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Abstract
The Colombo top is a basic model in the rotation dynamics of a celestial body moving on
a precessing orbit and perturbed by a gravitational torque. The paper presents a detailed
study of analytical solution to this problem. By solving algebraic equations of degree 4, we
provide the expressions for the extreme points of trajectories as functions of their energy.
The location of stationary points (known as the Cassini states) is found as the function of
the two parameters of the problem. Analytical solution in terms of the Weierstrass and the
Jacobi elliptic functions is given for regular trajectories. Some trajectories are expressible
through elementary functions: not only the homoclinic orbits, as expected, but also a special
periodic solution whose energy is equal to that of the first Cassini state (unnoticed in previous
studies).

Keywords Colombo top · Cassini states · Analytical solution · Elliptic functions

1 Introduction

Only about 60% of the Moon surface can be seen from the Earth. The first successful attempt
to explain this fact was made by Cassini (1693), who borrowed the kinematic model of the
‘triple Earth motion’ fromCopernicus (1543, Lib. 1,Cap. 11), and applied it to theMoonwith
some important amendments. Retaining the postulate of the fixed angle between the rotation
axis and the orbital plane, Cassini postulated the equality of orbital period and the sidereal
rotation period, which protected the far side from being seen from the Earth. By additionally
postulating that the rotation axis, the ecliptic pole, and the lunar orbit pole remain coplanar,
Cassini suppressed the possibility of revealing the complete polar caps over one lunar axis
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precession cycle. Two centuries later, Tisserand (1891) rephrased these postulates as laws.
The three Cassini laws of Tisserand state that: (1) rotation and orbital periods are equal, (2)
the rotation axis has a constant inclination to the ecliptic, and (3) the three axes are coplanar.
The second law differs from the original Cassini’s statement, but in view of the third law, the
difference is unimportant.

With the advent of the Newtonian dynamics, the question arose if the Cassini’s model is
consistent with equations of motion. This was a part of the problem issued by the French
Académie Royale des Sciences for the Prize of 1764. In his prize dissertation and in a later
work, Lagrange (1764, 1780) demonstrated that the state described by Cassini is an equilib-
rium of the associated differential system and studied small librations in its vicinity.

The work of Colombo (1966) brought a new understanding of the Cassini laws andmotion
near the stationary configuration which they describe in the specific case of the Moon. In
particular, Colombo demonstrated that the second and the third laws are conceptually inde-
pendent from the first law and themselves serve as a basis of an interesting dynamical problem
which describes the long-term evolution of the spin axis of an arbitrary rotating body. He
thus dropped from his analysis the assumption of the direct spin-orbit resonance, but kept
the assumption of general precession of the orbital plane due to perturbations (either caused
by the oblate central body, or by other masses in the system). He showed that the long-term
dynamics of the spin axis can be described by a simple, one-dimensional problem assum-
ing the orbital node performs a uniform precession and the inclination remains constant. Its
stationary points represent generalizations of the Cassini second and third laws.

It was soon understood that the Colombo problem is a very suitable starting point for
analysis of the obliquity evolution of terrestrial planets, even when the orbital node and
inclination undergo more complex evolution. A fascinating example are studies of Mars
obliquity variations in relation to this planet’s past paleoclimate, starting with Ward (1973,
1974). Tides or internal process may additionally change some of the system’s parameters,
a situation relevant to all terrestrial planet studies, including the Moon—see Peale (1974),
Ward (1975, 1982), or Ward and de Campli (1979), to mention just few examples of early
works. Later studies of Laskar and colleagues made a masterful use of detailed knowledge
of planetary long-term dynamics and its implications on secular evolution of their spin axes
(e.g., Laskar and Robutel 1993; Laskar et al. 1993; Correia and Laskar 2001, and many other
with more technical details). Following earlier hints, mentioned already in Harris and Ward
(1982), applications to giant planets were also developed in the past two decades (e.g., Ward
and Hamilton 2004; Hamilton and Ward 2004; Ward and Canup 2006; Boué et al. 2009;
Vokrouhlický and Nesvorný 2015; Brasser and Lee 2015; Rogoszinski and Hamilton 2020).

Beyond planets and satellites, studies of secular spin evolution of asteroids flourished
recently, especially after Vokrouhlický et al. (2003) applied it to explain space parallelism
of spin axes of large members in the Koronis family (see also Vokrouhlický et al. (2006)).
Further applications include spin states of exoplanets (e.g., Atobe et al. 2004; Atobe and Ida
2007; Saillenfest et al. 2019), or artificial satellites and space debris (e.g., Efimov et al. 2018).

Taken altogether,wenote that the backbone of all these studies is the basicColombomodel.
Interestingly, a systematic mathematical treatment of this elegant Hamiltonian problem has
not been significantly advanced beyond the state of art dating back to Henrard andMurigande
(1987), andHenrard (1993). These classicalworks focused on the aspects directly relatedwith
the probability of capture into different phase space zones when a slow parameter evolution
drives the system across the homoclinic orbits; hence, they paid no attention to regular
orbits. One can also recognize the Colombo top in an anonymous quadratic Hamiltonian
treated by Lanchares and Elipe (1995), who focused on the qualitative study of its parametric
bifurcations.
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The main reason to seek for the complete analytical solution of the Colombo top is its
significance for further studies of more realistic, perturbed problems. Be it analytical pertur-
bation techniques, or numerical splittingmethods, the knowledge of explicit time dependence
of the Colombo top motion is crucial. The present work is divided in two principal parts:
Sect. 2 explores the problem using purely geometric and algebraic tools, whereas the integra-
tion of equations of motion is considered in Sect. 3. In other words, Sect. 2 concerns integral
curves, that become time-dependent trajectories in Sect. 3.

The formulation the problem is given in Sect. 2.1,wherewe introduce two sets of variables:
traditional x, y, z and shifted X , Y , Z . Throughout the text, we switch between the two sets,
depending on convenience. In Sect. 2.2, the geometric construction of the integral curves is
shown; intersections of the curves with the x = X = 0 meridians (their extremities in z)
are found in Sect. 2.3 , expressed in terms of the energy constant and of the two parameters
a, b. Some of these can be critical points (the Cassini states), which allows the expression in
terms of the parameters only—given in Sect. 2.4. The information gained allows to partition
the phase space and distinguish three types of the Colombo top problem.

In Sect. 3, we first provide a universal solution in terms of theWeierstrass elliptic function
℘ (Sect. 3.1), comparing various formulations of the same result. But since the Weierstrass
function behaves differently in various domains of the phase space, we reformulate the
solution in terms of the more common Jacobi elliptic functions (Sect. 3.2). Finally, the
specific trajectories that admit solutions in terms of elementary functions are presented in
Sect. 3.3. The closing Sect. 4 summarizes the results and their implications.

2 The Colombo topmodel

2.1 Equations of motion

The basic assumptions leading to the Colombo top problem involve a rigid body on an orbit
around some distant primary. The orbital motion might be called Keplerian, but with one
notable addition: the orbital plane rotates uniformly around some fixed axis in the inertial
spacewith the angular rateμ. The body is assumed to rotate in the lowest energy state, namely
about the shortest principal axis of its inertia tensor. Following the work of Colombo (1966),
we assume the rotation period is not in resonancewith the revolution period about the primary
(see, e.g., Peale 1969 for generalizations to this situation). Considering the quadrupole torque
due to the gravitational field of the primary, and averaging over both orbital revolution about
the center and rotation cycle about the spin axis, one easily realizes that the total angular
momentum of rotation (or, equivalently, the angular velocity ω of rotation) is conserved. The
whole dynamical problem then reduces to the analysis of the motion of the unit vector r of
rotation pole in space.

In order to introduce fundamental astronomical parameters of relevance, let us for a
moment assume μ = 0, i.e., the orbital plane is fixed in the inertial space. In this sim-
ple case, r performs regular precession about the fixed direction K of the orbital angular
momentum with a frequency

μr = −α cos ε, (1)

where α is the precession constant and ε is the obliquity, namely the angle between r and K
(cos ε = r ·K). Note the minus sign in Eq. (1) which indicates polar regression in the inertial
space. In this model, ε stays constant and
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α = 3

2

n2

ω

Eb

(1 − e2)3/2
, (2)

where n is the orbital mean motion about the primary, ω the angular rotational frequency, Eb

the dynamical ellipticity, and e the orbital eccentricity. The dynamical ellipticity expresses
degree of non-sphericity of the body, and it is defined using principal moments A ≤ B ≤ C
of the inertia tensor as

Eb = C − (A + B)/2

C
. (3)

Things become more interesting in the case where the orbital plane about the primary is
not constant. As mentioned above, the Colombo top model describes the situation when it
performs a uniform precession in the inertial space. In particular, K revolves uniformly
on a cone about a fixed direction K′ in space, such that the orbital inclination I with
respect to the reference plane normal to K′ is constant. The magnitude of the precession
rate is μ, though most often the orbital plane performs again regression in the inertial
space (assuming I < 90◦). The interest and complexity of this model revolves about a
possibility of a resonance between the two precession frequencies −μ and μr . In order
to describe it using a simple Hamiltonian model, Colombo (1966) observed it is useful to
refer r to the reference frame following precession of the orbital plane, thus representing
rT = (sin ε cos(h − π/2), sin ε sin(h − π/2), cos ε). Here, h − π/2 is a longitude reckoned
from the ascending node of the orbital plane and ε is a colatitude measured fromK as above.
It is actually an advantage to introduce H = cos ε (and sin ε = √

1 − H2). This is because
in terms of the symplectic variables (h, H), the Colombo top is a one degree of freedom,
conservative problem with a Hamiltonian function

Hs(h, H) = − (H − b)2

2
− a

√
1 − H2 cos h = EH, (4)

and two new nondimensional parameters are defined as

a = μ

α
sin I , b = μ

α
cos I . (5)

As observed by Henrard and Murigande (1987), the discussion can be confined to non-
negative constants a and b thanks to the symmetries (a, h, H) → (−a, h + π, H), and
(b, h, H) → (−b,−h,−H) admitted by Hs .

