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Abstract
We give a computer-assisted proof of the full listing of central configuration for n-body prob-
lem for Newtonian potential on the plane for n = 5, 6, 7with equal masses.We show all these
central configurations have a reflective symmetry with respect to some line. For n = 8, 9, 10,
we establish the existence of central configurations without any reflectional symmetry.
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1 Introduction

A central configuration, denoted as CC, is an initial configuration (q1, . . . , qn) in the New-
tonian n-body problem, such that if the particles were all released with zero velocity, they
would collapse toward the center of mass c at the same time. In the planar case, CCs are
initial positions for periodic solutions which preserve the shape of the configuration. CCs
play also an important role in the study of the topology of integral manifolds in the n-body
problem (see Moeckel and the references given there).

In this paper, for n = 4, 5, 6, 7, we consider two questions:

– finding all CCs in the n-body problem on the plane (d = 2) with equal masses and
– showing that each CC has a line of reflection symmetry.

For n = 8, 9, 10, we establish the existence of some non-symmetric CCs previously found
numerically in Moeckel, Ferrario (2002) and Simo (2018).

1.1 The state of the art

The listing (apparently full for n � 9 ) of central configurations with equal masses was given
by Ferrario (2002) in unpublished notes for n ∈ {3, . . . , 10} and by Moeckel for n � 8. For
n = 4, it was shown by Albouy (1995) that all CCs have some reflectional symmetry and
later in Albouy (1996) with computer assistance the full list of central configurations was
given. From numerical simulations (see for example Moeckel; Ferrario 2002), it is apparent
that all CCs with equal masses have some reflectional symmetry for n = 5, 6, 7. Moeckel
has found numerically some CCs without any symmetry for n = 8. Also for n = 9 Simo
(2018) has found 2 families, non-equivalent, and without any symmetry. Some CCs without
symmetry for n = 10 can be found also in Ferrario (2002).

The investigations of central configurations for equalmasses are a subcase ofmore general
problem of central configurations with arbitrary positive masses. The general conjecture of
finiteness of central configurations (relative equilibria) in the n-body problem is stated in
Wintner (1941) and appears as the sixth problem of Smale’s eighteen problems for the 21st
century (Smale 1998). There are many works on the existence of some particular central
configurations. Here we discuss only those papers which aim to more general statement
about all CCs. The two most important works are Hampton and Moeckel (2005) and Albouy
and Kaloshin (2012). In Hampton and Moeckel (2005), the finiteness of CC for n = 4 for
any system of positive masses was proved with computer assistance. In Albouy and Kaloshin
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(2012), for n = 4 problem the finiteness of CC was proven without computer assistance.
In the same paper, the finiteness for n = 5 was proven for arbitrary positive masses, except
perhaps if the 5-tuple of positive masses belongs to a given codimension 2 subvariety of
the mass space. It is interesting to notice that the equal masses case treated in our paper
belongs to this subvariety. For the spatial 5-body problem, Moeckel (2001) established the
generic finiteness of Dziobek’s CCs (CCs which are not planar). A computer-assisted work
by Hampton and Jensen (2011) strengthens this result by giving an explicit list of conditions
for exceptional values of masses. A common feature of these works is that they give a quite
poor estimate for the maximum number of central configurations. In this context, it is worth
to mention the work of Simo, based on extensive numerical studies. In Simo (1978), he gives
the number of CCs for all possible masses for n = 4.

In Lee and Santoprete (2009), the spatial 5-body problem with equal masses was consid-
ered. A complete classification of the isolated central configurations of the 5-body problem
was given (this includes also planar isolated CCs). The approach has a numerical compo-
nent; hence, it cannot be claimed to be fully rigorous. Also the proof does not exclude the
possibility that a higher-dimensional set of solutions exists. On the other hand, the existence
of identified isolated CC has been proven using the Krawczyk’s operator, i.e., a tool from
interval arithmetic we also use. Kotsireas (see Kotsireas 2000 and references given there)
considers the 5-body problem with equal masses. He gives computer-assisted proof of a
full list of all such configurations and shows that each of them posses some reflectional
symmetry.

The above-mentioned works study the polynomial equations derived from the equations
for CC using the (real or complex) algebraic geometry tools. In contrast, we take a different
approach: we use standard interval arithmetic tools; hence, in principle we can treat also
other potentials which cannot be reduced to polynomial equations.

1.2 Themain results

Theorem 1 There exist only a finite number of various types of CCs, for n = 5, 6, 7 the planar
n-body Newtonian problem with equal masses. They are listed in Supplementary Material.
Any CC can be obtained from one of them by suitable composition of translation, rescaling,
rotation, reflection and permutation of bodies. Moreover, each of these central configurations
has some reflectional symmetry.

Theorem 2 For n = 8, 9, 10 in the planar n-body Newtonian problem with equal masses,
there exist CCs without any line of reflectional symmetry. They are listed in Supplementary
Material.

In the case of equal masses, one can consider equivalences in two different ways: either
one passes from a solution to another one by rotation (scaling is already taken into account) or
one can also add permutations and reflections. For instance, for 4 bodies in the first criterion
of equivalence there are 50 classes [see numerical work by Simo (1978)], while in the second
only 4 classes. In this paper, we use this second criterion for equivalence.

Let us briefly describe our method. This is basically a brute force approach using standard
interval arithmetic tools. Throughout the paper, we will use often box or cube to describe a
set which is a product of intervals (some of them can be degenerated). The interval arithmetic
allows to evaluate elementary functions on the box in a single call, i.e., the box is returned
containing the true result for all points in the argument box (see for example Moore 1966;
Neumeier 1990). When looking for CCs, we explore the whole configuration space (modulo
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some a priori bounds), and it is surprising that the most demanding part is to exclude the
possibility of the existence of CC in a given box. Once we are ‘very close’ to an isolated CC,
it is relatively easy to establish its existence and local uniqueness using the Krawczyk (1969)
operator. The additional difficulty is that the potential contains singularity, which introduces
some non-compactness in the domain to be covered. Our algorithm, which is more or less a
binary search algorithm, scales poorly with n — this is the dimensionality curse (see Traub
et al. 1988), which means that the complexity of our algorithm grows exponentially with n.
For example, assume that we can decide if a box in the configuration space contains some
CC, only when its diameter is less than 10−2 in each direction. Then adding a new body in
[−1, 1]×[−1, 1]multiplies the number of boxes to be examined by (2/10−2)2 = 4 ·104. For
this reason, we were not able to obtain a rigorous listing of CCs for n = 8. Note that for n = 5
the computations were done in 24 seconds, for n = 6 it took about one hour to get the result,
while for n = 7 we needed almost a hundred hours (see Sect. 7.3 for more technical data).

For any CC from the listing in Moeckel or Ferrario (2002) for n � 8 we have found no
difficulty proving its existence and local uniqueness. In particular, we confirmed the existence
of non-symmetric planar CCs for n = 8, 9, 10 (see Theorem 2).

The paper is organized as follows. In Sect. 2 we recall the equations for the central
configurations and their basic properties. In Sect. 3, we derive several a priori bounds for
CC, so that we obtain a compact domain for our search algorithm. In Sect. 4, we discuss
various tests which are used to show that a given box does not contain any CC. In Sect. 5, we
derive a reduced set of equations for CC. This is necessary because to apply the Krawczyk’s
method we need to ensure that the system of equations does not contain any degeneracies,
which are due to symmetries of the original system of equations for CCs. In Sect. 6, we give
assumptions and basic ideas concerning the computer-assisted proofs of main Theorems 1
and 2 and we explain the Krawczyk’s method. Details of the algorithm are described in
Sect. 7. In Sect. 8, we present an attempt to minimize the dependency problem in interval
arithmetic in the evaluation of the gravitational force. In electronic supplementary material,
we give an output of the program establishing Theorems 1 and 2 (also for n = 3, 4) and
pictures of all CCs found.

