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Abstract
We consider the partial average, i.e. the Lagrange average with respect to just one of the two
mean anomalies, of the Newtonian part of the perturbing function in the three-body problem
Hamiltonian. We prove that such a partial average exhibits a non-trivial first integral. We
show that this integral is fully responsible for certain cancellations in the averagedNewtonian
potential, including a property noticed by Harrington in the 1960s. We also highlight its joint
role (together with certain symmetries) in the appearance of the so-called Herman resonance.
Finally, we discuss an application and an open problem.

Keywords Integrable systems · Renormalizable integrability · Harrington property ·
Herman resonance
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1 Motivation

The purpose of this work is to highlight a property of the “partial average of the Newtonian
potential” and discuss some consequences.

By “partial averaged Newtonian potential”, we mean the following. Let (y(i), x (i)) =(
(y(i)

1 , y(i)
2 , y(i)

3 ), (x (i)
1 , x (i)

2 , x (i)
3 )
)
, with i = 1, 2, be impulse–position coordinates for a

two-particle system (which we also call “planets”) and let
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C : (Λ2, �2, u, v) ∈ A × T × V → (y, x) = (y(1), y(2), x (1), x (2)) ∈ (R3)4, (1)

where A is a domain1 in R, V is a domain in R
10, T := R/(2πZ), (u, v) =(

(u1, u2, u3, u4, u5), (v1, v2, v3, v4, v5)
)
, be a change in coordinates, which we call, for

brevity, partial Kepler map, which “preserves the standard two forms”:

dy(1) ∧ dx (1) + dy(2) ∧ dx (2) = dΛ2 ∧ d�2 + du ∧ dv

and “integrates the Keplerian motions of (y(2), x (2))”:
(

‖y(2)‖2
2m2

− m2M2

‖x (2)‖

)

◦ C = −m3
2M

2
2

2Λ2
2

=: h(2)
Kep(Λ2), (2)

where m2, M2 are suitable “mass parameters”. Of course, we have assumed that the image
of C in (1) is a domain of (y, x) where the left-hand side of (2) takes negative values. We
also assume, throughout the paper, that (y, x) are chosen so that the instantaneous ellipse E2

generated by the two-body Hamiltonian (2) has non-vanishing2 eccentricity, so we denote
as P(2), ‖P(2)‖ = 1, the direction of its perihelion. The angle �2 will be referred to as “mean
anomaly”, for uniformity with the name attributed to an analogue angle in the set of the
coordinates named after Delaunay [see, e.g. Féjoz (2013) for a definition]. We look at the
Lagrange average

h2(Λ2, u, v) := 1

2π

∫

T

d�2

‖x (1)(Λ2, �2, u, v) − x (2)(Λ2, �2, u, v)‖ , (3)

which we will refer to as partially averaged Newtonian potential.
There are many examples, in Celestial Mechanics, of canonical maps of the form above.

Well-known ones are the above-mentioned Delaunay map (hereafter, D), or the coordinates
after the Jacobi–Deprit reduction3 of the nodes (J ) (Jacobi 1842; Deprit 1983). Another
example, called “perihelia reduction” (P), has been introduced by Pinzari (2018b). A com-
prehensive review can be found in Pinzari (2015). All themapsmentioned heremight actually
be named double Kepler maps, since, in such cases, they satisfy (1)–(2), with, in turn, the
(u, v)’s having the form

(u, v) = (Λ1, �1, û, v̂), du ∧ dv = dΛ1 ∧ d�1 + dû ∧ d v̂,

where �1 ∈ T and Λ1 is such that (2) holds also with m2, M2, y(2), x (2) replaced by m1, M1,
y(1), x (1). In Sect. 2, we present a “genuine” partial Kepler map, namely a map C where (2)
holds only for one of the bodies.