Since the equations of motion

ḣ = ∂Hs

∂H
= b − H + aH cos h√

1 − H2
, Ḣ = −∂Hs

∂h
= −a

√
1 − H2 sin h, (6)

are singular at H2 = 1, it is better to use the Cartesian coordinates of the unit momentum
vector

r =
⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝

√
1 − H2 sin h

−√
1 − H2 cos h

H

⎞

⎠ . (7)

Then, similarly to Henrard and Murigande (1987), we obtain the Hamiltonian function

HHM(x, y, z) = − (z − b)2

2
+ ay = EH, (8)
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that generates equations of motion

ẋ = (z − b)(y + a) + ab,

ẏ = −(z − b) x,

ż = −ax . (9)

For the sake of minor simplification, let us propose the shifted variables

X = x, Y = y + a, Z = z − b, R = (X , Y , Z)T = r + (0, a,−b)T. (10)

Adding a constant a2 to the Hamiltonian (8), we simplify it to

H = − Z2

2
+ aY = E, (11)

with the new energy constant
E = EH + a2. (12)

Equations of motion for the shifted variables are

Ẋ = Z Y + ab,

Ẏ = −Z X ,

Ż = −aX . (13)

Notably, when a = 0, the problem is simplified to the symmetric free top, with constant Z
and uniform rotation of r around the third axis, with the frequency

√−2E = |Z |.

2.2 Geometric interpretation

It is customary to represent the integral curves of Eq. (9) as the intersections of two surfaces:

S1 a sphere x2 + y2 + z2 = 1,
S2 a parabolic cylinder (z − b)2 − 2a(y + a) + 2E = 0, implied by the energy integral.

The symmetry plane of S2 is z = b, and its vertex line is parallel to the x-axis, passing
through y = (E − a2)/a.

Observe that combining S1 and S2 we can also obtain another surface (see Fig. 1):

S3 a paraboloid of revolution x2 + (y + a)2 + 2bz − (
2E − a2 + b2 + 1

) = 0.

Actually, the S3-based function

Ha(r) = x2

2
+ (y + a)2

2
+ bz = E ′ = E + 1 − a2 + b2

2
, (14)

is an alternative Hamiltonian of the Colombo top, leading to the same equations of motion
(9) as the Hamiltonian (8).

The paraboloid S3 has the symmetry axis parallel to the z-axis, and passing through the
points x = 0, y = −a. Its vertex is located at z = E ′/b. The advantage of S3 appears
when discussing the limit of a = 0. Then, the paraboloid does not change the shape and the
intersections of S1 and S3 are circles because of coincidence of the symmetry axes. Contrarily
to this, setting a = 0 in S2 results in degeneracy: the cylinder breaks in two parallel planes.
On the other hand, b = 0 turns the S3 paraboloid into a (circular) cylinder, whereas S2 retains
its shape. Thus, S2 and S3 (or H and Ha) can be considered complementary, although the
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Fig. 1 Surfaces S1, S2, S3 (left) and their section at x = 0 (right), for a = 0.2, b = 0.25, E = −0.29

regularity at a = 0 seems to us more favorable (e.g., if some perturbation approach is based
upon the small inclination assumption).

An integral curve can be represented as a parametric curve in a number of ways. Of course,
the best is to solve Eq. (9) and find r(t). But before we accomplish it (and, actually, in order
to do it), let us consider parameterizations, where two coordinates are expressed in terms of
the third. The most straightforward is to solve the system of S1 and S2 equations, using z as
a parameter variable, which leads to

r(z) =
⎛

⎜
⎝

±√
1 − z2 − y(z)2

(z−b)2+2E−2a2

2a
z

⎞

⎟
⎠ , or R(Z) =

⎛

⎜
⎝

±
√
1 − (Z + b)2 − (Y (Z) − a)2

Z2+2E
2a
Z

⎞

⎟
⎠ .

(15)
All three invariant surfaces S1, S2, S3 intersect the plane x = 0, which is their common

plane of symmetry. The integral curves, as the lines of intersection of S1, S2, and S3 also
pass through x = 0 and are symmetric with respect to this plane. Moreover, both y and
z coordinates of a given integral curve attain their local extremes at x = 0, according to
equations of motion (13).

2.3 Intersections with the plane x = 0

To find the intersection points of an integral curve with the plane x = 0 for some specified
energy E , it is enough to find either y or z coordinate. Knowing one of them, one might
recover the other from the relation y2 + z2 = 1. But this involves the ambiguity of sign;
thus, it is better to find z, and then use the parametric equation (15) for y(z). To benefit from
minor simplifications, we first find Z and then Y (Z).

According to Eq. (15), the relation between X and Z is

X = ± 1

2a

√
W (Z), (16)

where W (Z) is a polynomial of degree 4

W (Z) = −Z4 − 4EZ2 − 8a2bZ − 4
(
E − a2

)2 + 4a2
(
1 − b2

)
. (17)
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Note the absence of the cubic term thanks to the use of the shifted variable Z .
Solving the quartic equation W (Z) = 0 is a tedious task; the details can be found in

“Appendix A”. Briefly, the four roots Z j are given in terms of the three roots ei of the reduced
cubic resolvent equation (additionally modified to match the standard cubic polynomial
appearing in theWeierstrass elliptic integrals).Depending on the parametersa andb, selecting
some energy value E , the number of meridian intersection points is 4, 3, 2, 1, or 0.

Four intersection points mean that there are two distinct integral curves with the same
energy, each intersecting x = 0 in two points:

z1 = b −
√

e1 − 2

3
E −

√

e2 − 2

3
E −

√

e3 − 2

3
E,

z2 = b −
√

e1 − 2

3
E +

√

e2 − 2

3
E +

√

e3 − 2

3
E, (18)

for a lower curve, and

z3 = b +
√

e1 − 2

3
E −

√

e2 − 2

3
E +

√

e3 − 2

3
E,

z4 = b +
√

e1 − 2

3
E +

√

e2 − 2

3
E −

√

e3 − 2

3
E, (19)

for the upper curve, with e j defined in Eq. (141) as functions of E , a, and b, such that
z1 < z2 < z3 < z4.

Three intersection points mean that either one of the two curves contracts to a single point,
or two curves share the same intersection point. These situations are distinguished by the
sign of invariant g3 from Eq. (135).

– If g3 > 0, then the upper curve shrinks into a point with

z34 = b +
√

e1 − 2

3
E . (20)

The remaining intersection points of the lower curve are

z1 = 2b − z34 − 2

√

e23 − 2

3
E, z2 = 2b − z34 + 2

√

e23 − 2

3
E . (21)

The expressions of e1 and e23 are given in Eq. (145).
– If g3 < 0, then the upper and the lower curves meet at

z23 = b +
√

e3 − 2

3
E, (22)

with the remaining intersection points at

z1 = 2b − z23 − 2

√

e23 − 2

3
E, z4 = 2b − z23 + 2

√

e23 − 2

3
E . (23)

If e1 = e2 = e3, then z2 from Eq. (21) becomes equal to z34 and only two intersection
points remain

z1 = b − 3
3
√
a2b, z234 = b + 3

√
a2b, (24)

with a
2
3 + b

2
3 = 1. This case requires a unique value of energy with a simple expression

(154).
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A more generic situation with two intersection points occurs when E defines only one
trajectory, with z1 < z2 given by

z1 = b −
√

e1 − 2

3
E −

√
e1 − 2E + √

ν,

z2 = b −
√

e1 − 2

3
E +

√
e1 − 2E + √

ν,

ν =
(
e1 + 4

3
E

)2

+ e2c , (25)

where e1 and ec are defined in Eqs. (142) and (144). Two other roots of W (z − b) = 0, i.e.,
z3 = Z3+b and z4 = z3 are complex, so they do not define the intersections—see Eq. (151).

Finally, one intersection point means that for the energy E there is only one integral curve
that contracted to a point with

z12 = b −
√

e1 − 2

3
E, (26)

and e1 given by Eq. (145).
In further discussion, the point of intersection of a regular curve with the x = 0 plane will

be named a turning point, unless it is an equilibrium from the dynamical point of view.

2.4 Cassini states and homoclinic orbits

Finding the Cassini states can be approached from different points of view. Geometrically,
they are the points of tangency of the surfaces S1, S2, and S3. Algebraically, they are the
multiple roots of x(z, E) = 0, and x(y, E) = 0. Dynamically, they are the fixed points
of equations of motion (9) or, equivalently, the local extremes and saddle points of the
Hamiltonian on a sphere S1.

In principle, the multiple roots have been found in Sect. 2.3. But they are given in terms
of E , which is an implicit function of a and b as a root of Δ(E, a, b) = 0, where Δ is the
discriminant of W (Z), defined in Eq. (136). Hence, one possible way is to find the roots of
Δ = 0, which is a quartic equation in E , and substitute them into z12, z23, or z34 fromSect. 2.3
(we already did it for z234). The alternative is to find the stationary points (x, y, z) of the
Hamiltonian and use them to evaluate the energy by the substitution into H (x, y, z) = E .
The latter path is more convenient and was recently taken by Saillenfest et al. (2019).