2 Equations for central configurations

In the paper by |z|, where z = (z1, . . . , zd) ∈ R
d , we will denote the euclidean norm of z,

i.e., |z| =
(∑d

i=1 z
2
i

)1/2
and by (x, y), where x, y ∈ R

d , we will denote the standard scalar

product, i.e., (x |y) = ∑d
i=1 xi yi . We will often use z2 := (z|z).

Let qi ∈ R
d , i = 1, . . . , n and d � 1 (the physically interesting cases are d = 1, 2, 3),

where qi is a position of i-th body with mass mi ∈ R+. Let us set

M =
n∑

i=1

mi . (1)

Central configurations are solutions of the following system of equations (see Moeckel):

λ(qi − c) =
n∑
j=1
j �=i

m j

r3i j
(qi − q j ) =: 1

mi
fi (q1, . . . , qn), i = 1, . . . , n, (2)
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where λ ∈ R is a constant, c = (∑n
i=1 miqi

)
/M is center of mass, ri j = r ji = |qi − q j |

is the Euclidean distance between i-th and j-th bodies and (− fi ) is the force which acts on
i-th body resulting from the gravitational pull of other bodies. The system of Eq. (2) has the
same symmetries as the n-body problem. It is invariant with respect to group of isometries
of Rd and the scaling of variables.

In the planar case if we consider the bodies in a rotating system (with the center of mass at
the origin) with constant angular velocityω = √

λ, the physicalmeaning of (2) is obvious: the
gravitational attraction is compensated by the centrifugal force and the central configurations
are fixed points in the rotating frame (see Moeckel and the references given there).

The system (2) has dn equations and dn + 1 unknowns: qi ∈ R
d for i = 1, . . . , n and

λ ∈ R+. The system has a O(d) and scaling symmetry (with respect to qi ’s and mi ’s). If
we demand that c = 0 (which is obtained by a suitable translation) and λ = 1 (which can
be obtained by rescaling qi ’s or mi ’s), we obtain the equations (compare Moeckel; Moeckel
2014; Albouy and Kaloshin 2012)

qi =
∑
j, j �=i

m j

r3i j
(qi − q j ) =: 1

mi
fi (q1, . . . , qn), i = 1, . . . , n. (3)

It is easy to see that if (3) is satisfied, then c = 0 (see Sect. 2.1) and (2) also holds for λ = 1.
A q = (q1, . . . , qn) ∈ (

R
d
)n

is called a configuration. If q satisfies (3) then it is called a
normalized central configuration (abbreviated as CC). For the future use, we introduce the
function F : �n

i=1R
d → �n

i=1R
d given by

Fi (q1, . . . , qn) = qi −
∑
j, j �=i

m j

r3i j
(qi − q j ), i = 1, . . . , n. (4)

Then the system (3) becomes
F(q1, . . . , qn) = 0. (5)

2.1 Some identities and conservation laws

It is well know that for any (q1, q2, q3, . . . , qn) ∈ (Rd)n holds

n∑
i=1

fi = 0, (6)

n∑
i=1

fi ∧ qi = 0, (7)

where v∧w is the exterior product of vectors, the result being an element of exterior algebra.
If d = 2, 3 it can be interpreted as the vector product of v andw in dimension 3. The identities
(6) and (7) are easy consequences of the third Newton’s law (the action equals reaction) and
the requirement that the mutual forces between bodies are in direction of the other body.

But (6) and (7) can be seen also as the consequences of the symmetries of Newtonian
n-body problem. According to Noether’s Theorem, by the translational symmetry we have a
conservation of momentum, which is equivalent to (6), while the rotational symmetry implies
the conservation of angular momentum, which is implied by (7).

Note that the components of v ∧ w are given by determinants. In any dimension in the
presence of the rotational symmetry, for any direction of rotation identified by v1 ∧ v2 ( v1
and v2 are perpendicular unit vectors) the following quantity must be zero (as a consequence
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of the Noether Theorem and the invariance with respect to the rotation in the plane v1, v2)

n∑
i=1

det

[
( fi |v1) (qi |v1)
( fi |v2) (qi |v2)

]
= 0. (8)

Consider system (3). After multiplication of i-th equation by mi and addition of all equa-
tions using (6), we obtain (or rather recover) the center of mass equation

(
n∑

i=1

mi

)
c =

∑
i

miqi = 0. (9)

We can take the equations for n-th body and replace it with (9) to obtain an equivalent system.

qi =
∑
j, j �=i

m j

r3i j
(qi − q j ) =: 1

mi
fi (q1, . . . , qn), i = 1, . . . , n − 1, (10)

qn = − 1

mn

n−1∑
i=1

miqi . (11)

Later in Sect. 5, we will use (7) to define a reduced system of equations for CCs which
will not have the degeneracies present in system (3).

2.2 Moment of inertia of central configurations

The important role of the moment of inertia in the investigation of central configurations is
well known. In our context, it plays a crucial role in stating some a priori bounds for central
configurations.We present, with proofs, somewell-known results on moment of inertia taken
from the notes by Moeckel (2014) and the paper of Albouy and Kaloshin (2012).

Definition 1 For a configuration q let the moment of inertia I (q) and the potential function
U (q) be given by

I (q) =
∑
i

miq
2
i , U (q) =

∑
i< j

mim j

ri j
. (12)

Lemma 3 Assume that
∑

i miqi = 0 and M = 1. Then

I (q) =
∑
i< j

mim j (qi − q j )
2. (13)

Proof Let us denote qi, j = qi − q j . Since

q2i = (qi |qi ) =
⎛
⎝

⎛
⎝qi −

∑
j

m jq j

⎞
⎠ |qi

⎞
⎠ (since

∑
i

miqi = 0)

=
⎛
⎝

⎛
⎝qi

∑
j

m j −
∑
j

m jq j

⎞
⎠ |qi

⎞
⎠ (since

∑
j

m j = 1)

=
⎛
⎝

⎛
⎝∑

j

m j (qi − q j )

⎞
⎠ |qi

⎞
⎠ =

∑
j

m j
(
qi, j |qi

)
,
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we have,

I (q) =
∑
i

miq
2
i =

∑
i, j

mim j
(
qi, j |qi

)
.

Observe that ∑
i, j

mim j
(
qi, j |qi

) = −
∑
i, j

mim j
(
qi, j |q j

)
,

hence

I (q) = 1

2

⎛
⎝∑

i, j

mim j
(
qi, j |qi

) −
∑
i, j

mim j
(
qi, j |q j

)
⎞
⎠ = 1

2

∑
i, j

mim j (qi, j |qi, j ).

��
Lemma 4 If q ∈ (

R
d
)n

is a (normalized) central configuration, then

I (q) = U (q). (14)

Proof We take the scalar product of i-th equation in (3) by miqi and add these equations to
obtain

I (q) =
∑
i

miq
2
i =

∑
i, j;i �= j

mim j

r3i j
(qi − q j |qi )

=
∑
i< j

mim j

r3i j
(qi − q j |qi − q j ) =

∑
i< j

mim j

ri j
= U (q).