We have been interested to function (3) because, in planetary (1+ N )-body theories, one
has to deal with analogue maps of the kind

CN : (Λ, �, û, v̂) ∈ AN × T
N × W → (

(y(1), . . . , y(N )), (x (1), . . . , x (N ))
)
,

with W a domain in R
4N in terms of which the Hamiltonian of the system is

HN (Λ, �, û, v̂) = −
N∑

i=1

m3
i M

2
i

2Λ2
i

+ fN (Λ, �, û, v̂), (4)

1 By “domain” we mean an open and connected set in K = R
m , C

m .
2 For simplicity, we refrain to formulate the results in the case that the map C in (1) is regular when the
eccentricity of E2 vanishes, as it happens, for example, in the case of the Poincaré or the rps map.
3 The coordinates discovered by Deprit (1983) are an extension, to any number of particles, of Jacobi (1842),
which hold only for a two-particle system.
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where the Hamiltonian is composed of a leading“Keplerian part”, given by −∑N
i=1

m3
i M

2
i

2Λ2
i
,

slightly perturbed by a function fN . The splitting (4) is possible—and in fact it has been
adopted byArnold (1963), Laskar andRobutel (1995), Chierchia and Pinzari (2011), Palacián
et al. (2013), Meyer et al. (2018) and Pinzari (2018b), for example, in the so-called planetary
problem where one of the masses (“sun”) is much larger than the remaining, equally sized,
N ones (“planets”). In that case, averaging over the Keplerian frequency vector

ωKep = (ωKep,1, . . . , ωKep,N ), ωKep,i = m3
i M

2
i

Λ3
i

(5)

leads to study the so-called secular problem

HN (Λ, û, v̂) = −
N∑

i=1

m3
i M

2
i

2Λ2
i

+ f N (Λ, û, v̂),

where the perturbing term is given by “multi-averaged Newtonian potential” (the study of
which goes back to Sundman 1916)

f N (Λ, û, v̂) := − 1

(2π)N

∑

1≤i< j≤N

mim j

∫

TN

d�i d� j

‖x (i)(Λi ,Λ j , �i , � j , û, v̂) − x ( j)(Λi ,Λ j , �i , � j , û, v̂)‖ . (6)

It is known (Gallavotti 1986) that the dynamics of the full problem is well approximated by
the one of the secular one as soon as no resonances between the frequencies (5) appear. In
case of resonance, for example, in the case N = 2, with the two planets being much distant
one to the other, it is reasonable to expect that a better approximation is obtained replacing the
average (6) with the partial average (3). Concretely, it might be challenging to investigate
whether there is an application to any of the following regions of motion that have been
proposed by Féjoz (2002, p. 310), for the N = 2 case:

– the planetary region, where the eccentricity of the outer ellipse and both semi-major axes
are in a small compact set, and two masses are small compared to the third mass;

– the lunar region, where the masses are in a compact set, and the outer body is far away
from the outer two;

– the anti-planetary region, where the outer body ellipse may have a large mass, provided
its ellipse is far away from the outer two;

– the anti-lunar region, when the ellipses of the two outer bodies are close, but the corre-
sponding masses are much different.

We now go back to h2 in (3). We firstly observe that

Theorem 1 h2 is integrable by quadratures.

Indeed, h2 has six degrees of freedom and possesses, besides itself, the following five
commuting4 integrals:

4 In Hamiltonian mechanics, f (p, q), g(p, q) are said to be Poisson commuting if their Poisson parentheses
{ f , g} := ∑

∂p f ∂q g − ∂pg∂q f vanish. Poisson commutation of f and g is equivalent to say that g remains
constant along the Hamiltonian motions of f .
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I1:= the semi-major axis action Λ2 := m2
√
M2a2;

I2:= the Euclidean length ‖x (1)‖ of x (1);
I3:= the Euclidean length of the total angular momentum C := C(1) + C(2), with C(i) :=

x (i) × y(i), and “×” denoting skew product;
I4:= its third component;
I5:= the projection of the angular momentum C(2) along the direction x (1).

Indeed, I1 is trivially due to the �2-averaging; I3 and I4 descend from the invariance by
rotations of h2; I2 and I5 from invariance by rotations around the x (1) axis. Such integrals are
independent if C(1) and C(2) are not parallel. Otherwise, the problem reduces to be planar;
namely, h2 has four degrees of freedom, and three independent commuting integrals are
obtained neglecting, in the list above, I4 and I5.