Discussing the Cassini states as the multiple roots of W (Z) = 0, we should include the
information, that they are also the roots of its derivative W ′(Z) = 0. Since two polynomials
have a common root if and only if their resultant equals zero, we ask about the solutions of
R(W (Z),W ′(Z)) = 0. If we treatW (Z) andW ′(Z) as polynomials in Z , the result is simply
the discriminant Δ from Eq. (136), multiplied by a constant (negative) factor. Yet, we can
also treat W (Z) and W ′(Z) as polynomials of E with degrees 2 and 1, respectively, whose
coefficients depend on Z . So, using

W (Z) = U1(E) = −4E2 + 4
(
2a2 − Z2) E − Z4 − 4a2

(
2bZ + a2 + b2 − 1

)
, (27)

W ′(Z) = U2(E) = −8ZE − 4Z3 − 8a2b, (28)

we obtain the resultant R(U1(E),U2(E)) = 256a2w(Z), where

w(Z) = −Z4 − 2bZ3 + 3ρ Z2 − 2a2bZ − a2b2, (29)
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Fig. 2 Three types of the Colombo top established by the values of a and b, shown at the x ≥ 0 hemisphere of
S1. The discriminantΔ (136) is positive in the shaded area, negative inwhite zones, and null on the thick curves

Γ or at theCassini statesC . Exemplary parameters values are:a = b = 0.5 (type II),a = (3/4)3, b = (7/16)
3
2

(type III), and a = b = 0.2 (type IV)

and

ρ = 1 − a2 − b2

3
. (30)

For easier reference to Saillenfest et al. (2019), we abandon the shifted variables and
solve w(z − b) = 0, which is the same equation as the one they used. However, thanks to
considering the Cartesian variables on a sphere, we do not have to warn about any loss of
sign, because it does not occur neither in evaluating R(U1,U2), nor in obtaining W (Z). The
value of y associated with a given z results directly from the condition ẋ = 0 in Eq. (9),
being

y = −a − ab

z − b
= − az

z − b
. (31)

Solvingw(z−b) = 0, we can recycle the procedure used forW (Z) = 0. More details can
be found in “Appendix B” so here we only summarize the final results. When considering
the problem on a sphere, there are only two generic situations: either there are two Cassini
states C2 and C3, or there are four of them: C1, C2, C3 and C4. Let us call the former case
‘the Colombo top problem of type II,’ and the latter—‘type IV.’ The special case when there
are three Cassini states will be called ‘the Colombo top problem of type III’ (see Fig. 2).

In the following subsections, we briefly review each type, providing the coordinates of
the Cassini states C j as the functions of a and b parameters. To avoid confusion with the zi
expressions of Sect. 2.3, we label the coordinates of C j as z∗j , and y∗

j (of course, x
∗
j = 0 for

all the points). We only provide z∗j that allows to find y∗
j from Eq. (31), and then, the energy

E j of the Cassini state is

E j = −
(
z∗j − b

)2

2
− a2b

z∗j − b
. (32)

Substituting this energy value into an appropriate z12, z23, z34, or z234 from Sect. 2.3, should
result in returning to the expression of z∗j in terms of a and b.
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2.4.1 Type II

When a
2
3 + b

2
3 > 1, the dynamics on a sphere is relatively simple. There are two stable

equilibria (elliptic points):C3 at the lower (z < 0) hemisphere andC2 at the upper hemisphere,
located at

z∗3 = b

2
− √

A2 − √
B2, z∗2 = b

2
− √

A2 + √
B2, (33)

where

A2 = −P ′
2 + 1

2

(
3
√
g′
3 + √−Δ′ + 3

√
g′
3 − √−Δ′

)
,

B2 = −3P ′
2 − A2 + 2

√

A2
2 + 3P ′

2

(
P ′
2 + A2

) − 3ρ2

16
, (34)

and according to Eqs. (164) and (163)

√−Δ′ = ab

4

√
a2b2 − ρ3, g′

3 = a2b2

4
−

(ρ

2

)3
, P ′

2 = −ρ

2
− b2

4
. (35)

We can identify the Cassini states coordinates as z∗3 = z12(E3), and z∗2 = z12(E2), where
z12 is given by Eq. (26).

The energy values in the type II problem are bounded by E3 ≤ E ≤ E2. All trajectories
with energy E3 < E < E2 are simple periodic curves (one for each value of E), oscillating
in z between z1 and z2, as given by Eq. (25). Extending and modifying the domains labeling
of Henrard and Murigande (1987), let us label the entire sphere surface (with the two Cassini
states excluded) as D23 (Fig. 2, left).

2.4.2 Type IV

When a
2
3 + b

2
3 < 1, the flow is shaped by the presence of three elliptic fixed points C1, C2,

C3, and a hyperbolic point C4 (Fig. 2, right). The latter is accompanied by two homoclinic
orbits—upper Γ1 and lower Γ2. Thus, the sphere is first partitioned into three domains: D1

between C1 and Γ1, D2 between C2, Γ1, Γ2, and the third area bounded by C3 and Γ2. But
the last of the three domains is further divided by the curve whose energy equals that of
C1—the thick dashed curve Γ3 in Fig. 2. The subdomains D3 and D4 may look similar from
the geometrical point of view, but note the fact that each curve in D4 has a companion in D1

with the same energy, which is not the case in D3.
Equation (171) from “Appendix B” can be used as they are, but here we add an alternative

form, based upon the transformation (129):

z∗1 = b

2
+ √

A4 + √
B4 −

√
B ′
4 = b

2
+ √

A4 +
√

B4 + B ′
4 − 2

√
B4B ′

4,

z∗2 = b

2
− √

A4 + √
B4 +

√
B ′
4 = b

2
− √

A4 +
√

B4 + B ′
4 + 2

√
B4B ′

4,

z∗3 = b

2
− √

A4 − √
B4 −

√
B ′
4 = b

2
− √

A4 −
√

B4 + B ′
4 + 2

√
B4B ′

4,

z∗4 = b

2
+ √

A4 − √
B4 +

√
B ′
4 = b

2
+ √

A4 −
√

B4 + B ′
4 − 2

√
B4B ′

4, (36)
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where

A4 = b2

4
+ρ cos2

φ4

3
, B4 = b2

4
+ρ cos2

φ4 − π

3
, B ′

4 = b2

4
+ρ cos2

φ4 + π

3
, (37)

and
cosφ4 = abρ− 3

2 . (38)

From A4 < B4 < B ′
4, we infer z

∗
3 < 0 < z∗2 < b < z∗4 < z∗1. The associated y coordinates

satisfy inequalities y∗
4 < y∗

1 < −a < y∗
3 < 0 < y∗

2 .
The energy values are E3 < E1 < E4 < 0 < E2. Referring to Sect. 2.3, we identify

z∗1 = z34(E1), z∗2 = z12(E2), z∗3 = z12(E3), and z∗4 = z23(E4). The unstable equilibrium
energy E4 is of special importance, because it serves to determine the turning points of the
separatrices from Eq. (23): z4(E4) for Γ1, and z1(E4) for Γ2.

For the energy values E1 < E < E4, when Δ > 0, each E refers to two periodic curves:
one in D4 with the turning points (z1, z2) given by (18), and one in D1 with (z3, z4) given by
Eq. (19). An energy in E3 < E < E1 defines only one periodic trajectory in D3, and each
E4 < E < E2 defines one periodic curve in D2. Since Δ < 0 in both cases, the turning
points are given by (z1, z2) from Eq. (25).

2.4.3 Type III

The case of a
2
3 + b

2
3 = 1 is specific, but it has to be included to understand the bifurcation

between the two neighboring types. Increasing a and/or b from the type IV,we observe that the
two Cassini statesC1 andC4 merge into a single pointC14 of neutral stability, the homoclinic
orbit Γ1 contracts to a point, and the separatrix Γ2 merges with the specific periodic orbit
Γ3 into Γ23. Thus, the domains D1 and D4 disappear. In course of transition from type III to
type II, the division between D2 and D3 disappears; hence, we merge them into a single D23.
Lanchares and Elipe (1995) refer to this transition under the name of teardrop bifurcation.

The coordinates of the Cassini states can be obtained from Eq. (174) and are expressible
in terms of a or b alone, resulting in

z∗14 = √
1 − A3 = b

1
3 , y∗

14 = −√
A3 = −a

1
3 , (39)

and
z∗3 = −z∗14

(
A3 + √

B3

)
, z∗2 = −z∗14

(
A3 − √

B3

)
, (40)

where
A3 = 1 − b

2
3 = a

2
3 , B3 = A2

3 − A3 + 1. (41)

The expression of the energy at C14 is so simple, that we write it explicitly

E14 = −3

2
3
√
a4b2 = −3

(
z∗14

)2 (
y∗
14

)4

2
= −3A2

3 (1 − A3)

2
. (42)

It is useful also in finding the turning point of Γ23 at x = 0, which is

zm = z∗14 (1 − 4A3) , ym = −y∗
14 (3 − 4A3) . (43)

For regular trajectories with E3 < E < E2, and E 	= E14, their turning points are given
by z1 and z2 from Eq. (25), which also means z1 < z2.
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3 Analytical solution

3.1 Weierstrass form

3.1.1 General framework

Equations of motion (9) or (13) admit an exact analytical solution in terms of the elliptic
functions. Actually, the solution hinges upon the fact that the variable Z can be considered
separately from the remaining two. To see it, we can differentiate Ż = −aX , substitute Ẋ
from the first of Eq. (13), and use the energy integral (11) to eliminate Y , obtaining

Z̈ = −1

2
Z3 − EZ − a2b. (44)

Equation (44) defines a 1 degree of freedom, conservative system with the potential

Vz(Z) = Z4

8
+ E

2
Z2 + a2bZ , (45)

and the energy integral
Ż2

2
+ Vz(Z) = Ez = const. (46)

But the potential Vz(Z) and the energy Ez are closely related to the polynomial W (Z):

Ez − Vz(Z) = 1

8
W (Z), with 2Ez = W (0)

4
= − (

E − a2
)2 + a2

(
1 − b2

)
. (47)

Thus,whetherweuseEq. (46), or the squaredEqs. (13) and (16), the outcome is 4Ż2 = W (Z),
amenable to the separation of variables method.