��

3 A priori bounds for central configurations

From the point of view of CAP (computer-assisted proofs) in the problem of finding and
counting all CCs, the issue of compactness of the search domain is fundamental. The lack of
compactness arises for the following two reasons:

• two or more bodies might be arbitrary close to a collision,
• some bodies might be arbitrary far from the origin.

The goal of this section is to deal with these issues.Wewill give a priori bounds (depending on
mi ’s) on theminimal distance of the closest bodies and for the size of the central configuration.

3.1 Lower bound on the distances

It is well known that central configurations are away from the collision set (see Shub 1970
or Moeckel 2014, Prop. 15). However, in these works no quantitative statement directly
applicable to system (3) has been given. Here we develop explicit a priori bounds.

The main idea is to use I (q) = U (q) (see Lemma 4) to show that some term(s) mim j/ri j
entering U (q) dominate and cannot be balanced, when bodies are very close. Observe that
using I (q) = U (q) and positivity of all terms enteringU (q) allows us to escape the discussion
of large terms on the rhs in the system (3), which might cancel out or not etc. This is not the
case in the framework of Albouy and Kaloshin (2012), where complex configurations and
even complex masses have been considered, hence the positivity of I and U is lost.
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Lemma 5 Assume that a (normalized) central configuration q ∈ (
R
d
)n

satisfies |qi | � R
for i = 1, . . . , n. Then

I (q) � MR2.

Proof Since for any 1 � i � n : |qi | � R, thus I (q) = ∑
i miq2i �

∑
i mi R2 = MR2. ��

Theorem 6 Assume that a (normalized) central configuration q ∈ (
R
d
)n

satisfies |qi | � R
for i = 1, . . . , n. Then

ri j >
mim j

MR2 , 1 � i < j � n. (15)

Proof From Lemmas 4 and 5, for any 1 � i < j � n, we have

MR2 � I (q) = U (q) =
∑
i< j

mim j

ri j
>

mim j

ri j
.

��
Below we establish a lower bound on the radius of ball centered at 0 and containing a

central configuration in the case of equal masses.

Theorem 7 Assume that all masses are equal and q is a normalized central configuration
such that |qi | � R. Then

R3 � n − 1

4n
M . (16)

Proof Let m = M
n . Since for any 1 � i � n : |qi | � R, thus ri j � 2R and we obtain the

following bound

U (q) =
∑
i< j

mim j

ri j
�

∑
i< j

m2

2R

= m2

2R
· n(n − 1)

2
= (n − 1)M2

4nR
.

Hence from Lemmas 4 and 5, we obtain

(n − 1)M2

4nR
� U (q) = I (q) � MR2.

��
If M = 1, then limn→∞ 3

√
n−1
4n = 4−1/3 ≈ 0.629961. This estimate appears to be

reasonably good, as shown in Table 1.
In the next theorem, we do not assume that all masses are equal.

Theorem 8 Assume M = 1 and q is a normalized central configuration. Then there exists a
pair i �= j such that

ri j � 1. (17)

Proof For the proof by contradiction, assume that ri j < 1 for all pairs of bodies. Hence we
have r2i j < 1/ri j for all pairs. From Lemma 3, it follows

I (q) =
∑
i< j

mim jr
2
i j <

∑
i< j

mim j
1

ri j
= U (q).

From Lemma 4, it follows that q is not a central configuration. ��

123



Central configurations in planar n-body problem with equal masses Page 9 of 28 46

Table 1 The size of a minimal
ball containing all normalized
central configurations with
M = 1 for several n’s for equal
masses case

n 3
√

n−1
4n R

3 0.550321 0.577350

4 0.572357 0.620813

5 0.584804 0.650513

6 0.592816 0.672798

The minimum R is realized for regular n-gon

Observe that the above estimate is optimal, because it is realized for the equilateral triangle
for n = 3 and a tetrahedron (non planar CC) for n = 4. From the above theorem, we obtain
the following lower bound for the size of a central configuration. Contrary to Theorem 7, we
do not assume that all masses are equal.

Theorem 9 Assume that M = 1 and q is a normalized central configuration and |qi | � R
for i = 1, . . . , n. Then R � 1/2.

Proof For the proof by contradiction assume that R < 1/2. Then for all pairs ri j < 1. From
Theorem 8, it follows that q is not central configuration. ��

3.2 The upper bound on the size of central configuration

The goal of this section is to give the upper bounds for the size of the central configuration.
This time we exploit the fact that if the forces are bounded, then large qi ’s on the left hand
side of the system (3) cannot be balanced. The obvious difficulty with the realization of this
idea is: we can have a group of bodies with large norms which are close to each other in
the central configuration, which produce large terms on rhs of the system (3). To overcome
this, we consider clusters of points far from the origin and the resulting force on it. In such
situation, mutual interactions between bodies in the cluster cancel out.

Lemma 10 Assume q ∈ (
R
d
)n

is a normalized central configuration. Let R = |qi0 | =
maxi=1,...,n |qi |. Then for all ε ∈ (0, R/(n − 1)) holds

R − (n − 2)ε <
M

ε2
. (18)

Proof For simplicity let’s assume that d = 2 and qi = (xi , yi ). Let us fix any ε ∈
(0, R/(n − 1)). After a suitable rotation of coordinate system, we can assume that

qi0 = (R, 0). (19)

Let C be a minimal subset (cluster) of indices of bodies satisfying the following conditions

• i0 ∈ C
• if j ∈ C and |qk − q j | � ε, then k ∈ C.

The cluster C can be constructed as follows: We start with i0 ∈ C. Then we add all bodies
which are not farther than ε from the bodies already in C. We repeat this until the set C
stabilizes, which will happen after at most n − 1 steps. From assumption about ε and R, it
follows that

R > (n − 1)ε. (20)
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Fig. 1 R > (n − 1)ε and
r = (n − 2)ε; the darkened area
is the region where all the bodies
from cluster are located

qi0

R
r

Observe that (20) implies that C �= {1, . . . , n}. Indeed (20) and (19) imply that xi > 0 for
all i ∈ C. This and the center of mass condition (9) implies that C cannot contain all bodies.
This implies that the process of building C must stop after at most n− 2 steps. Therefore, we
obtained a cluster C with the following properties (Fig. 1)

qi ∈ B(qi0 , (n − 2)ε), ∀i ∈ C, (21)

|qi − q j | > ε, i ∈ C, j /∈ C. (22)

Without any loss of the generality, we can assume that i0 = 1 and C = {1, . . . , s}. Note
that for any k � 2 there is [compare (6)]

k∑
i=1

k∑
j=1, j �=i

mim j

r3i j
(qi − q j ) = 0,

thus by adding Eq. (3) multiplied by mi for i = 1, . . . , s we obtain

m1q1 + · · · + msqs =
∑

i=1,...,s,
j=1,...,s,

j �=i

mim j (qi − q j )

r3i j
+

∑
i=1,...,s,
j=s+1,...,n

mim j (qi − q j )

r3i j

=
∑

i=1,...,s,
j=s+1,...,n

mim j (qi − q j )

r3i j
. (23)

Let

Ms =
s∑

i=1

mi ,

cs = 1

Ms

s∑
i=1

miqi ,

Fs = 1

Ms

∑
i∈C; j /∈C

mim j (qi − q j )

r3i j
.