Remark 1 The list of independent first integrals to h2 is even longer than the one above. For
example, in the spatial case, the three components of x (1) and the three components C(2) are
all first integrals. However, the maximum number of commuting first integrals that can be
formed with these quantities is four (and the functions I2, I3, I4 and I5 are an example of
them).

Remark 2 The integrability of h2 does not imply that also the partial average of the three-
body problem Hamiltonian is so, because this includes also a kinetic term. This is an even
different situation compared to the secular problemmentioned above,whose non-integrability
is clearly proven, as a consequence of the so-called splitting of separatrices (Féjoz and
Guardia 2016).

We now consider the ellipse generated by the “Kepler Hamiltonian” at left-hand side in (2)

and denote as e2 :=
√

1 − G2
2

Λ2
2

its eccentricity, where G2 := ‖C(2)‖. Then, let

E0 := G2
2 − m2

2M2e2 x
(1) · P(2). (7)

The following fact is a bit more subtle.

Theorem 2 The function E0 is a first integral of h2.

Proof The proof of this theorem uses some results from5 Pinzari (2018a) that here we recall.
We consider the Hamiltonian

J = ‖y(2)‖2
2m2

− m2M2

‖x (2)‖ − m2M1

‖x (1) − x (2)‖ .

This is the Hamiltonian of one moving particle (y(2), x (2)) having mass m2, subject to the
gravitational attraction by two fixed particles: M2, at the origin, and M1, at x (1). The Hamil-
tonian is integrable by quadratures, for having, as first integrals, the function I5 defined above
(which trivializes in the case of the planar problem) and the function

E = E0 + M1E1,

where E0 is as in (7), while

E1 = m2
2
x (1) · (x (1) − x (2))

‖x (1) − x (2)‖ .

5 m2, M2, M1, correspond to m, M, μM in Pinzari (2018a).
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A first integral to the partially averaged Newtonian potential Page 5 of 30 22

We write J and E in terms of a given partial Kepler map, C. We obtain

JC = −m3
2M

2
2

2Λ2
2

− m2M1

‖x (1)
C − x (2)

C ‖
, EC = E0,C + M1E1,C, (8)

where the sub-fix C denotes the composition with C. The commutation of JC and EC implies
the following relation, which is obtained picking up the terms at the first order in M1:

{

−m3
2M

2
2

2Λ2
2

, E1,C

}

+
{

− m2

‖x (1)
C − x (2)

C ‖
, E0,C

}

= 0.

Taking the �2-average of this identity, the first term vanishes itself:

1

2π

∫

T

{

−m3
2M

2
2

2Λ2
2

, E1,C

}

d�2 = 1

2π

m3
2M

2
2

Λ3
2

∫

T

∂�2E1,Cd�2 ≡ 0.

Hence,

0 = 1

2π

∫

T

{

− m2

‖x (1)
C − x (2)

C ‖
, E0,C

}

d�2 = {− m2 h2, E0,C
}

since E0,C is �2-independent. This is the thesis. 
�
In the next sections, we highlight some properties of the partially averaged Newtonian

potential that descend from Theorems 1 and 2. More precisely, the paper is organized as
follows. In Sect. 2,we show that, as a consequence ofTheorem2, an infinite number of Fourier
coefficients in the expansion of h2 with respect to the perihelion of its outer planet cancel.
This property is a generalization of a fact noticed by S. Harrington in the 1960s, Harrington
(1969). To this purpose, we introduce a set of canonical coordinates in terms of which h2 and
E0 are reduced to one degree of freedom. In Sect. 3, we show that there is an explicit functional
dependence between h2 andE0.We call this circumstance “renormalizable integrability”. The
author argues that it might be helpful in the framework of the study of the three-body problem.
For example, it would be nice to understand whether fixed points of E0, both of elliptic and
hyperbolic character, being at the same time fixed points to h2 with the same character,
might give rise to quasi-periodic motions in the three-body problem, whether hyperbolic
equilibria might lead to a splitting of separatrices, etc. Instead of addressing such issues here
(which would lead much further than the purposes of this note; see, however, Pinzari (2018a)
for an application in this direction), we discuss the relations between level curves and the
fixed points of the two functions. Next, we show that, as a consequence of renormalizable
integrability and the well-known

Proposition 1 (Keplerian property)

1

2π

∫

T

d�2

‖x (2)
C ‖

= 1

a2
∀ C.