SinceW (Z) is a quartic polynomial, finding Z(t) amounts to inverting the elliptic integral

σz

Z∫

Z0

dZ√
W (Z)

= 1

2

t∫

t0

dt, (48)

where σz = sgn Ż = −sgnX , and the right-hand side evaluates to

τ0 = t − t0
2

. (49)

The integral to the left of (48) should be a monotonous function of Z to allow the inversion
(solving for Z(t)). In the admissible range of Z between two turning points (or one turning
point and an unstable equilibrium), the sign of Ż is constant, which allows to establish its
value from the initial condition and to pull σz out of the integrand.

The integral to the left of Eq. (48) is an elliptic integral, and it can be reduced to the
Weierstrass normal form by an appropriate transformation Z → s, so that

σz

Z∫

Z0

dZ√
W (Z)

=
∞∫

s

ds√
S(s)

= τ0, (50)

where S(s) = 4s3 − g2s − g3 is the cubic polynomial of the Weierstrass resolvent (133)
for W (Z) = 0, with the invariants g2, g3 defined in “Appendix A.2”—Eqs. (134) and (135).
Note that the initial value Z0 is always mapped to s → ∞, regardless of the ordering
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of the integration limits Z0 and Z , which explains the presence of σz in the forthcoming
transformations.

Solving the rightmost part of Eq. (50) amounts to the substitution of theWeierstrass elliptic
function

s = ℘(τ0; g2, g3), hence ds = ℘′(τ0; g2, g3)dτ0. (51)

In all further instances, we will use the abbreviated notation for the Weierstrass ℘ function
℘(u) = ℘(u; g2, g3), whenever the invariants g2 and g3 from “Appendix A.2” are used.
Only the invariants different than g2 and g3 will be added to the list of arguments if needed.
The derivative of the Weierstrass ℘ function obeys

∣∣℘′(τ0)
∣∣ = √

S(℘ (τ0)), (52)

and in the first half-period 0 < τ0 < ω1 = ℘−1(e1), we have ℘′(τ0) < 0. Thus, indeed

∞∫

s

ds√
S(s)

=
0∫

τ0

℘′(τ )

|℘′(τ )| dτ = −
0∫

τ0

dτ = τ0, (53)

as expected from Eq. (50).
Once the solution for the first half-period is found, its continuation can be investigated

by the substitution into Eq. (44) which is free from the restrictions imposed by the inversion
procedure.

3.1.2 Initial conditions at turning point

Let us begin with the easiest situation, when the initial condition is Z0 = Z j = z j − b, and
t0 = t j is the epoch of crossing the turning point X0 = 0, i.e., Ż = 0. Then, the integral to
the left of (50) is reduced to the Weierstrass normal form in variable s through the rational
transformation (Enneper 1890; Bianchi 1901)

Z = Z j +
1
4W

′(Z j )

s − 1
24W

′′(Z j )
, s = W ′(Z j )

4
(
Z − Z j

) + 1

24
W ′′(Z j ). (54)

Replacing the subscript 0 with j in the formulae of Sect. 3.1.1, we find

Z = Z j +
1
4W

′(Z j )

℘ (τ j ) − 1
24W

′′(Z j )
, (55)

where

τ j = t − t j
2

. (56)

Thanks to the symmetry of trajectory with respect to the turning point, the solution does not
depend on σz and remains valid for all values of τ j .

Given the initial conditions X(t j ) = 0, Y (t j ) = Y j , Z(t j ) = Z j , and knowing Z(t), we
may complete the solution forR(t). The twomissing variables come from the energy integral
(11), with

E = − Z2

2
+ aY = − Z2

j

2
+ aY j , (57)
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and from the third of the equations of motion (13), i.e., X = −Ż/a, so

X = −
(
Z − Z j

2a

)2 ℘′(τ j )
ab + Y j Z j

,

Y = Y j + Z2 − Z2
j

2a
,

Z = Z j − 2a2b + 2EZ j + Z3
j

℘(τ j ) + 1
3 E + 1

2 Z
2
j

= Z j − 6a
(
ab + Y j Z j

)

3℘(τ j ) + aY j + Z2
j

. (58)

The coordinates on the unit sphere are, as usually, x = X , y = Y − a, and z = Z + b.

3.1.3 Arbitrary initial conditions: Weierstrass–Biermann form

If the initial conditions are not at the turning point, i.e., Z0 	= Z j , the transformation Z �→ s
is more cumbersome than (54). Whittaker and Watson (1927) quote two alternative forms
of the final solution: one due to Weierstrass, published by Biermann (1865), and one by
Mordell (1915). Actually, there is yet another, formally elegant form—the secondo metodo
d’inversione of Bianchi (1901), but the relation of its constants to initial conditions is rather
awkward, so we do not consider it here.

The Weierstrass–Biermann form results from the substitution (Enneper 1890)

Z = Z0 + σz
√
W0

√
S(s) + 1

2W1
(
s − 1

12W2
) + 1

4W0W3

2
(
s − 1

12W2
)2 − 1

2W0W4

, (59)

s =
√
W0

√
W (Z) + W0 + 1

2W1 (Z − Z0) + 1
6W2 (Z − Z0)

2

2 (Z − Z0)
2 , (60)

where σz is the sign of Z − Z0, and

Wk = 1

k!
[
dkW (Z)

dZk

]

Z0

, (61)

are the Taylor coefficients in

W (Z) =
4∑

k=0

Wk(Z − Z0)
k . (62)

After expressing E in terms of the initial conditions, they take the form

W0 = 4a2X2
0, W1 = −8a (ab + Y0Z0) ,

W2 = −4
(
aY0 + Z2

0

)
, W3 = −4Z0, W4 = −1. (63)

Substituting s = ℘(τ0), and recalling that
√
S(s) = −℘′(τ0) over the first half-period,

we obtain

Z = Z0 + −σz
√
W0℘

′(τ0) + 1
2W1

(
℘(τ0) − 1

12W2
) + 1

4W0W3

2
(
℘(τ0) − 1

12W2
)2 − 1

2W0W4

. (64)

Then, accounting for Eq. (63) and the fact that
√
W0 = 2a|X0| = −2σzaX0,

Z = Z0 + a
X0℘

′(τ0) − 2 (ab + Y0Z0)
[
℘(τ0) + 1

3

(
aY0 + Z2

0

)] − 2aX2
0Z0

[
℘(τ0) + 1

3

(
aY0 + Z2

0

)]2 + a2X2
0

. (65)
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The substitution into Eq. (44) with the initial condition Ż0 = −aX0 shows that the formula
(65) is actually valid for all values of τ0, so the initial restriction to the first half-period can
be abolished.

Like before, the remaining two variables Y , X are found from the energy integral and
from the equations of motion, respectively. Thus, for Y , we have simply

Y = Y0 + Z2 − Z2
0

2a
, (66)

whereas X = −Ż/a, requires the differentiation and some manipulations leading to

X=−X0
(
3℘(τ0) − 1

4g2
) + (ab + Y0Z0) ℘′(τ0)+ (Z−Z0)

a

[
℘(τ0) + 1

3

(
aY0 + Z2

0

)]
℘′(τ0)

[
℘(τ0) + 1

3

(
aY0 + Z2

0

)]2 + a2X2
0

,

(67)
where the second derivative has been removed using the identity ℘′′ = 6℘2 − (g2/2).

3.1.4 Arbitrary initial conditions: Safford form

If X0 = 0, so τ0 = τ j , the above solution simplifies to Eq. (58) in a straightforward manner.
On the other hand, as pointed out by Safford (1919), the general solution (64) can be derived
from the particular solution (55) by assuming τ j = τ0 + φ j , and making use of the addition
theorem for the Weierstrass function ℘. Given the initial conditions X0, Y0, Z0 at t = t0,
we can find the turning point coordinates Z j , Y j for this trajectory using the formulae of
Sect. 2.3. Then, according to Safford (1919), the phase φ j is defined through Eq. (60) at
Z = Z j , giving s = s j = ℘(φ j ). Thus, as an alternative to using Eqs. (65) and (66) for
arbitrary initial conditions, one can first computeφ j = ℘−1(s j ), and then apply the particular
solution (58) with τ j = τ0 + φ j .