Observe that (23) could be now rewritten as

cs = Fs . (24)
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It is easy to see [cf. (21)] that for i ∈ C: xi � R − (n − 2)ε > 0, hence

|cs | = 1

Ms

∣∣∣∣∣
s∑

i=1

miqi

∣∣∣∣∣ � 1

Ms

∣∣∣∣∣
s∑

i=1

mi (R − (n − 2)ε, yi )

∣∣∣∣∣

� 1

Ms
(R − (n − 2)ε)

s∑
i=1

mi

= R − (n − 2)ε,

and

|Fs | � 1

Ms

∑
i∈C; j /∈C

mim j

r2i j
� 1

ε2

1

Ms

∑
i∈C; j /∈C

mim j

= 1

ε2

1

Ms

(∑
i∈C

mi

)
·
⎛
⎝∑

j /∈C
m j

⎞
⎠ = 1

ε2

∑
j /∈C

m j <
M

ε2
.

Hence from the above and (24), we obtain

R − (n − 2)ε � |cs | = |Fs | <
M

ε2
.

��
FromLemma 10, we obtain the following estimate on the size of any central configuration.

Theorem 11 Assume that M = 1 and q ∈ (
R
d
)n

is a normalized central configuration. Then

max
i

|qi | �
{
n − 1, n � 2;(
21/3 + 2−2/3

)
(n − 2)2/3, n � 4.

(25)

Proof Let R = maxi=1,...,n |qi |. From Lemma 10 it follows that for any ε > 0 holds

R � max

(
(n − 1)ε, (n − 2)ε + 1

ε2

)
. (26)

Indeed, if ε < R/(n − 1) then we apply Lemma 10, otherwise we have R � (n − 1)ε. Let
us optimize the bound (26) with respect to ε.

Let us denote by

B(ε) = max

(
(n − 1)ε, (n − 2)ε + 1

ε2

)
. (27)

It is easy to see that

(n − 1)ε < (n − 2)ε + 1

ε2
, for ε < 1,

(n − 1)ε = (n − 2)ε + 1

ε2
, for ε = 1,

(n − 1)ε > (n − 2)ε + 1

ε2
, for ε > 1.

Hence

B(ε) =
{

(n − 2)ε + 1
ε2

, for ε < 1,
(n − 1)ε, for ε � 1.
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Therefore,

inf
ε>0

B(ε) = inf
ε∈(0,1]

(
(n − 2)ε + 1

ε2

)
.

The function g(ε) = (n−2)ε +1/ε2 is decreasing for ε < ε0 =
(

2
n−2

)1/3
and is increasing

for ε > ε0. Observe that ε0 ∈ (0, 1] iff n � 4. Therefore, we obtain

inf
ε>0

B(ε) =
{
n − 1, n � 4;
g(ε0), n � 4.

(28)

We have

g(ε0) = (n − 2)

(
2

n − 2

)1/3

+
(
n − 2

2

)2/3

= (
21/3 + 2−2/3) (n − 2)2/3.

��

For n � 10 and the equal masses, the above estimate appears to be an overestimation.
The largest possible size of CC found was slightly above 1 and is considerably smaller than
the one established in the above theorem.

4 Exclusion tests for CCs

Assume that we have an interval set D (i.e., a box, a product of intervals) in which we would
like to exclude the existence of CC. We do not assume that D ⊂ dom F [see (5)] and this is
an important point. The a priori estimates discussed in Sect. 3 allow to exclude D iff there is
no point in D which satisfies the obtained bounds.

In the following, we discuss other exclusion tests.

4.1 Checking for zeros

One obvious test is to check whether in the interval evaluation of F(D) [see (5)] at least one
of the component does not contain zero. Observe that a partial tests of this type are possible
even if D admits the collision, i.e., formally it is not contained in dom F , but we can do this
verification whenever D ⊂ dom Fi . The test takes the following form:

0. given box D in the configuration space, such that D ⊂ dom Fi (i.e., the i-th does not
have a collision with other bodies). Let Di = {qi | q ∈ D}.

1. compute the interval enclosure of fi (q) for q ∈ D, denoted by 〈 fi (D)〉,
2. if Di ∩ 1

mi
〈 fi (D)〉 = ∅ [compare Eq. (3)], then D does not contain any normalized

central configuration
3. if Di ∩ 1

mi
〈 fi (D)〉 �= ∅, then we define Dref = {q ∈ D | qi ∈ 1

mi
〈 fi (D)〉}.

Observe that point 2 allows us exclude the box D, but if this is impossible then we can replace
D by Dref obtained in point 3, as any CC contained in D must belong to Dref . This is one
of several places in our algorithm, where we attempt to do better than doing naive binary
subdivision in order to relieve the curse of dimensionality.
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4.2 The cluster of bodies—checking for zeros test

In the case of colliding bodies or a cluster of close bodies, say with indices i = 1, . . . , s,
after adding first s equations multiplied by mi we obtain

s∑
i=1

miqi =
s∑

i=1

n∑
j=s+1

mim j

r3i j
(qi − q j ).

Therefore, for the cluster of bodies C ⊂ {1, . . . , n} we will check whether

(0, 0) ∈
s∑

i∈C
miqi −

s∑
i∈C

n∑
j /∈C

mim j

r3i j
(qi − q j ), (29)

where the expression on the rhs of (29) is evaluated in the interval arithmetic on D.
If it is not satisfied, then we conclude that D does not contain any CC. Again let us stress

that the set D might contain some collisions, and this test is still applicable.

4.3 The cluster of bodies—test based onmoment of inertia and potential

We will exploit I (q) = U (q) for CC (compare Lemma 4), but our focus will be on the
subsets (clusters) of bodies. Let us fix C ⊂ {1, 2, . . . , n} and Z ⊂ (

R
d
)n
. Let us define

UC,Z = inf
q∈Z

∑
i< j,i, j∈C

mim j

ri j
,

IC,Z = sup
q∈Z

∑
i∈C

miq
2
i ,

FC,Z = inf
q∈Z

∑
i∈C,k /∈C

mimk

r3ik
(qi − qk |qi ).

In the case when C = {1, . . . , n} we set FC,Z = 0.
The important point is that we can compute the infimum inUC,Z even if the set Z contains

collisions. It makes sense to take as C a cluster of close points (containing possible collisions
and near collisions), so that there is no collision between bodies in C and its complement. In
such case, FC,Z will be finite.

We have the following criterion for nonexistence of CC in Z :

Lemma 12 Assume that UC,Z , IC,Z , FC,Z ∈ R and

IC,Z < UC,Z + FC,Z ,

then there is NO central configuration in Z.

Proof Without any loss of the generality we can assume that C = {1, . . . , s} for some
1 � s � n. Consider system (3). We multiply i-th equation by miqi and we add first s
equations. We obtain (compare the proof of Lemma 4)

s∑
i=1

miq
2
i =

∑
1�i< j�s

mim j

ri j
+

s∑
i=1

∑
j>s

mim j (qi − q j |qi )
r3i j

. (30)
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Let us stress that (30) must hold for any central configuration. Now for q ∈ Z holds

∑
1�i< j�s

mim j

ri j
+

s∑
i=1

∑
j>s

mim j (qi − q j |qi )
r3i j

� UC,Z + FC,Z > IC,Z =
s∑

i=1

miq
2
i .

Hence (30) is not satisfied. Therefore, we do not have any central configuration in Z . ��
Observe that if C = {1, . . . , n} the above lemma is reduced to checking whether

infq∈Z U (q) > supq∈Z I (q).