A linear combination with integer coefficients in a suitable expansion of h2 is identically
verified.We name it “generalizedHerman resonance” since it recalls the well-knownHerman
resonance in the doubly averaged Newtonian potential (we refer to Abdullah and Albouy
(2001) or Féjoz (2004, Proprieté 80) for information onHerman resonance). After proving, in
Sect. 4, an algebraic property of the well-known Legendre polynomials (which, roughly, says
that a certain average of a Legendre polynomial is still a Legendre polynomial), we establish,
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22 Page 6 of 30 G. Pinzari

in Sect. 5, a link between the aforementioned generalized Herman resonance and Herman
resonance. In this conclusive section, we also provide a sort of “eccentricity–inclination”
expansion at any order for such function and discuss a problem which is left open.

2 Generalized Harrington property

In this section, we assume that the map C in (1) includes, among the u’s, the impulse
u1 := G2 := ‖C(2)‖. We also give x (1), x (2) the meaning of “interior”, “exterior” planet,
respectively, because we write formal expansions with respect to ‖x (1)‖.

We prove the following

Theorem 3 Fix a domain for C where x (1)
C × C(2)

C , C(2)
C × P(2)

C , and C(2)
C never vanish. Let

h : (Λ2, u, v) ∈ A × V → h(Λ2, u, v)

Poisson commute with E0. Assume that h has the form

h =
∞∑

n=0

+∞∑

m=0

hnm(Λ2, u, v)ρn cosmϕ, (9)

where ρ(Λ2, u, v) := ‖x (1)
C ‖ and ϕ(Λ2, u, v) is the angle formed by the two vectors x (1)

C ×
C(2)
C ,C(2)

C ×P(2)
C , with respect to the counterclockwise orientation established byC(2)

C . Assume
also that hnm depends on (Λ2, u, v) only via the following quantities

Λ2, u1 = G2, Θ := x (1)
C · C(2)

C
‖x (1)

C ‖
, (10)

with h0m being independent of u1 = G2 for all m ≥ 0. Then

hnm(Λ2, u, v) ≡ 0 if m ≥ max{1, n} , ∀ n ≥ 0. (11)

In the case that hnm = 0 for n − m odd, for n ≥ 1, the following stronger identities hold:

hnm(Λ2, u, v) ≡ 0 if m ≥ n − 1, ∀ n ≥ 1. (12)

To prove Theorem 3, we shall need the following

Lemma 1 Let the functions

h(Γ , γ ) =
∞∑

n=0

∞∑

m=0

εnhnm(Γ ) cosmγ g(Γ , γ ) = a(Γ ) + εb(Γ ) cos γ

verify
{
h, g

}

Γ ,γ
:= ∂Γ h∂γ g − ∂Γ g∂γ h ≡ 0 (13)

and assume that ∂Γ a �≡ 0 and h0m is independent of Γ for all m ≥ 0. Then hnm = 0 for all
m ≥ max{1, n}.
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A first integral to the partially averaged Newtonian potential Page 7 of 30 22

Proof Due to the assumptions of h and g, their Poisson parenthesis at left-hand side of (13) is
a Fourier series including only sines {sin kγ }k≥1. Projecting (13) over such basis, we obtain
the following relations:

m∂Γ ahnm = −1

2

(
(m − 1)hn−1,m−1 + (m + 1)hn−1,m+1

)
∂Γ b

+1

2

(
∂Γ hn−1,m−1 − ∂Γ hn−1,m+1 + ∂Γ hn−1,0δm,1

)
b (14)

for all n = 0, 1, m = 1, 2, . . ., where δi j is the Kronecker symbol, and h−1,k := 0 for all
k ∈ Z. We now prove that such relations imply hnm ≡ 0 for m ≥ max{1, n}. We proceed by
steps.
(i) We prove h0m = 0 for m = 1, 2, . . .. We use (14) with n = 0 and m = 1, 2, . . .:

m∂Γ ah0m = −1

2

(
(m − 1)h−1,m−1 + (m + 1)h−1,m+1

)

