosL) + 1

2
�4

0(L) (Q20 cosL + Q10 sinL) (P20 + cosL + �0(L) cosL)

[
5040 (Q20 sinL − Q10 cosL)4 − 840S20 (Q20 sinL − Q10 cosL)2 + 15S40

]}
dL (79)

IJ5,Q1 =
∫ L

L0

�4
0(L) sinL

[
5040 (Q20 sinL − Q10 cosL)4 − 840S20 (Q20 sinL − Q10 cosL)2 + 15S40

]
dL

(80)
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IJ5,Q2 =
∫ L

L0

�4
0(L) cosL

[
5040 (Q20 sinL − Q10 cosL)4 − 840S20 (Q20 sinL − Q10 cosL)2 + 15S40

]
dL

(81)

B Formulas for Third-Body Perturbation

B.1 Coefficients for acceleration

Equations (82-90) contain the values of cRT N
nm and sRT N

nm . These coefficients are presented as
matrices, where eachmatrix presents all the nonzero (and some zero) values of cRT N

nm or sRT N
nm

for a fixed n. Each row corresponds to a fixed value of m, starting from m = 0 for the top
row. The columns are the radial (R), transverse (T) and normal (N) components, in this order.
Each expression and its LaTeX representation were obtained using Mathematica. Missing
coefficients are equal to zero. The direction cosines α3rd , β3rd , γ3rd will be abbreviated
α, β, γ .

Notice that cRmn = cTmn = 0 for any values of m, n where m > n or their sum m + n is
odd. Similarly, cNmn = 0 for any values of m, n where m > n − 1 or their sum m + n is even:

cRmn = cTmn = 0 ∀m, n ∈ N : (m > n) ∨ [(m + n) odd]

cNmn = 0 ∀m, n ∈ N : [m > (n − 1)] ∨ [(m + n) even] (82)

cRT N
2 =

⎡
⎢⎢⎣

1
2

(
3α2 + 3β2 − 2

)
0 0

0 0 3αγ

1
2

(
3α2 − 3β2

)
3αβ 0

⎤
⎥⎥⎦ (83)

sRT N
2 =

⎡
⎢⎣

0 0 0
0 0 3βγ

3αβ − 3
2

(
α2 − β2

)
0

⎤
⎥⎦ (84)

cRT N
3 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 3
4 γ

(
5α2 + 5β2 − 2

)

9
8 α

(
5α2 + 5β2 − 4

)
3
8 β

(
5α2 + 5β2 − 4

)
0

0 0 15
4 γ (α − β)(α + β)

15
8

(
α3 − 3αβ2

)
15
8

(
3α2β − β3

)
0

⎤
⎥⎥⎥⎥⎥⎦

(85)

sRT N
3 =

⎡
⎢⎢⎢⎢⎣

0 0 0
9
8 β

(
5α2 + 5β2 − 4

)
− 3

8 α
(
5α2 + 5β2 − 4

)
0

0 0 15αβγ
2

15
8

(
3α2β − β3

)
− 15

8

(
α3 − 3αβ2

)
0

⎤
⎥⎥⎥⎥⎦

(86)

cRT N
4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
16

(
35α4 + 10α2

(
7β2 − 4

)
+ 35β4 − 40β2 + 8

)
0 0

0 0 15
8 αγ

(
7α2 + 7β2 − 4

)

5
4 (α − β)(α + β)

(
7α2 + 7β2 − 6

)
5
4 αβ

(
7α2 + 7β2 − 6

)
0

0 0 35
8 αγ

(
α2 − 3β2

)

35
16

(
α4 − 6α2β2 + β4

)
35
4 αβ(α − β)(α + β) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(87)

sRT N
4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 15
8 βγ

(
7α2 + 7β2 − 4

)

5
2 αβ

(
7α2 + 7β2 − 6

)
− 5

8 (α − β)(α + β)
(
7α2 + 7β2 − 6

)
0

0 0 − 35
8 βγ

(
β2 − 3α2

)

35
4 αβ(α − β)(α + β) − 35

16

(
α4 − 6α2β2 + β4

)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(88)
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cRT N
5 = 15

128

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2γ A2
10αA1 2βA1 0

0 0 56γ (α2 − β2)
(
3α2 + 3β2 − 2

)

35
3 α

(
α2 − 3β2

) (
9α2 + 9β2 − 8

)
−7β

(
β2 − 3α2

) (
9α2 + 9β2 − 8

)
0

0 0 42γ
(
α4 − 6α2β2 + β4

)

21
(
α5 − 10α3β2 + 5αβ4

)
21

(
5α4β − 10α2β3 + β5

)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(89)

sRT N
5 = 15

128

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
10βA1 −2αA1 0

0 0 112αβγ
(
3α2 + 3β2 − 2

)

− 35
3 β

(
β2 − 3α2

) (
9α2 + 9β2 − 8

)
−7α

(
α2 − 3β2

) (
9α2 + 9β2 − 8

)
0

0 0 168αβγ (α − β)(α + β)