5 The reduced system of equations for CC on the plane

5.1 Non-degenerate solutions of full and reduced systems of equations

Following Moeckel (2014), we state the definition.

Definition 2 We will say that a normalized central configuration q = (q1, . . . , qn) is non-
degenerate if the rank of DF(q) is equal to dn − dim SO(d). Otherwise the configuration
will be called degenerate.

The idea of the above notion of degeneracy is to allow only for the degeneracy related to the
rotational symmetry of the problem, because by setting λ = 1 in (2) and keeping the masses
fixed we removed the scaling symmetry.

The system (10–11) obtained from (5) after removing the n-th body using the center of
mass [condition (9)] we write as

Fred(q1, . . . , qn−1) = 0, (31)

where Fred : �n−1
i=1R

d → �n−1
i=1R

d . Then it is easy to see thatq = (q1, . . . , qn−1, qn) is a non-
degenerate central configuration iff the rank of DFred(q1, . . . , qn−1) is d(n−1)−dim SO(d).

5.2 The reduced system on the plane

We consider a planar case here, i.e., d = 2. The fact that the system of Eq. (3) is degenerate
(each solution give rise to a circle of solutions) make this system not amenable for the use of
standard interval arithmetic methods (see for example the Krawczyk operator discussed in
Sect. 6.3) to rigorously count all possible solutions. We need to kill the SO(2)-symmetry and
then hope that all solutions will be non-degenerate. In this section, we show how to reduce
the system (3) to an equivalent system amenable to the interval analysis tools.

Let us fix k ∈ {1, . . . , n − 1} and consider the following set of equations

qi = 1

mi
fi (q1, . . . , qn(q1, . . . , qn−1)), i ∈ {1, . . . , n − 1}, i �= k (32)

xk = 1

mk
fk,x (q1, . . . , qn(q1, . . . , qn−1)), (33)

qn(q1, . . . , qn−1) = − 1

mn

n−1∑
i=1

miqi , (34)
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where fi = ( fi,x , fi,y). Observe that the system (32–34) coincides with the system (10–11)
with the equation for yk dropped.

The next theorem addresses the question: whether from the reduced system (32–34) we
obtain the solution of (3)?

Theorem 13 Assume d = 2. If (q1, . . . , qn−1, qn(q1, . . . , qn−1)) is a solution of the reduced
system (32–34) and xk �= xn, then it is a normalized central configuration, i.e., it satisfies
(3).

Proof Let qi be as in our assumptions. We need to show that mk yk = fk,y . From (34), (6)
and (7), it follows that

0 =
n∑

i=1

fi ∧ qi =
n−1∑
i=1

fi ∧ qi +
(

−
n−1∑
i=1

fi

)
∧

(
−∑n−1

i=1 miqi
mn

)

=
n−1∑
i=1

fi ∧ qi

(
1 + mi

mn

)
+ 1

mn

n−1∑
i, j=1,i �= j

m j fi ∧ q j .

Since from (32)

qi ∧ fi = 0, i = 1, . . . , n − 1; i �= k,

we obtain

0 = fk ∧ qk

(
1 + mk

mn

)
+ 1

mn

n−1∑
i, j=1,i �= j

m j fi ∧ q j . (35)

Let us take the look at
∑n−1

i, j=1,i �= j m j fi ∧ q j . We have from (32)

n−1∑
i, j=1,i �= j,i �=k, j �=k

m j fi ∧ q j =
n−1∑

i, j=1,i �= j,i �=k, j �=k

fi ∧ f j = 0,

hence again from (32), it follows that

n−1∑
i, j=1,i �= j

m j fi ∧ q j =
n−1∑

i=1,i �=k

(mk fi ∧ qk + mi fk ∧ qi )

=
n−1∑

i=1,i �=k

(mkmiqi ∧ qk − miqi ∧ fk)

=
⎛
⎝

n−1∑
i=1,i �=k

miqi

⎞
⎠ ∧ (mkqk − fk) .

From the above and (35), we obtain

0 = fk ∧ qk

(
1 + mk

mn

)
+ 1

mn

⎛
⎝

n−1∑
i=1,i �=k

miqi

⎞
⎠ ∧ (mkqk − fk) .
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From (33), we have

0 = fk ∧ qk

(
1 + mk

mn

)
+ 1

mn

⎛
⎝

n−1∑
i=1,i �=k

miqi

⎞
⎠ ∧ (mkqk − fk)

= ( fk,x yk − fk,y xk)

(
1 + mk

mn

)
+ 1

mn

⎛
⎝

n−1∑
i=1,i �=k

mi xi

⎞
⎠(

mk yk − fk,y
)

= (mkxk yk − fk,y xk)

(
1 + mk

mn

)
+ 1

mn

⎛
⎝

n−1∑
i=1,i �=k

mi xi

⎞
⎠ (

mk yk − fk,y
)

= (
mk yk − fk,y

)
⎛
⎝xk

(
1 + mk

mn

)
+ 1

mn

⎛
⎝

n−1∑
i=1,i �=k

mi xi

⎞
⎠

⎞
⎠

= 1

mn

(
mk yk − fk,y

)
(
mnxk +

(
n−1∑
i=1

mi xi

))

= 1

mn

(
mk yk − fk,y

)
(mnxk − mnxn) = (

mk yk − fk,y
)
(xk − xn) .

Now if xk − xn �= 0, then mk yk = fk,y . ��
The system (32–33) contains 2(n − 1) − 1 equations in 2(n − 1) variables and has O(2)

symmetry (i.e., rotations around origin and reflection symmetrieswith respect to lines passing
through the origin map solutions of this system into itself). In order to obtain a system with
the same number of equations and variables, we can impose additional condition leading to
the removal of yk variable, so that the rotational symmetry will be broken. Obviously in the
above setting we could drop the equation for xk and we will obtain an analogous result.

We can think of a general reduced system as follows:

• we fix some hyperplane H , in the reduced (by the center of mass condition) configuration
space R

2(n−1), so that H is transversal to the action SO(2) and k is such that vk ∈
{xk, yk} can be computed in terms of other variables. This will induce an embedding,
Jk : R2(n−1)−dim SO(2) → H .

• in the system (10–11) we remove the equation for vk . Then the reduced system can be
written as

Rk Fred(Jkz) = 0, (36)

where Rk is a projection which removes vk variable in the image.

The system (32–34) supplemented by substitution yk = yk(. . .) is an example of (36). We
present the following obvious result

Theorem 14 Assume for simplicity that H is given by

yk =
∑

i �=k,i�n−1

ai yi +
∑

i�n−1

bi yi . (37)

Assume that q is a solution of reduced system (36)with a substitution (37), such that xk �= xn.
Then q is a normalized central configuration. If q is non-degenerate solution of the reduced
system, then this is non-degenerate solution of (3).
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Proof The first part is obvious in view of Theorem 13 and condition xk �= xn implies that it is
a central configuration. The maximum rank in the reduced system gives the non-degeneracy
of the configuration in the sense of Definition 2. ��

Following Albouy and Kaloshin (2012), we have tried two possibilities

• we set k = 2 and we eliminate variable y2 by setting

y2 = y1, (38)

• we set k = n − 1 and we eliminate variable yn−1 by setting

yn−1 = 0. (39)

Observe that for both normalizations defined above for any CC q there is a rotation R such
that Rq satisfies this normalization. Hence we can safely impose any of those conditions
without losing any CC. In both cases, we will need

xk �= xn . (40)

First consider (38). Condition (40) does not hold for some CC in the case of equal masses. For
example, for n = 4 and an equilateral rectangle, such that x2 = x4 we obtained numerically
(and also symbolically using Mathematica) that the jacobian matrix for the reduced system
has a zero eigenvalue. Hence the solution is degenerate for the reduced system.