+ 1

2

(
∂Γ h−1,m−1 − ∂Γ h−1,m+1 + ∂Γ h−1,0δm,1

)
b

≡ 0 m = 1, 2, . . .

since h−1,k = 0 for all k ∈ Z, as ∂Γ a �≡ 0.
(ii) We prove h1m = 0 for m ≥ 1.

(ii)-a We prove h11 = 0. We use (14) with n = m = 1. We obtain

∂Γ ah11 = −1

2

(
2h0,2

)
∂Γ b

+1

2

(
∂Γ h00 − ∂Γ h02 + ∂Γ h00δ11

)
b

≡ 0

since h02 = 0 by (i) and ∂Γ h00 = 0 by assumption.
(ii)-b We prove h1m = 0 for m ≥ 2. We use (14) with n = 1, m ≥ 2:

m∂Γ ah1m = −1

2

(
(m − 1)h0,m−1 + (m + 1)h0,m+1

)
∂Γ b

+1

2

(
∂Γ h0,m−1 − ∂Γ h0,m+1 + ∂Γ h0,0δm,1

)
b

≡ 0

because the first line vanishes by (i), while the second vanishes because, by assumption,
∂Γ h0,p for all p ≥ 1.
(iii) We prove hnm = 0 for n ≥ 1 and m ≥ n. We proceed by induction on n. The case n = 1
has been done in (ii). We assume that it is true for n ≥ 1 and prove it for n + 1. We use (14)
replacing n with n + 1 and taking m ≥ n + 1:

m∂Γ ahn+1,m = −1

2

(
(m − 1)hn,m−1 + (m + 1)hn,m+1

)
∂Γ b

+1

2

(
∂Γ hn,m−1 − ∂Γ hn,m+1 + ∂Γ hn,0δm,1

)
b

≡ 0.

Here, we have used that for m ≥ n + 1, m + 1 > m − 1 ≥ n, so the first line and the two
first terms in the second line vanish. The last term also vanishes because m ≥ n + 1 ≥ 2, so
the Kronecker symbol is zero. The lemma is completely proved. 
�
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We now proceed to prove Theorem 3. To this end, we introduce a specific system of
canonical coordinates which will allow us to apply the lemma above.
The K-map Define the “nodes”

ν0 := k × C, ν1 := C × x (1) , ν2 := x (1) × C(2), ν3 := C(2) × P(2)

and assume that they do not vanish. Denote, as above, as P(2), with ‖P(2)‖ = 1 the direction
of its perihelion (well defined because the eccentricity does not vanish), a2 its semi-major
axis, we define the map

K : (
Λ2, l2,Z,G,R1,G2,Θ, z, g2, g, r1, ϑ

) → (y(1)
K , y(2)

K , x (1)
K , x (2)

K ),

via the relations

K−1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z := C · k

G := ‖C‖

R1 := y(1) · x (1)

‖x (1)‖

Λ2 = m2

√
M2a2

G2 := ‖C(2)‖

Θ := C(2) · x (1)

‖x (1)‖

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z := αk(i, ν0)

g := αC(ν0, ν1)

r1 := ‖x (1)‖

l2 := mean anomaly of x (2) on E

g2 := αC(2) (ν2, ν3)

ϑ := αx (1) (ν1, ν2)

, (15)

where (i, j, k) is a prefixed reference frame, and for u, v ∈ R
3 lying in the plane orthogonal

to a vector w and αw(u, v) denotes the positively oriented angle (mod 2π) between u and
v (orientation follows the “right-hand rule”). We remark that the planar case corresponds to
taking Θ = 0 and ϑ = π (prograde case) of ϑ = 0 (retrograde case).