21
(
5α4β − 10α2β3 + β5

)
−21

(
α5 − 10α3β2 + 5αβ4

)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(90)

The following replacements were used to shorten the expressions:

A1 = (
7
(
3α4 + α2 (6β2 − 4

) + 3β4) − 28β2 + 8
)

(91)

A2 = (
63α4 + 14α2 (9β2 − 4

) + 63β4 − 56β2 + 8
)

(92)

B.2 Integrals

The expressions for the average integrals, I cmn and I smn , which were obtained using Mathe-
matica, have a secular term and a short-periodic term. The short-periodic term is too large
to be presented here, but the secular term is much more manageable. In Tables 4 and 5,
we have the averaged integrals Ī cmn and Ī smn defined in Eq. (93). The secular components,
Sc
m,n and Ss

m,n , can be expressed using the averaged integrals according to Eq. (94). The
complete results are collected in a Mathematica notebook that can be found at: https://doi.
org/10.15129/0d41a34d-2558-4eaf-96a7-4bfd5942f42c

Table 4 Values of Ī cm,n . An auxiliary variable is used, V = P2
1 − P2

2 . These expressions and their LaTeX
representation were obtained using Mathematica

m/n 1 2 3 4 5

0 e2+2
2B5

3e2+2
2B7

3e4+24e2+8
8B9

15e4+40e2+8
8B11

5e6+90e4+120e2+16
16B13

1 − 3P2
2B5

−
(
e2+4

)
P2

2B7
− 5

(
3e2+4

)
P2

8B9
− 3

(
e4+12e2+8

)
P2

8B11
− 7

(
5e4+20e2+8

)
P2

16B13

2 − 3V
2B5

− 5V
2B7

− 5
(
e2+6

)
V

8B9
− 21

(
e2+2

)
V

8B11
− 7

(
e4+16e2+16

)
V

16B13

3 –
5P2

(
3P2

1 −P2
2

)

2B7

35P2
(
3P2

1 −P2
2

)

8B9

7
(
e2+8

)
P2

(
3P2

1 −P2
2

)

8B11

21
(
3e2+8

)
P2

(
3P2

1 −P2
2

)

16B13

4 – –
35

(
e4−8P2

1 P2
2

)

8B9

63
(
e4−8P2

1 P2
2

)

8B11

21
(
e2+10

)(
e4−8P2

1 P2
2

)

16B13

5 – – –
63P2

(
4P4

2 −5V 2
)

8B11

231P2
(
4P4

2 −5V 2
)

16B13

6 – – – – − 231V
(
e4−16P2

1 P2
2

)

16B13
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Table 5 Values of Ī sm,n . An auxiliary variable is used, V = P2
1 − P2

2 . These expressions and their LaTeX
representation were obtained using Mathematica

m/n 1 2 3 4 5

1 − 3P1
2B5

−
(
e2+4

)
P1

2B7
− 5

(
3e2+4

)
P1

8B9
− 3

(
e4+12e2+8

)
P1

8B11
− 7

(
5e4+20e2+8

)
P1

16B13

2 3P1P2
B5

5P1P2
B7

5
(
e2+6

)
P1P2

4B9

21
(
e2+2

)
P1P2

4B11

7
(
e4+16e2+16

)
P1P2

8B13

3 –
5P1

(
4P2

1 −3e2
)

2B7

35P1
(
4P2

1 −3e2
)

8B9
− 7

(
e2+8

)
P1

(
3e2−4P2

1

)

8B11
− 21

(
3e2+8

)
P1

(
3e2−4P2

1

)

16B13

4 – – − 35P1P2V
2B9

− 63P1P2V
2B11

− 21
(
e2+10

)
P1P2V

4B13

5 – – –
63P1

(
4P4

1 −5V 2
)

8B11

231P1
(
4P4

1 −5V 2
)

16B13

6 – – – –
231P1P2

(
3e4−16P2

1 P2
2

)

8B13

In this section, and in the notebook, P1, P2, e and B are used as short hand for P10, P20,
e0 and B0.

Ī cm,n = 1

2π

∫ L0+2π

L0

cosmL
�n(L)

dL

Ī sm,n = 1

2π

∫ L0+2π

L0

sinmL
�n(L)

dL (93)

Sc
m,n = 2 Ī cm,n [�(L)]LL0

Ss
m,n = 2 Ī sm,n [�(L)]LL0

(94)

where �(L) is defined as

�(L) = arctan

(
P1 + (1 − P2) tan

(L
2

)

B

)
(95)

Finally, note that the average variation for the semi-major axis a is zero for each Legendre
polynomial, that is,

G(n)
1 (L0 + 2π; c(1)

mn, s
(1)
mn) − G(n)

1 (L0; c(1)
mn, s

(1)
mn) = 0 ∀n ∈ N (96)
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