Now, consider the condition (39). If we setup our computations so that qn−1 body maxi-
mizes the distance from the origin for all bodies, then we have (40) satisfied, otherwise qn
will be further from zero. This observation does not prove that if q is a non-degenerate CC
in the sense of Definition 2, then it is also a non-degenerate solution of the reduced system,
but this appears to happen in our rigorous computation of central configurations so far.

In our proof, since we apply the Krawczyk method (see Sect. 6.3) to obtain the solutions
of the reduced system, all CCs whose existence we establish are non-degenerate in the sense
of Definition 2.

6 On the computer-assisted proof

We normalized masses so that M = ∑
i mi = 1. In this section, we index bodies from 0 to

n−1 to be in the agreement with our program. In the sequel, we study the following reduced
system

qi = 1

mi
fi (q0, . . . , qn−2, qn−1(q0, . . . , qn−2)), i ∈ {0, . . . , n − 3}, (41)

xn−2 = 1

mn−2
fn−2,x (q0, . . . , qn−2, qn−1(q0, . . . , qn−2)), (42)

where we set

yn−2 = 0, (43)

qn−1(q0, . . . , qn−2) = − 1

mn−1

n−2∑
i=0

miqi . (44)
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Table 2 Times of asynchronous computations in minutes for different orderings (the computations were
carried out on the computer Intel Core i7-5500U CPU @ 2.40 GHz×4 with 8 GB RAM; a single thread was
used)

n Increasing Decreasing

4 0.027170 0.026153

5 3.369141 2.615399

6 1103.138988 924.083085

6.1 Equal masses case, the reduction in the configuration space for CCs

In the case of equal masses, after a suitable rotation and permutation of the bodies, we can
assume that

|xn−2| � |qi |, i = 0, . . . , n − 1. (45)

Condition (45) guarantees that xn−2 �= xn−1, hence by Theorem 13 the solution of a reduced
system (41–42) is CC. In view of symmetry and Lemma 9, we impose some more conditions

n − 1 � xn−2 � 0.5. (46)

After a suitable permutation of bodies and a reflection with respect to 0X -axis, it is easy to
see that each CC has its equivalent in the set of the configurations satisfying the following
conditions

• qn−2 = (R, 0) is the furthermost body from the origin
• q0 is the leftmost with non-negative y-coordinate
• q1 has the smallest y coordinate
• all other bodies have their x coordinates in the order of increasing/decreasing indices.

This, combined with Lemma 10, shows that it is enough to consider the following set in
which we look for the central configuration

0.5 � xn−2 � (n − 1), (47)

−(n − 1) � x0 < 0, (48)

x0 � xi � xn−2, i = 0, . . . , n − 1, (49)

y0 � 0, (50)

−(n − 1) � y1 � 0, (51)

y1 � yi � (n − 1), i = 0, . . . , n − 1 (52)

x2 � x3 � · · · � xn−3 � xn−1. (53)

We call this order increasing due to the requirement (53). In the computation, we use analo-
gous decreasing ordering in which we state the opposite, i.e.,

x2 � x3 � · · · � xn−3 � xn−1. (54)

For now, we do not know why it is better to use the decreasing order, but the difference is
significant (see Table 2).
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6.2 Outline of the approach

In the algorithm,we look for all zeros of the reduced system (41, 42), which under assumption
xn−1 �= xn−2 by Theorem 13 is equivalent to (3). For our algorithm, proving an existence of
locally unique solution in some box is as important as proving that in a given box there is no
solution.

For proving of the existence of the locally unique solution, we use the Krawczyk operator
applied to the system (41, 42). To rule out the existence of solution, we use the exclusion
tests discussed in Sect. 4 and also the Krawczyk operator.

The symmetry of CCs is established by proving the uniqueness in a suitable symmetric
box (see Sect. 7.2).

6.3 The Krawczyk operator

The Krawczyk operator (Alefeld 1994; Krawczyk 1969; Neumeier 1990) is an interval anal-
ysis tool to establish the existence of unique zero for the system of n nonlinear equations in
n variables. Below we briefly explain how the Krawczyk operator is derived, as it appears
mysterious and little known outside the interval arithmetic community.

6.3.1 Motivation, heuristic derivation

Let F : Rn → R
n be a C1-function. We would like to solve the equation

F(x) = 0. (55)

We begin by explaining the basic idea of the Krawczyk method. The Newton method is given
by

N (x) = x − dF(x)−1F(x). (56)

It is well known that if F(x∗) = 0 and dF(x∗) is nonsingular, then x∗ is an attracting fixed
point for N (x). It turns out that the same is true if we replace dF(x)−1 by a fixed matrix C ,
which is sufficiently close to dF(x∗)−1. The modified Newton operator is given by

Nm(x) = x − CF(x). (57)

Now let us turn the things around and ask how can we use Nm as a way to prove the existence
of solution of (55). This is quite obvious. Namely, if U is homeomorphic to a closed finite-
dimensional ball and if

Nm(U ) ⊂ U , (58)

then from the Brouwer theorem it follows, that there exists x0 ∈ U such that Nm(x0) = x0.
Since C is invertible, we obtain that F(x0) = 0. To obtain the uniqueness, it is enough
show that Nm is a contraction onU . Observe that it is impossible to verify in a single interval
evaluation of the formula (57), that for some interval set [x] holds Nm([x]) ⊂ [x], because the
computed diameter of [x]−CF[x] is greater than or equal to diam ([x])+ diam (CF([x])).
It turns out the mean value form of Nm can cure this deficiency. If x0 ∈ [x], then

Nm([x]) ⊂ Nm(x0) + [dNm([x])]I · ([x] − x0)

= x0 − CF(x0) + (I d − C[d f ([X ])]I )([x] − x0) = K (x0, [x], F).

This explains why the requirement K (x0, [x], F) ⊂ [x] has something to do with zeros of
F(x).
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6.3.2 The Krawczyk method

A method proposed by Krawczyk for finding zero’s of F :

• [x] ⊂ R
n be an interval set (i.e., product of intervals),

• x0 ∈ [x]. Typically x0 is chosen to be midpoint of [x], we will denote this by x0 =
mid([x]).

• C ∈ R
n×n be a linear isomorphism.

The Krawczyk operator is given by

K (x0, [x], F) := x0 − CF(x0) + (I d − C [dF([x])]I )([x] − x0). (59)

Theorem 15 1. If x∗ ∈ [x] and F(x∗) = 0, then x∗ ∈ K (x0, [x], F).
2. If K (x0, [x], F) ⊂ int [x], then there exists in [x] exactly one solution of equation

F(x) = 0. This solution is non-degenerate, i.e., dF(x) is an isomormophism.
3. If K (x0, [x], F) ∩ [x] = ∅, then for all x ∈ [x] F(x) �= 0.

Observe that point 2. in the above theorem gives us the way to establish the existence
of unique zero of F in [x], while point 3. rules out the existence of zero in [x], i.e., in the
terminology of previous section this is the exclusion test. When [x] is close to a zero of
F then <F([x])> the evaluation of F([x]) in the interval arithmetic might produce such
overestimates that 0 ∈ <F([x])>, while the Krawczyk operator will rule out the existence
of 0 of F in [x]. This is in fact quite common phenomenon.