The map K verifies (1)–(2) with �2 = l2 and u = (G2, ŭ), v = (g2, v̆), where ŭ =
(Z,G,R1,Θ), v̆ = (z, g, r1, ϑ). Therefore, u and v are also as claimed in the assumptions of
Theorem 3. The canonical character of the coordinatesK is discussed in Pinzari (2018a) and
to such paper we refer also for the formula, in terms ofK, of the function E0 in (7), which is

E0 = G2
2 + m2

2M2r1

√

1 − G2
2

Λ2
2

√

1 − Θ2

G2
2

cos g2. (16)

We continue denoting as h the function in the statement expressed in terms of K. It follows
from the definitions (15) that ρ = r1 and ϕ = g2, so, by (9), h is given by

h =
∞∑

n=0

+∞∑

m=0

rn1hnm(Λ2,Θ,G2) cosmg2.

Here, we have used that, by assumption, the coefficients hnm in this expansion depend only
on Λ2, G2, Θ . Therefore, in terms of K, the assumption that h Poisson commutes with E0

reduces to
{
h,E0

}
(G2,g2)

= ∂G2h∂g2E0 − ∂g2h∂G2E0 ≡ 0.
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Furthermore, with a = G2
2, we have ∂G2a �≡ 0 and, finally, h0m is independent of G2 for all

m ≥ 0, being this one of the assumptions of Theorem 3. We can thus apply Lemma 1 and
we obtain that hnm(r1,Λ2,Θ) ≡ 0 for m ≥ max{1, n}. The identities (12) trivially follow,
under the additional assumption that hnm = 0 if n − m is odd. 
�
Application of Theorem 3 to the function h2 In this section, we discuss the application of
Theorem 3 to the function h2 in (3). First of all, h2 Poisson commutes with E0, as stated by
Theorem 2. As in the proof of Theorem 3, we now write h2 in terms of the coordinates K
in (15) and we fix a domain as in the statement of the theorem. This map is useful because
ρ = r2, ϕ = g2 and the functions in (10) are coordinates in such system, so we have only to
check that h2 affords an expansion of the form:

h2 =
∞∑

n=0

+∞∑

m=0

rn1h2,nm(Λ2,Θ,G2) cosmg2, (17)

with ∂G2h1,0m(Λ2,Θ,G2) ≡ 0. We shall also check that, in this summand, only terms with
even n−m appear.Weobserve that, since h commuteswith I1, . . ., I5, and, by their definitions,
such functions are coordinates in the system K:

I1 = Λ2, I2 = r1, I3 = G, I4 = Z, I5 = Θ, (18)

we have that h2 is independent of their conjugate coordinates, respectively, �2, R1, g, z, ϑ .
The angles g, z are themselves first integrals to h2 and so we have that h2 is also independent
of G, Z. In summary, h2 will be a function of r1, Λ2, Θ , G2, g2 only. Now we check that
h2 affords an expansion of the form (9), with hnm depending only on the quantities (10). As
already observed in the proof of Theorem 3, in terms of the coordinates K, this reduces to
check that h2, in terms of K, has an expansion of the form (17). To this end, we start from
the expansion of the Newtonian potential in Legendre polynomials (see Sect. 4)

1

‖x (1) − x (2)‖ =
∞∑

n=0

Pn(t)
‖x (1)‖n

‖x (2)‖n+1
t := x (1) · x (2)

‖x (1)‖‖x (2)‖ . (19)

In terms of K, such quantities are given by

‖x (1)‖ = r1 , ‖x (2)‖ = a2

G2
2

Λ2
2

1 +
√
1 − G2

2
Λ2

2
cos f2

, t = −
√

1 − Θ2

G2
2

cos(g2 + f2),

where a2 = Λ2
2

m2
2M2

; f2 = f2(Λ2,G2, l2) is the true anomaly. The two former expressions are

classical; the one for t has been worked out by Pinzari (2018a). Inserting these expressions
into (19) and taking the l2-average6, we have that

h2(r1,Λ2,Θ,G2, g2) =
∞∑

n=0

h2,n(Λ2,Θ,G2, g2)r
n
1 , (20)