But Safford (1919) cared solely about the reduction of the integrand form, so he paid no
attention to the problem that ℘(φ j ) is uniquely invertible only in the domain 0 ≤ φ j ≤ ω1,
i.e., within the first half-period. In order to properly place the phase in the full period range
−ω1 ≤ φ j ≤ ω1, one needs the information about the sign of the derivative ℘′(φ j ). To this
end, we take a slightly different approach, that actually leads to a simpler expression for s j .
Substituting τ j = φ j , and R = R0 in Eq. (58), we can solve them to find

℘(φ j ) = −2a
ab + Y j Z j

Z0 − Z j
− aY j + Z2

j

3
, (68)

℘′(φ j ) = −X0
(
ab + Y j Z j

) [
2a

Z0 − Z j

]2
, (69)

and this set allows the unique determination of the phase. Then, we can apply Eq. (58) to
obtain

X = −
(
Z − Z j

2a

)2 ℘′(τ0 + φ j )

ab + Y j Z j
, Z = Z j − 6a

(
ab + Y j Z j

)

3℘(τ0 + φ j ) + aY j + Z2
j

, (70)

with Y j and Y derived from the energy integral.
Compared to the Weierstrass–Biermann solution, we gain the simplicity at the expense

of pre-computing the turning point coordinates and the phase for the given (arbitrary) initial
conditions.
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3.1.5 Arbitrary initial conditions: Mordell form

The inversion formula of Mordell (1915) was formulated in the language of homogeneous
binary forms; in order to apply it to the Colombo top problem, let us translate it to the
univariate polynomials framework. The link is simple: the quartic polynomial W (Z) from
Eq. (122), and the quartic binary form

V (ξ, η) = a0ξ
4 + 4a1ξ

3η + 6a2ξ
2η2 + 4a3ξη3 + a4η

4, (71)

can be matched by

W (Z) = V (Z , 1), V (ξ, η) = η4W (ξη−1). (72)

Thus, after the substitution Z = ξη−1, Eq. (50) is equivalent to

σz

(ξ,η)∫

(ξ0,η0)

ηdξ − ξdη√
V (ξ, η)

=
∞∫

s

ds√
S(s)

= τ0, (73)

where the definite integral in Z has been replaced by a path-independent line integral. Skip-
ping the intermediate steps described in Mordell (1914, 1915), the inversion of (73) results
in

ξ = −σzξ0
√
V0℘

′(τ0) + 1

2

∂V0
∂η0

℘(τ0) + 1

2

∂ h̃0
∂η0

,

η = −σzη0
√
V0℘

′(τ0) − 1

2

∂V0
∂ξ0

℘(τ0) − 1

2

∂ h̃0
∂ξ0

, (74)

where V0 = V (ξ0, η0), and h̃0 is the Hessian covariant1 of V .
From the correspondence rules (72), we derive

∂V0
∂ξ0

= η30W1,

∂V0
∂η0

= η20 (4η0W0 − ξ0W1) ,

h̃0 = 1

144

(
∂2V0
∂ξ20

∂2V0
∂η20

−
(

∂2V0
∂ξ0∂η0

)2
)

= η40

(
8W0W2 − 3W 2

1

)

48
,

∂ h̃0
∂ξ0

= η30 (6W0W3 − W1W2)

12
,

∂ h̃0
∂η0

= η20

(
8η0W0W2 − 3η0W 2

1 + ξ0W1W2 − 6ξ0W0W3
)

12
, (75)

where Wn are defined in Eq. (63). By letting Z = ξ/η, and Z0 = ξ0/η0, we find that (74)
and (75) amount to

Z = ξ

η
= Z0 + 48W0℘(τ0) + 8W0W2 − 3W 2

1

−24σz
√
W0℘′(τ0) − 12W1℘(τ0) + W1W2 − 6W0W3

. (76)

1 In this paper, we use the Hessian covariant as defined by Janson (2011), which is the same as in Whittaker
and Watson (1927). Its sign is opposite to the one originally applied by Mordell (1915).
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Proceeding like in Sect. 3.1.3, we obtain the final form

Z = Z0 + 4a
X2
0

[
℘(τ0) − 2

3

(
aY0 + Z2

0

)] − (ab + Y0Z0)
2

X0℘′(τ0) + 2 (ab + Y0Z0)
[
℘(τ0) + 1

3

(
aY0 + Z2

0

)] + 2aX2
0Z0

, (77)

looking different from theWeierstrass–Biermann solution (65), yet providing the same values
of Z . Notably, the Mordell solution involves only the first power of ℘.

In order to demonstrate the equivalence of the Weierstrass–Biermann and the Mordell
solutions, one can multiply the numerator and the denominator in Eq. (65) by the factor

(
48aX0℘

′(τ0) − (12℘(τ0) − W2)W1 − 6W0W3
)
,

use the identity
(
℘′(τ0)

)2 = S(℘ (τ0)), and substitute the expressions of the invariants in
terms of Wn

g2 = W 2
2

12
− W2W3

4
+ W0W4, g3 =

∣∣∣∣∣∣

W4
1
4W3

1
6W2

1
4W3

1
6W2

1
4W1

1
6W2

1
4W1 W0

∣∣∣∣∣∣
, (78)

by analogy with the definitions (134) and (135). The result of this procedure is the Mordell
solution (77). Obviously, both (65) and (77) admit the same limit expression (58) when
X0 = 0 and τ0 = τ j .

As usually, the solution for X and Y can be derived from the equations of motion and the
energy integral, like in Sect. 3.1.3.

3.2 Solution in terms of the Jacobi elliptic functions

3.2.1 Weierstrass functions in terms of the Jacobi functions

Although the solution in terms of the Weierstrass ℘ function presented in Sect. 3.1 may look
universal, its qualitative properties depend on the values of the invariants through the sign
of the discriminant Δ. Indeed, the sign plays the central role in expressing the solution in
terms of the Jacobian elliptic functions. In this section, only the generic, Δ 	= 0 cases are to
be discussed.

The basic relation between the Weierstrass and Jacobi functions is formally universal
(Byrd and Friedman 1971)

℘(τ) = e3 +
(

γp

sn(u p, kp)

)2

= e3 + γ 2
p
1 + dn(2u p, kp)

1 − cn(2u p, kp)
, (79)

℘′(τ ) = −2

(
γp

sn(u p, kp)

)3

cn(u p, kp) dn(u p, kp)

= −2γ 3
p

(
cn(2u p, kp) + dn(2u p, kp)

) (
1 + dn(2u p, kp)

)

sn(2u p, kp)
(
1 − cn(2u p, kp)

) , (80)

where

u p = γpτ, γp = √
e1 − e3, kp =

√
e2 − e3
e1 − e3

. (81)

But if we restrict considerations to the real arguments and moduli of the elliptic functions,
the above expressions are valid only if the discriminant Δ from Eq. (136) is positive.
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When Δ < 0, which means complex e2 and e3, the appropriate form is (Abramowitz and
Stegun 1972)

℘(τ) = = e1 + γn

(
cn(un, kn)

sn(un, kn)dn(un, kn)

)2

= e1 + γn
1 + cn(2un, kn)

1 − cn(2un, kn)
, (82)

℘′(τ ) = −2

( √
γn

sn(un, kn)dn(un, kn)

)3

cn(un, kn)
(
1 − k2n + k2ncn

4(un, kn)
)

= −4γ
3
2
n

sn(2un, kn)dn(2un, kn)

(1 − cn(2un, kn))2
, (83)

where

un = √
γnτ, γn = γp

√
e1 − e2 = 1

2

√
12e21 − g2, kn = 1

2

√

2 − 3e1
γn

. (84)

The two cases are linked by the complex modulus transformation—see Byrd and Friedman
(1971, formula 165.07).

Let the initial conditions at the epoch t0 be (X0, Y0, Z0). The equations relating the Jacobi
and Weierstrass functions can be substituted in to any of the solution forms provided in
Sect. 3.1. For the Weierstrass–Biermann or the Mordell form, it is enough to compute the
energy E = E(Y0, Z0) and the discriminant Δ to choose the appropriate set (79,80) or
(82,83). Then, from the invariants g2, g3 the roots e1, e2, e3 are found, which allows the
computation of R(t) or r(t) for any epoch t .

Below, we discuss the Safford form from Sect. 3.1.4, which allows to use the initial
conditions at any t0, but requires the turning point coordinates (X j = 0, Y j = y j + a, Z j =
z j −b) as supplementary parameters. Having computed two appropriate turning points, such
that either Z1 < Z0 < Z2, or Z3 < Z0 < Z4, we pick one of them as the reference point
Z j to be used in Eq. (70). Then, after determining phase φ j with respect to the turning point
Z j , the motion can be computed for any epoch t , using τ j = τ0 + φ j .

3.2.2 Motion in D1 and D4

The caseΔ > 0 occurs only in type IV, when the energy is bounded by E4 < E < E1: either
in the domain D1, where turning points Z3, Z4 are given by Eq. (19) with Z∗

4 < Z3 < Z4, or
in the domain D4, where the turning points are Z1, Z2 given by Eq. (18) and Z1 < Z2 < Z∗

4 .
Then, selecting any appropriate Z j as the reference point, we can use the expressions

X = Apγpsn(u p, kp)cn(u p, kp)dn(u p, kp)
(
1 + Bpsn2(u p, kp)

)2 (85)

Y = Y j + Z2 − Z2
j

2a
= Y j − Apsn2(u p, kp)

1 + Bpsn2(u p, kp)

(
Z j − aApsn2(u p, kp)

1 + Bpsn2(u p, kp)

)
(86)

Z = Z j − aApsn2(u p, kp)

1 + Bpsn2(u p, kp)
(87)

where

Ap = 2(ab + Y j Z j )

e1 − e3
, Bp =

1
3

(
aY j + Z2

j

)
+ e3

e1 − e3
, (88)
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and the phase φ j in
u p = γp(τ0 + φ j ), (89)

can be computed from the incomplete elliptic function of the first kind F:

γpφ j = F(v j , kp), (90)

v j = am(γpφ j , kp) = sgn(ApX0) arcsin

√
Z j − Z0

aAp − (Z j − Z0)Bp
. (91)

The motion is periodic, and the period Pt (with respect to time t) is given by the complete
elliptic integral of the first kind K

Pt = 4K(kp)

γp
. (92)

3.2.3 Motion in D2, D3, and D23

The common feature of trajectories in domains D2, D3, and D23 is the negative discriminant
Δ. Thus, given the initial conditions and resulting energy, we pick Z1 or Z2 computed from
Eq. (25) as the reference point Z j and compute, for any t

X = An
√

γn(1 − Bn)sn(2un, kn)dn(2un, kn)

(1 − Bncn(2un, kn))2
(93)

Y = Y j + Z2 − Z2
j

2a
= Y j − An

1 − cn(2un, kn)