The Krawczyk operator is used as a part of iteration process

0. given [x]0 ⊂ R
n

1. compute [y] = K (mid([x]k), [x]k , F)

2. if [y] ⊂ int [x]k , then return success, a unique solution in [x]0 was found
elseif [x]k ⊂ [y], then return failure
elseif set [x]k+1 := [y] ∩ [x]k and goto 1.

The above loop can be executed several times and even if no success is obtained the last
computed [y] may give us useful information, because we know from Theorem 15 that
all possible zeros are contained in [y]. This set, instead of [x]0, can be used in further
computations, while [x]0\[y] can be discarded. In the next section, we will discuss what
is essentially a binary search algorithm, which scales poorly with the number of bodies
due to the curse of dimensionality (Traub et al. 1988) and the reduction obtained by the
Krawczyk method, i.e., replacing [x]0 by [y] for further subdivision leads to significant
speed improvements, because the Krawczyk method on sufficiently small scales appear to
work in time polynomial with respect to the number of bodies.

In our context, the only weakness of the Krawczyk operator is that it requires the sets
of the diameter in each coordinate directions to be smaller than 10−2 to give us something.
Above that threshold, we usually have [x] ⊂ K (mid([x]), [x], F) and the Krawczykmethod
is useless.

7 The algorithm

The algorithm runs in the reduced configuration space which is a subset of R2(n−1)−1, i.e., a
configuration is represented by a point (x0, y0, . . . , xn−3, yn−3, xn−2). Physically, we inter-
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pret such a configuration as n − 1 bodies with qi = (xi , yi ) for i = 0, . . . , n − 3 and
qn−2 = (xn−2, 0). From (44) we obtain qn−1 the position of the last body.
Input: The input of the algorithm consists of

1. n—the number of bodies
2. some cube in the reduced configuration space.

Output:All different (up to reflections and rotations) central configurations in the full system
for a given input cube. Sincewe use interval arithmetic for calculations, central configurations
are also cubes containing the exact solution in their interior.

The program is divided into two stages: searching finds solutions and testing tests them
to distinguish different CC and to find the kind of symmetry (if any exists).

7.1 Searching stage

In this stage, we cover the configuration space with cubes. To fulfill requirements of
Krawczyk’s method (see Theorem 15), we must ensure that every point is in the interior
of some cube. The algorithm runs for any initial cube; however, if our goal is to find all
the central configurations (for fixed n and equal masses) the reasonable cube is as follows
(compare Sect. 6.1):

x0 ∈ [−(n − 1), 0]
y0 ∈ [0, n − 1]

x1, . . . , xn−3 ∈ [−(n − 1), n − 1]
y1 ∈ [−(n − 1), 0]

y2, . . . , yn−3 ∈ [−(n − 1), n − 1]
xn−2 ∈ [0.5, n − 1]

Simple recursive algorithm works as follows:

(I) if there is no solution in the cube return 0;
(II) if there is unique solution in the cube return 1;
(III) otherwise bisect the longest edge and recursively run the procedure for both parts;
(IV) return result.

In the more detailed version of the algorithm, the cube is represented by a vector of bodies.
The class Bodies contains this vector and some methods to manipulate these bodies. An
instance of Bodies is a cube bodies with some additional information (Fig. 2).
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1 int search (Bodies bodies) {
2 if (thereIsNoSolution(bodies)) return 0;

3 newtonRes = krawczykMethod(bodies);
4 switch (newtonRes) {
5 case methodFailed:
6 break;

7 case uniqueZero:
8 return 1;
9 break;

10 case noZeroInSet:
11 return 0;
12 break;

13 default:
14 break;
15 }

16 // we are looking for the longest interval:
17 // maxiI = [leftPoint, rightPoint]
18 maxi = bodies.maxDiam();

19 leftPoint = bodies.maxi.leftBound();
20 rightPoint = bodies.maxi.rightBound();
21 midPoint = (leftPoint + rightPoint) / 2.0;
22 margin = (rightPoint - leftPoint) * overlap;

23 // recursively call search for the left half of maxiI
24 bodies.set(maxi, MyInterval(leftPoint, midPoint + margin));
25 int leftCount = search(bodies, resultFile);

26 // recursively call search for the right half of maxiI
27 bodies.set(maxi, MyInterval(midPoint - margin, rightPoint));
28 int rightCount = search(bodies, resultFile);

29 return leftCount + rightCount;
30 }

7.1.1 Details and optimizations

The crucial function thereIsNoSolution(bodies) contains a series of tests (the
exclusion tests); if these tests are not satisfied, then we know that there is no solution in
bodies:

1. checkAprioriBounds(bodies)—tests if bodies satisfy a priori bounds (see
Theorem 11);

2. checkUEqI(bodies)—if there is no collision in bodies, tests if U (q) == I (q)

(see Lemma 4);
3. clusterTest(bodies)—see Lemma 12 and Subsec. 4.2
4. distanceTest(bodies)—tests the order of bodies (see conditions (47)–(53))
5. checkZero(bodies, i)—computes functions of vector field [see Eq. (4)] and tests

if it is possible to have F(q0, . . . , qN−1) = 0 as discussed in Sect. 4.1.
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(a)

q0
q2

q1

(b)

q0
q2

q1.left

(c)

q0.left
q2

q1.left

Fig. 2 Two steps a
1−→ b

2−→ c of the algorithm on the cube with each wall projected on the plane: the longest
edge is divided and new coordinates of the last body, q2, are calculated. Notice that after subdivision the new
cubes have an intersection with non-empty interior

To break (or to rather to relieve) the dimensionality curse, we are looking for the possibility
of restricting bodies before bisecting them (line 16). First place we are able to do this
is the function thereIsNoSolution(bodies) (see Sect. 4.1). Another place is in
krawczykMethod(bodies). If Krawczyk’s method fails (line 5), bodies will have been
restricted by intersection with the operator. Hence it is now (from line 17 onwards) the
restricted cube that is being processed. This gives a large growth of efficiency.

Since the Krawczyk’s method is costly and usually fails for large sets, we introduced
a parameter bias. If the size (diameter) of all variables is not greater than bias then
the Krawczyk’s method is run. There is a big difference in execution time of the program
depending on the value of the bias parameter; in Table 3 we present computation times
for 5 bodies . For the same initial data, the program finds 8 solutions (some of them are
later identified to be the same solutions), but numbers of failed and ‘no-zero-inside’ cubes
differ.

7.2 Testing stage

The main goal of this stage is to identify distinct solutions. Additionally, we check the
symmetry of solutions. In this stage, we consider solutions in the full system.
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Table 3 Comparison of execution times for 5 bodies for different thresholds, where we start Krawczyk’s
method (the computations were carried out on the computer Intel Core i7-5500U CPU @ 2.40 GHz×4 with
8 GB RAM; a single thread was used)

bias Time m:s.d Failed No zero

1e−4 4:27.65 0 32,095

1e−3 3:09.13 0 25,846

5e−3 2:15.54 232 32,580

1e−2 1:59.44 12,886 48,446

1e−1 3:29.29 585,151 98,946

Fig. 3 Reasons for two solutions
(projected onto the plane) to be
equivalent: the exact unique
central configuration (marked
with dots) is inside both. Interval
hull of these solutions is marked
by dashed boxes

q0

q2
q3

q4

q5

q6

q1

q0

q2

q6

q4

q5

q3

q1

The solutions obtained in the search stage are given as a list of boxes in which we have a
unique solution. Some of these boxes may overlap and can in fact contain the same solution.
Because we consider the equal masses case we also do not want to distinguish solutions
which differ by the indexes of the bodies. Hence two solutions produced in the searching
stage can in fact be equivalent for two reasons:

(1) the only difference is the ordering of the bodies,
(2) the boxes defining them have non-empty intersection, having been obtained in different

series of partitions.