6 Recall the well-known transition formula [see, e.g. Palacián et al. (2017)] dl2 =
G3
2

Λ3
2

⎛

⎝1 +
√√√√1 − G2

2

Λ2
2

cos f2

⎞

⎠

2 df2.
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with

h2,n(Λ2,Θ,G2, g2) = 1

2πan+1
2

Λ2n−1
2

G2n−1
2

∫

T

(

1 +
√

1 − G2
2

Λ2
2

cos f2

)n−1

Pn

(

−
√

1 − Θ2

G2
2

cos(g2 + f2)

)

df2. (21)

This expression shows h2,n(Λ2,Θ,G2, g2) is even in g2:

h2,n(Λ2,Θ,−g2) = h2,n(Λ2,Θ,G2, g2) ∀ g2 ∈ T, (22)

so, it affords a Fourier expansion

h2,n(Λ2,Θ,G2, g2) =
+∞∑

m=0

h2,nm(Λ2,Θ,G2) cosmg2, (23)

and the claimed expansion (17) follows. We finally check that ∂G2h1,0m ≡ 0 for all m ≥ 0.
But this is a consequence of the fact that, for r1 = 0, h2 reduces to 1

2π

∫
T

dl2
‖x (2)

K ‖ , which is

Γ -independent by Proposition 1. Then the assertion and hence thesis (11) hold. We now
check that, in the case of h2, one also has h2,nm = 0 for n−m odd, so, for n ≥ 1, the stronger
identity in (12) holds. Denoting as cnp ∈ Q the coefficients in the expansion

Pn(t) =
n∑

p=0

cnpt
p

where, we recall, only p’s having the same parity as n appear (an explicit formula for the
cnp’s is available from the first formula in Eq. 53), so that

Pn

(

−
√

1 − Θ2

G2
2

cos(g2 + f2)

)

= (−1)n
n∑

p=0

cnp

(

1 − Θ2

G2
2

)p/2

cosp(g2 + f2). (24)

Using the expansion

cosp(g2 + f2) = (cos g2 cos f2 − sin g2 sin f2)
p

=
p∑

k=0

(−1)k
(
p
k

)
sink g2 cos

p−k g2 sin
k f2 cos

p−k f2

and finally inserting this expression into (24) and afterwards into (21), we can write (21) as
a trigonometric polynomial in g2 having degree n given by

h2,n = (−1)n
n∑

p=0

p∑

k=0

cnpĥnpk(Λ2,G2,Θ) sink g2 cos
p−k g2, (25)

where

ĥnpk(Λ2,G2,Θ) = (−1)k
(

1 − Θ2

G2
2

)p/2 (
p
k

)
1

2πan+1
2

∫

T

sink f2 cos
p−k f2

(

1 +
√

1 − G2
2

Λ2
2

cos f2

)n−1

df2.
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The function under the integral in the expression above has the same parity as k, so ĥnpk
vanishes for k odd.7 Therefore, in the summand in (25) only even indices k appear. But for
any even k, sink g2 cosp−k g2 has a Fourier expansion

∑p
m=0 bm cosmg2 where m has the

same parity as p, which is the same as n. We collect all of the information in the following.

Proposition 2 All the assumptions of Theorem 3 are verified with h = h2. Therefore, the
coefficients h2,nm in the expansion (9) verify (11) and, for n ≥ 1, they verify the stronger
identity (12). Choosing C = K, the expansion in (20)–(23) holds true, with h2,nm veri-
fying (11) and (12). In particular, the term h2,1 vanishes identically and h2,2, called the
dipolar term, does not depend on g2.

One could ask what the last assertion becomes when using, instead of the K-map, one of the
more familiar maps, D, J or P , mentioned in the introduction. As a matter of fact, the same
assertion holds, apart from parity in the Fourier expansion:

Proposition 3 Let gD2 , gJ2 or gP2 denote the angles conjugate to G2, in the case of the maps
D, J or P . In the expansion

h2 =
+∞∑

n=0

h2,n‖x (1)
C ‖n C = D, J , P,

the coefficients h2,n afford a Fourier expansion
∑+∞

m=0(anm cos gC2 + bnm sin gC2 ), with m
having the parity as n and anm, bnm verifying (11) and (12). In particular, h1,1 ≡ 0 and h1,2
does not depend on gD2 , gJ2 or gP2 , respectively.