1 − Bncn(2un, kn)

(
Z j − aAn

2

1 − cn(2un, kn)

1 − Bncn(2un, kn)

)
,

(94)

Z = Z j − aAn
1 − cn(2un, kn)

1 − Bncn(2un, kn)
, (95)

where

An = 2(ab + Y j Z j )

e1 + γn + 1
3

(
aY j + Z2

j

) , Bn = 1 − 2γn

e1 + γn + 1
3

(
aY j + Z2

j

) . (96)

The phase in
un = √

γn(τ0 + φ j ), (97)

results from

2
√

γnφ j = F(v j , kn), (98)

v j = am(2
√

γnφ j , kn) = sgn(AnX0) arccos

(
aAn + Z0 − Z j

aAn + (Z0 − Z j )Bn

)
. (99)

The related period is

Pt = 4K(kn)√
γn

. (100)

The above formulation is universal, i.e., appropriate in types II, III, and IV, provided
Δ < 0.
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3.3 Special cases

3.3.1 Reduction rules

By special cases, we mean the ones where elliptic functions reduce to the elementary ones.
They could be studied by taking limits of the Jacobi functions at kn or kp tending to 0 or
1. But it is more direct to observe that each of the special cases, be it the Cassini states,
separatrices, or the special curve Γ3, results from the reduction of the Weierstrass function
℘(u, g2, g3) to the special case

℘(u; 3, 1) = 1 + 3

2 tan2
(√

3
2u

) . (101)

Since Δ = 0 implies (g2/3)3 = g23 , reduction to the above form is always possible by the
homogeneity relations (Abramowitz and Stegun 1972)

℘(u; g2, g3) = λ−2℘(λ−1u; λ4g2, λ
6g3), (102)

except for g2 = g3 = 0, when
℘(u; 0, 0) = u−2. (103)

For the derivative ℘′, respective equations are obtained by straightforward differentiation.
Depending on the sign of g3, two procedures are available. For g3 > 0, the substitution

of λ = g
− 1

6
3 leads straight to

℘(u; g2, g3) = e1℘(
√
e1 u; 3, 1), (104)

where g3 = e31, according to Eq. (145).
If g3 < 0, two steps are taken. First, letting λ = i, we convert

℘(u; g2, g3) = −℘(i u; g2,−g3). (105)

Then, with λ = (−g3)−
1
6 , we recover

℘(u; g2, g3) = −2e12℘(i
√
2e12 u; 3, 1), (106)

according to Eq. (146).

3.3.2 Cassini states C2 and C3

When discussing the Cassini states, we can use the simplest form (58) for Z . Although the
time dependence at the Cassini states does vanish due to ab + Y0Z0 = −W ′(Z0)/(8a) = 0,
and X0 = 0, it remains of interest to inspect ℘(τ) in the numerator, because its period is the
period of small oscillations around the stable equilibrium.

Given a and b, one should first establish the problem type in order to compute the appro-
priate coordinate Z∗

2 = z∗2 − b, or Z∗
3 = z∗3 − b. These are Eqs. (33), (40), and (36) for the

types II, III, and IV, respectively. Starting from this point, the procedure is common: Z∗
j gives

the energy of the Cassini state

E j = −
(
Z∗
j

)3 + a2b

2Z∗
j

, j = 2, 3, (107)
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which substituted in Eq. (134) or (135) gives the invariants g2(E j ) or g3(E j )—both positive.
Resorting to Eqs. (104) and (101), we find that Z in solution (58) depends on the squared

tangent of
√
3e1/8 t which implies the period

Pj = 2π

√
2

3e1(E j )
, j = 2, 3, (108)

where e1(E j ) = 3
√
g3 = √

g2/2. The same result can be obtained by taking the limit of (100)
at kn → 0.

3.3.3 Cassini state C4 and homoclinic orbits 01, 02

The energy of the unstable Cassini state C4 can be evaluated from Eq. (107) with j = 4, and
Z∗
4 given by (36). However, we need it not for the Cassini state itself, but rather to describe

the motion on homoclinic orbits having the energy E4, which are Γ1 and Γ2. To this end, we
will use the Safford form (70) with the reference points given by Eq. (23), namely Z4 for Γ1,
and Z1 for Γ2.

Since g3 < 0, the reduction (106) leads to

X = Ã
√
3e12 sinh(2ũ)

(
1 + B̃ sinh2 ũ

)2 ,

Y = Y j + Z2 − Z2
j

2a
= Y j − 2 Ã sinh2 ũ

1 + B̃ sinh2 ũ

(

Z j − a Ã sinh2 ũ

1 + B̃ sinh2 ũ

)

,

Z = Z j − 2a Ã sinh2 ũ

1 + B̃ sinh2 ũ
, (109)

with the coefficients

Ã = ab + Y j Z j

3e12
, B̃ =

e12 + 1
3

(
aY j + Z2

j

)

3e12
, (110)

where e12 is given by Eq. (146). The argument

ũ = √
3e12(τ0 + φ j ), (111)

whose phase with respect to Z j at the initial epoch t0 is given by

φ j = sgn(X0 Ã)√
3e12

arsinh

√
Z j − Z0

2a Ã − B̃(Z j − Z0)
. (112)

Note that the time rate of argument ũ is the same at both the separatrices, and as expected
the solution tends to the Cassini state C4 asymptotically at t → ±∞.

3.3.4 Cassini state C1 and special orbit 03

The Cassini state C1, being a stable equilibrium with g3 > 0, is characterized by the period
of small oscillations given directly by the formula (108) with the energy E1 evaluated at Y ∗

1 ,
Z∗
1 deduced from Eq. (36). What makes the difference, compared toC2 orC3, is the presence

of another trajectory having the energy E1—the special curve Γ3.
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The motion along Γ3 can be described using the Safford form solution (70) with respect
to the turning points Z1 or Z2, given by Eq. (21). Then, performing the reduction (104), we
obtain the solution in terms of trigonometric functions

X = Āγ3 sin 2ū
(
1 + B̄ sin2 ū

)2 ,

Y = Y j + Z2 − Z2
j

2a
= Y j − Ā sin2 ū

1 + B̄ sin2 ū

(

Z j − a Ā sin2 ū

2
(
1 + B̄ sin2 ū

)

)

,

Z = Z j − a Ā sin2 ū

1 + B̄ sin2 ū
, (113)

where

Ā = 4(ab + Y j Z j )

3e1
, B̄ =

2
3

(
aY j + Z2

j

)
− e1

3e1
. (114)

The argument ū is
ū = γ3(τ0 + φ j ), (115)

where γ3 = √
3e1/2, as in Eq. (81) for e3 = −e1/2; hence, the time period of the solution

is the same as that of small oscillations around C1, i.e., P1 given by Eq. (108). The phase φ j

can be computed from

γ3φ j = sgn( ĀX0) arcsin

√
Z j − Z0

a Ā − (Z j − Z0)B̄
. (116)

The above solution can be obtained either from (86) with kp = 0, and e3 = −e1/2, or—in
a different form—from (94) with kn = 0, and g2 = 3e21.

3.3.5 Cassini state C14 and special orbit 023

The most degenerate case occurs in type III, where C14 is the cusp (parabolic) equilibrium
with energy E14 given by Eq. (42). The homoclinic curve Γ23 with this energy can be
parameterized using rational functions of time, as indicated by the reduction formula (103).
For the sake of using the Safford form, we introduce

u23 = t − t0 + τ23, τ23 = t0 − tm, (117)

where τ23 is the time interval between the initial epoch t0 and the epoch of crossing the
reference turning point with coordinates Ym = ym + a, and Zm = zm − b, as given by
Eq. (43). Then, with β = 3

√
a4b2,

X = − 8abu23
(
1 + βu223

)2 , (118)

Y = Ym + 4abu223
1 + βu223

(

Zm + 2a2bu223
1 + βu223

)

, (119)

Z = Zm + 4a2bu223
1 + βu223

. (120)
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The time offset τ23 is given by

τ23 = −sgnX0

√
Z0 − Zm

4a2b − β (Z0 − Zm)
. (121)

4 Conclusions

It is common to describe the integral curves of the Colombo top problem as an intersection
of a parabolic cylinder and a unit sphere, the latter being centered at the origin of the x, y, z
coordinate system. We have proposed a new point of view: the curves can be tracked along
the intersection of two out of the three invariant surfaces: a parabolic cylinder, a sphere, and
a paraboloid of revolution. This thread has been merely signaled, but it can be of possible
interest when designing geometric integrators for the numerical treatment of the Colombo
top motion. Moreover, using the shifted coordinates X , Y , Z , one introduces the symmetry
to the parabolic cylinder on the paraboloid (at the expense of having an off-centered sphere)
which does simplify a number of expressions given in this work.

When partitioning the phase space of the Colombo top problem, we have completed
the landscape, well known from earlier works, with an interesting but hitherto overlooked
feature: the trajectory Γ3 which is unique by being periodic, yet expressible in terms of
elementary functions of time. Its presence calls for the distinction of D3 and D4 domains
even though qualitatively they look similar. It also adds to a better understanding of the
parametric bifurcation associated with the passage from type II, to type IV.

The analytical expressions for the turning points of the Colombo top trajectories as func-
tions of energy, given in Sect. 2.3, had not been reported so far. The expressions for the
location of the Cassini states from Sect. 2.4 depend only on parameters a, b. Up to some
rearrangement of terms, they are similar to those of Saillenfest et al. (2019) in type II or III.

For type IV, when a
2
3 + b

2
3 < 1, the Cardano form provided by Saillenfest et al. (2019) is

formally correct, but it gives real values only as the sums of two complex conjugates (casus
irreducibilis of the resolvent cubic). In the present work, we have preferred to use expressions
based on the purely real trigonometric form whenever the quartic has a positive discriminant.