For any pair of solutions, we treat the first one as a ‘model’, while bodies in the second
solution are permuted in an attempt to match the model. When trying to match the solutions,
we create a set containing both of them (an interval hull) and we prove the uniqueness within
it. The rough idea is shown below (Fig. 3):
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1 bool theSameSolution(Bodies &sol1, Bodies &sol2) {
2 Bodies unionBodies;
3 intervalHullBodies(sol1, sol2, unionBodies);

4 int cZeros = search(unionBodies);
5 if (cZeros == 1)
6 return true; //sol1 and sol2 are the same solution
7 else {
8 cZeros = blowUp(unionBodies);
9 return (cZeros == 1);

10 }
11 }

It may happen that there exists a solution in the set unionBodies, but the set is too
small to prove this using the Krawczyk operator, thus we ‘inflate’ it and retry the proof in
the bigger set (the function blowUp(unionBodies)).

Establishing a (reflectional) symmetry of CC is very similar to testing the uniqueness of
solutions. However, it requires an additional step to calculate a symmetric image. We take
an interval hull of CC and its symmetric image. The possible lines of reflection are an axis
OX or the bisector of the angle with the vertex at (0, 0) and the rays passing through qn−2

(the body furthest from (0, 0)) and through qi (different bodies are tested). The sketch of the
function establishing this symmetry is given below.

1 bool checkSym(Bodies &bodies) {
2 calculateBisectorOfAngle(cosB, sinB);

//the line is t(cosB, sinB)
3 Bodies symBodies, unionBodies;
4 calculateSymmetricImageOfTheSolution(bodies, cosB, sinB, symBodies));
5 intervalHullBodies(bodies, symBodies, unionBodies);

6 int cZeros = search(unionBodies);
7 if (cZeros == 1)
8 return true; //bodies and symBodies are symmetric
9 else {

10 cZeros = blowUp(unionBodies);
11 return (cZeros == 1);
12 }

In line 2, we calculate the parameters of the possible reflection symmetry line, but the sym-
metry tested contains also a permutation of bodies, we construct a configurationsymBodies
considering all possible permutations of bodies. Note that lines 5–12 in the function
checkSym are identical, up to the variable names, to lines 3–11 in theSameSolutions.

7.3 Technical data

Themain computationswere carriedout in parallel using the template functionstd::async
(from the standard C++ library) which runs the function asynchronously (potentially in a
separate thread which may be part of a thread pool) on Dell R930 4x Intel Xeon E7-8867
v3 (2,5GHz, 45MB), 1024 GB RAM. The compiler is gcc version 4.9.2 (Debian 4.9.2-
10+deb8u2). The best obtained times for different number of bodies with bias = 10−2 are
presented in Table 4.
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Table 4 Comparison of execution times for different number of bodies

No bodies No CCs Total no of
CPU-seconds

Elapsed time h:m:s.d Average percentage
of the CPU

3 2 0.05 0:00.06 240

4 4 3.07 0:00.69 666

5 5 203.82 0:24.84 1023

6 9 42,430.04 59:51.59 1203

7 14 8,490,959.77 98:56:00.00 2531

8 Minimizing dependency problem in gravitational force evaluation

In this section, we describe a method of calculations of functions and their derivatives used in

the program. Let us denote Fi = ( f 1i , f 2i ), ri j =
√

(xi − x j )2 + (yi − y j )2. Then functions

f [1,2]
i and their derivatives are (with analogs for y’s):

f 1i = xi −
N∑

j=1,
j �=i

m j
xi − x j
r3i j

f 2i = yi −
N∑

j=1,
j �=i

m j
yi − y j
r3i j

∂

∂xk
f 1i = −mk

(
3
(xi − xk)2

r5ik
− 1

r3ik

)
+ mk

(
3
(xi − xN )2

r5i N
− 1

r3i N

)
for k �= i

∂

∂xi
f 1i = 1 +

N−1∑
j=1,
j �=i

m j

(
3
(xi − x j )2

r5i j
− 1

r3i j

)
+ mN

(
1 + mi

mN

) (
3
(xi − xN )2

r5i N
− 1

r3i N

)

∂

∂xk
f 2i = −3mk

(xi − xk)(yi − yk)

r5ik
+ 3mk

(xi − xN )(yi − yN )

r5i N
(60)

∂

∂xi
f 2i = 3

N−1∑
j=1,
j �=i

m j
(xi − x j )(yi − y j )

r5i j
+ 3mN

(
1 + mi

mN

)
(xi − xN )(yi − yN )

r5i N
(61)

∂

∂ yk
f 1i = ∂

∂xk
f 2i for all k.

In the program, we have to evaluate f [1,2]
i on a box D in configurations space. The naive

interval evaluation of f [1,2]
i , where we just plug-in the interval arguments, might lead to

severe overestimation due to the dependency problem (Moore 1966; Neumeier 1990). The
best solution would be a cheap but rigorous estimate of sup and inf of f 1i and f 2i over D; this
however appears to be a difficult and costly task. For the Krawczyk method, we also need
good estimates for ∂ fi

∂x j
and ∂ fi

∂ y j
and we face the same problem. Thus we decided to optimize

the computation of the following expressions
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Fig. 4 Calculated lines and
location of critical points

xi xj

yi

yj

x

y

(x j − xi )a

rbi j
and

(y j − yi )a

rbi j

over q = (x, y) = (x j − xi , y j − yi ) ∈ D ⊂ R
2, since such components appear in all above

equations. In Eqs. (60) and (61), we evaluate expressions in the form xy/r5 as a product of
x/r3 and y/r2 which are treated as separate expressions.

8.1 Estimates for xa/rb and ya/rb

Assume we want to calculate

fx (x, y) = xa

rb
= xa

(x2 + y2)
b
2

(62)

fy(x, y) = ya

rb
= ya

(x2 + y2)
b
2

, (63)

where a < b, (x, y) = (x j −xi , y j − yi ). Let us define D = (xL , xR)×(yL , yR). We want to
estimate fx and fy on D. We always assume that (0, 0) /∈ D. To minimize the overestimation
of these calculations, we look for the possible local extrema in D.

Let us consider the function fx ; the second case of fy is symmetrical. First notice that by
solving the system of equations

∂

∂x
fx (x, y) = xa−1(x2(a − b) + ay2)

rb+2 = 0 (64)

∂

∂ y
fx (x, y) = −bxa y

rb+2 = 0, (65)

we obtain (x, y) = (0, 0), which is impossible in our settings. Since there is no local
extremum inside D thus it is attained on the edge of D. Te determine the specific points,
where this extremum can be, we explore Eqs. (64) and (65) and analogical for fy , and we
obtain:

• border points on the lines y = ± x
√

b−a
a and x = ± y

√
b−a
a (blue points in Fig. 4)

• border points for x = 0 and for y = 0 (black points in Fig. 4)

Additionally we consider corners of D (red points in Fig. 4). Next we examine all these point
to establish the maximum and the minimum value of fx and fy .
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Note, that there is still a lot of room for further optimization, but for now only this version
is implemented in the program.
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License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
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