The differential equation for Ż , with its right-hand side proportional to the square root
of the degree 4 polynomial, is not a novelty in celestial mechanics. The same form pops up
while discussing the second fundamental model of resonance (Henrard and Lemaitre 1983).
Its solution in terms of the Weierstrass elliptic function has always been given either in the
simplified form of Eq. (55), as in Ferraz-Mello (2007), or in the Biermann-Weierstrass form
(Nesvorný andVokrouhlický 2016).We have taken an opportunity to recall other possibilities
(Safford and Mordell forms) than can be of use in other applications as well.

We hope that the results of the present work will facilitate the study of perturbed Colombo
top problems. They should be useful either as the kernel of analytical perturbation procedures,
or as a building block of numerical integrators based upon composition methods.
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A The roots ofW(Z) = 0

A.1 Factorization

In order to find the zeroes of the W (Z), let us first write it in the ‘classical’ polynomial form

W (Z) = a0Z
4 + 4a1Z

3 + 6a2Z
2 + 4a3Z + a4, (122)

where according to Eq. (17) the coefficients are

a0 = −1, a1 = 0, a2 = −2E

3
, a3 = −2a2b, a4 = −4E2+8a2E−4a2

(
a2 + b2 − 1

)
.

(123)
Note the absence of the cubic term (a1 = 0), meaning that equation W (Z) = 0 is already in
the reduced form.

Solving equationW (Z) = 0, we essentially follow a simplified and slightly reformulated
procedure of Neumark (1965). In particular, the absence of the third power of Z allows the
factorization

W (Z) = a0 W+(Z)W−(Z) = a0
(
Z2 + 2

√
ξ Z + h+

) (
Z2 − 2

√
ξ Z + h−

)
, (124)

with only three parameters (ξ , h+, h−), and three conditions resulting from equating the
coefficients of W and W+W−:

h−h+ = −a4, h− − h+ = 4a2b√
ξ

, h− + h+ = 4 (E + ξ) . (125)

The last two equations are easily solved for h− and h+

h± = 2

(
E + ξ ∓ a2b√

ξ

)
, (126)

so the first of Eq. (125), after the substitution of Eq. (126), is actually the resolvent cubic
equation

ξ3 + 2Eξ2 + a2 (3ρ + 2E) ξ − a4b2 = 0, (127)
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where 3ρ = 1 − a2 − b2, according to Eq. (30). The Descartes rule guarantees that (for
nonzero a and b) the resolvent has at least one positive real root to be used in factorization
(124).

Before we proceed to solving the resolvent, let us make some important remarks. The four
roots of the quartic equation W (Z) = 0 come in two pairs of the roots of W+(Z) = 0 and
W−(Z) = 0, i.e.,

W+(Z) = 0 : Z1 = −√
ξ − √

ξ − h+, Z2 = −√
ξ + √

ξ − h+,

W−(Z) = 0 : Z3 = √
ξ − √

ξ − h−, Z4 = √
ξ + √

ξ − h−. (128)

Let ξ1 be the only, or the greatest positive root of the resolvent (127). Then, from the Vieta’s
formulas, we find for the remaining two roots ξ2 + ξ3 = −2E − ξ1, and ξ2ξ3 = a4b2ξ−1

1 ,
which allows to see that

√
ξ2 ± √

ξ3 =
√

ξ2 + ξ3 ± 2
√

ξ2ξ3 =
√

−ξ1 − 2E ± 2a2b√
ξ1

= √
ξ1 − h±. (129)

This leads to the Euler form of the solution

Z1 = −√
ξ1 − √

ξ2 − √
ξ3, Z2 = −√

ξ1 + √
ξ2 + √

ξ3,

Z3 = √
ξ1 − √

ξ2 + √
ξ3, Z4 = √

ξ1 + √
ξ2 − √

ξ3. (130)

Assuming for the real roots 0 < ξ3 ≤ ξ2 ≤ ξ1, we guarantee a number of properties
like the ordering Z1 ≤ Z2 ≤ Z3 ≤ Z4, the fact that a given trajectory contains only a pair
(Z1, Z2) or (Z3, Z4), and that if ξ2, ξ3 are complex conjugates, then Z1 and Z2 remain real,
whereas Z3 and Z4 become complex.

A.2Weierstrass resolvent and its roots

The cubic resolvent equation (127) can be brought to a reduced form without the square term
in a number of ways. We choose the substitution based upon the seminvariant (Janson 2011)

P2 = a0a2 − a21 = 2

3
E, (131)

with

ξ = s − P2 = s − 2

3
E . (132)

Applying it to Eq. (127), and multiplying both sides by 4, we obtain

S(s) = 4s3 − g2s − g3 = 0. (133)

The cubic polynomial S(s) plays a special role in the theory of the Weierstrass elliptic
functions; thus, let us call it the Weierstrass resolvent. The symbols g2 and g3 that appear in
Eq. (133) are the two, algebraically independent, basis invariants of the quartic W (Z):

– The apolar invariant of degree 2

g2 = a0a4 + 3a22 − 4a1a3 = 12

[(
2E

3

)2

− a2
(
2E

3

)
− a2ρ

]

, (134)
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– The Hankel determinant of degree 3

g3 =
∣∣∣∣∣∣

a0 a1 a2
a1 a2 a3
a2 a3 a4

∣∣∣∣∣∣
= −8

(
2E

3

)3

+ 12a2
(
2E

3

)2

+ 12a2ρ

(
2E

3

)
+ 4a4b2, (135)

known also as a catalecticant (Janson 2011).

Notably, both the discriminants: Δ4 of the quarticW (Z) and Δ3 of the cubic S(s) are not
only expressible in terms of g2 and g3, but they are equal up to a constant factor. If

Δ =
(g2
3

)3 − g23, (136)

then Δ4 = 16Δ3 = 44 33Δ.
Let the roots of the Weierstrass resolvent equation S(s) = 0 be s = e1, s = e2, and

s = e3. By the Vieta’s formulae, they satisfy

e1 + e2 + e3 = 0, e1e2 + e1e3 + e2e3 = −g2
4

, e1e2e3 = g3
4

, (137)

and by the definition of the scaled discriminant (136)

(e1 − e2)
2 (e1 − e3)

2 (e2 − e3)
2 = 27Δ

16
. (138)

Introducing auxiliary quantities β and φ, such that

g2 = 3β2, g3 = β3 cosφ, Δ = β6 sin2 φ; (139)

hence,

β =
√
g2
3

, cosφ = g3

(
3

g2

) 3
2

, (140)

we can establish the universal formula for the roots (Brizard 2015)

e1 = β cos
φ

3
,

e2 = β cos
φ − 2π

3
= −e1

2
+

√
3

2
β sin

φ

3
= −e1

2
+

√
g2 − 3e21

2
,

e3 = β cos
φ + 2π

3
= −e1

2
−

√
3

2
β sin

φ

3
= −e1

2
−

√
g2 − 3e21

2
. (141)

If Δ > 0 (hence g2 > 0), there are three simple real roots e3 < e2 < e1 given directly
by Eq. (141). When Δ < 0, there is one real root e1 and two complex ones, with e2 = e3.
Equations (139) and (141) remain valid in principle, but they involve complex quantities and
require distinguishing the sign of g2. In these circumstances, it is more convenient to use the
Cardano form for the real root2

e1 = 1

2

(
3
√
g3 + √−Δ + 3

√
g3 − √−Δ

)
. (142)

and

e2 = −e1 − iec
2

, e3 = ē2 = −e1 + iec
2

, (143)

2 In this approach, 3√x of a real argument x is used as a real-valued function for x < 0, i.e., 3√−1 = −1.
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with

ec =
√
3e21 − g2 =

√
3

2

(
3
√
g3 + √−Δ − 3

√
g3 − √−Δ

)
, (144)

for the complex roots.
Finally, the degeneracyΔ = 0 implies real roots: one simple and one double, or one triple

root. The former case requires g3 	= 0 and g2 > 0; then, according to the sign of g3, either

e1 = 3
√
g3 =

√
g2
3

, e2 = e3 = e23 = −e1
2

, for g3 > 0 (145)

or

e3 = 3
√
g3 = −

√
g2
3

, e1 = e2 = e12 = −e3
2

, for g3 < 0. (146)

The ordering of roots in (146) is exceptional (e3 is the greatest), but helps to maintain a
coherent notation in further applications.

The triple root e123 = 0 may appear only for g2 = g3 = 0, which is possible only when

a
2
3 + b

2
3 = 1.

A.3 The roots Zj

Although the roots of W (Z) are to be expressed in terms of the roots of S(s), we need to
include in the discussion not only the invariants Δ, g2, and g3, but also seminvariants P2 and

Q2 = 2a20a3 − 6a0a1a2 + 4a31 = −4a2b. (147)

This is due to the fact that although formally it is enough to substitute

ξ j = e j − 2

3
E = e j − P2, (148)

into (130), the signs of ξ j play a significant role in determining which of the roots are real
and which are complex, and there are various ways to create multiple roots.

In the following discussion, we will refer to the Theorem 9.3 of Janson (2011), adjusted to
the different scaling of our invariants and seminvariant (namely, his P = 48P2, Q = 16Q2,
J = 432g3, and I = 12g2).

A.3.1 Four simple real roots (1 > 0 and all �j ≥ 0)

If the four real roots exist, they take the form (130) with ξ j defined in Eq. (148) and e j as in
(141). This requires not only Δ > 0 to have three simple real roots e j , but also that ξ j ≥ 0
for each j ∈ {1, 2, 3}. The latter is secured by P2 < 0 and 12P2

2 − a20g2 ≥ 0 (Janson 2011).
Substituting (131), (134), and (123), we obtain

Δ > 0, and − ρ ≤ 2E

3
< 0, (149)

as the condition for the real quadruple Z1 < Z2 < Z3 < Z4. If Δ is positive, but the second
condition in (149) is not fulfilled, there are no real roots, and Z j form two distinct pairs of
complex conjugate numbers.
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A.3.2 Two simple real roots (1 < 0)

When e2 and e3 are complex, the pair (Z3, Z4) is complex, whereas (Z1, Z2) in the formula
(130) formally remain real-valued, yet only by canceling the imaginary parts. Using ξ1 =
e1 − P2, with e1 given by Eq. (142), we can obtain Z1 and Z2 directly from Eqs. (128) and
(126). Alternatively, we can find the expressions for

√
ξ2 ± √

ξ3, which results in

Z1 = −√
ξ1 − √

2|ξ2| − ξ1 − 3P2, Z2 = −√
ξ1 + √

2|ξ2| − ξ1 − 3P2, (150)

and
Z3 = √

ξ1 − i
√
2|ξ2| + ξ1 + 3P2, Z4 = Z3, (151)

where

ξ1 = e1 − P2, 2|ξ2| = 2|ξ3| = |e1 + 2P2 + iec| =
√

(e1 + 2P2)2 + e2c , (152)

with e1 given by Eq. (142).

A.3.3 Multiple roots (1 = 0)

The statement Δ = 0 means only that at least one of the roots is at least a double root.
Further distinction is based upon the signs and values of g2, g3 and P2. Let us inspect five
possibilities involving multiple real roots from the Theorem 9.3 of Janson (2011).

A quadruple real root is not possible, because it requires P2 = g2 = g3 = 0, whereas
substituting E = 0 we obtain g3 = 4a4b2 	= 0. Two real double roots are also impossible,
because they require (among other conditions) that Q2 = 0, which is not the case. The
remaining three cases are the following.

1. A triple real root and one single real root appear when g2 = g3 = 0, and P2 < 0. Taking
the resultant of g2 and g3 considered as the polynomials in E , one finds that both the
invariants admit the common root if

a
2
3 + b

2
3 = 1, (153)

the relation well known from Henrard and Murigande (1987). With this constraint,
g2 = 0 can be solved to give a unique negative root

E = −3

2

(
a2b

) 2
3 . (154)

According to the statement below Eq. (146), g2 = g3 = 0 refers to the triple root
e123 = 0; hence, with ξ1 = ξ2 = ξ3 = − 2

3 E , we obtain

Z1 = −3
3
√
a2b, Z234 = 3

√
a2b, (155)

where Z1 is the single, and Z234 is the triple root.
2. Two simple real roots Z1, Z2 and double real root Z34 appear when g2 > 0, P2 < 0,

and 12P2
2 − g2 > 0. So, if E is a real root of Δ = 0 in the interval

− ρ <
2E

3
< 0, (156)

then either

Z1 = −√
ξ1 − 2

√
ξ23, Z2 = −√

ξ1 + 2
√

ξ23, Z34 = √
ξ1, for g3 > 0,

(157)
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or

Z1 = −√
ξ3 − 2

√
ξ12, Z23 = √

ξ3, Z4 = −√
ξ3 + 2

√
ξ12, for g3 < 0,

(158)
where ξi = ei − P2, and ξi j = ei j − P2, with the Weierstrass resolvent roots given by
Eq. (145) or (146), according to the sign of g3.

3. If the energy E is a real root of Δ = 0 outside the interval (156), i.e.,

2E

3
< −ρ, or

(
E > 0, and

2E

3
	= −ρ

)
, (159)

then a double real root Z12 is accompanied by two simple complex roots Z3 and Z4.
This case appears when ec = 0 in Eq. (143). Accordingly,

Z12 = −√
ξ1 = −√

e1 − P2, (160)

where e1 is given by Eq. (145).

B Cassini states coordinates z∗
j

The left-hand side of the quartic equation w(z − b) = 0 is the polynomial

w(z − b) = a′
0z

4 + 4a′
1z

3 + 6a′
2z

2 + 4a′
3z + a′

4, (161)

where

a′
0 = −1, a′

1 = b

2
, a′

2 = 1 − a2 − b2

6
= ρ

2
, a′

3 = −b

2
, a′

4 = b2. (162)

Evaluating the invariants and seminvariants from the primed coefficients, we find

g′
2 = 3ρ2

4
≥ 0, g′

3 = −
(ρ

2

)3+a2b2

4
, P ′

2 = −ρ

2
−b2

4
, Q′

2 = −
(
1 + a2

)
b

2
< 0,

(163)
ant the scaled discriminant is

Δ′ =
(
g′
2

3

)3

− (
g′
3

)2 = a2b2

16

(
ρ3 − a2b2

)
. (164)

The transformation

z = zr + b

2
, (165)

converts the equation w(z − b) = 0 into w(zr − b/2) = 0, which is free of the z3r term,
and so is ready for the factorization from Sect. A.1. Fortunately, we do not need to know
the coefficients of the equation in zr , because we require only the invariants (163) which
are conserved under the simple transformation (165). Thus, tracing backward the procedure
from “Appendix A”, we start with solving the Weierstrass resolvent

4s3 − g′
2s − g′

3 = 0, (166)

finding the roots e′
1, e

′
2, and e

′
3. These define

ξ ′
j = e′

j − P ′
2 = e′

j + ρ

2
+ b2

4
, (167)
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as in Eqs. (132) and (148). Finally, four roots zr,i are given by Eq. (130)with Zi → zr,i , ξ j →
ξ ′
j , and then z

∗
i = zr,i + (b/2). Each real solution z∗i is the z coordinate of some Cassini state.

The number of real roots of w(z − b) = 0 depends on the sign of Δ′.

1. Δ′ > 0 is equivalent to a
2
3 + b

2
3 < 1. Three real roots e′

1 > e′
2 > e′

3 of the resolvent
(166) are, by analogy with (141),

e′
1 = ρ

2
cos

φ′

3
,

e′
2 = ρ

2
cos

φ′ − 2π

3
= −e′

1

2
+

√
g′
2 − 3(e′

1)
2

2
,

e′
3 = ρ

2
cos

φ′ + 2π

3
= −e′

1

2
−

√
g′
2 − 3(e′

1)
2

2
, (168)

where

φ′ = arccos

(
2a2b2

ρ3 − 1

)
= π − 2 arcsin

(
ab

ρ
3
2

)

. (169)

They always define four real roots z∗i , because all ξ ′
j are positive. Indeed

ξ ′
1 = b2

4
+ ρ

2

(
1 + cos

φ′

3

)
= b2

4
+ ρ cos2

φ′

6
> 0,

ξ ′
2 = b2

4
+ ρ

2

(
1 + cos

φ′ − 2π

3

)
= b2

4
+ ρ cos2

φ′ − 2π

6
> 0,

ξ ′
3 = b2

4
+ ρ

2

(
1 + cos

φ′ + 2π

3

)
= b2

4
+ ρ cos2

φ′ + 2π

6
> 0. (170)

Unlike in eq. (130), we label the roots z∗i not according to their ordering in magnitude,
but so that the subscript i matches the Cassini state label Ci according to Colombo
(1966), it is

z∗1 = b

2
+

√
ξ ′
1 +

√
ξ ′
2 −

√
ξ ′
3, z∗2 = b

2
−

√
ξ ′
1 +

√
ξ ′
2 +

√
ξ ′
3,

z∗3 = b

2
−

√
ξ ′
1 −

√
ξ ′
2 −

√
ξ ′
3, z∗4 = b

2
+

√
ξ ′
1 −

√
ξ ′
2 +

√
ξ ′
3, (171)

with z∗3 < z∗2 < z∗4 < z∗1, as expected.
2. Δ′ < 0 means a

2
3 + b

2
3 > 1. The Weierstrass resolvent has one real root e′

1 and two
complex roots e′

2 = e′
3 given by Eqs. (142), (143), and (144) with g′

2, g
′
3, and Δ′.

Accordingly, we obtain two real roots z∗i —the ones involving
√

ξ ′
2 +

√
ξ ′
3, where the

imaginary part cancels out. Adapting the expressions (150) and (152), and adjusting the
subscripts of z∗i to the Cassini statesC3 andC2, we obtain two real roots ofw(z−b) = 0
as

z∗3 = b

2
−

√
ξ ′
1 −

√
2|ξ ′

2| − ξ ′
1 − 3P ′

2, z∗2 = b

2
−

√
ξ ′
1 +

√
2|ξ ′

2| − ξ ′
1 − 3P ′

2, (172)

with z∗3 < z∗2. The final substitution is made in Sect. 2.4.
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3. Δ′ = 0, hence a
2
3 + b

2
3 = 1, implies one single and one double real root of the

Weierstrass resolvent. A triple root is excluded, because g′
2 = 3

4 (ab)
4
3 	= 0. Thus,

observing that g′
3 = a2b2/8 > 0, and ρ = (ab)

2
3 ,

e′
1 = (ab)

2
3

2
, e′

23 = −e′
1

2
, ξ ′

1 = 4a
2
3 b

2
3 + b2

4
, ξ ′

23 = a
2
3 b

2
3 + b2

4
, (173)

provide three Cassini states: two usual C3, C2 and one degenerate C14, with

z∗3 = b

2
−

√
ξ ′
1 − 2

√
ξ ′
23, z∗2 = b

2
−

√
ξ ′
1 + 2

√
ξ ′
23, z∗14 = b

2
+

√
ξ ′
1, (174)

listed in the ascending order.
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