Proof ThemapsD,J orP share the property that u1 = G2 is one of their impulses. However,
the coordinate conjugate to G2 is different in any of such cases and is given by the angle
that here we denote as gD2 , gg2 or g

P
2 , formed by a certain “node” (we call so a non-vanishing

vector in R
3) with P(2) in the plane orthogonal to C(2), with respect to the positive direction

determined by C(2). The mentioned node is given by:

νC =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k × C(2) if C = D

C × C(2) if C = J

P(1) × C(2) if C = P

,

where P(1) denotes the direction of the perihelion associated to the Keplerian ellipse of the
inner body. We then find the following relation

g2 = gC2 + ϕC C = D, J , P,

where ϕC is the angle determined by νC and ν2 in (15). Such function does not depend on
gC2 . Since the functions a2, Θ , r1, ζ2, f2 in (20), expressed in terms of D, J , P , even do not

7 Incidentally, by explicit computation of the integral, we obtain, for even k,

ĥnpk (Λ2,G2,Θ) = (−1)k
(

1 − Θ2

G2
2

)p/2 (
p
k

)
1

2πan+1
2

n−1∑

j=0

k/2∑

r=0

(−1)r
(
n − 1

j

)(
k/2
r

)(

1 − G2
2

Λ2
2

) j/2
( j + p − k + 2r − 1)!!

( j + p − k + 2r)!! ,

where only terms with j having the same parity as p appear.
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22 Page 12 of 30 G. Pinzari

depend on gC2 , the proof of Proposition 3 follows, replacing such functions into (20), and
using the information given by Proposition 2. 
�

3 Renormalizable integrability

Another consequence of Theorems 1 and 2 is that there actually exists a functional
dependence between h2 and E0 which we shall write explicitly. To this end, we premise
some abstract consideration.

Definition 1 Let h, g be two (commuting) functions of the form

h(p, q, y, x) = ĥ(I(p, q), y, x), g(p, q, y, x) = ĝ(I(p, q), y, x), (26)

where

(p, q, y, x) ∈ D := B ×U , (27)

with U ⊂ R
2, B ⊂ R

2n open and connected, (p, q) = (p1, . . . , pn, q1, . . . , qn) conjugate
coordinates with respect to the two-form ω = dy ∧ dx + ∑n

i=1 dpi ∧ dqi and I(p, q) =
(I1(p, q), . . . , In(p, q)), with

Ii : B → R, i = 1, . . . , n

pairwise Poisson commuting:
{
Ii , I j

} = 0 ∀ 1 ≤ i < j ≤ n i = 1, . . . , n. (28)

We say that h is renormalizably integrable via g if there exists a function

h̃ : I(B) × g(U ) → R,

such that

h(p, q, y, x) = h̃(I(p, q), ĝ(I(p, q), y, x)) (29)

for all (p, q, y, x) ∈ D.

Proposition 4 If h is renormalizably integrable via g, then:

(i) I1, . . ., In are first integrals to h and g;
(ii) h and g Poisson commute.

Proof It follows from (26) that
{
h, g

} =
∑

1≤i< j≤n

{
Ii , I j

}(
∂Ii ĥ∂I j ĝ − ∂Ii ĝ∂I j ĥ

)+ (∂yh∂x g − ∂yg∂xh). (30)

In this expression, all the terms in the summand vanish because of (28), while the last term
vanishes because of (29):

∂yh∂x g − ∂yg∂xh = ∂gh̃∂x g∂yg − ∂yg∂gh̃∂x g = 0 .

This proves (ii). (i) follows from (ii), replacing the couple (h, g) with (h, Ii ) or (g, Ii ), with
i = 1, . . ., n. 
�

At level of motion, renormalizable integrability can be rephrased as follows.
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A first integral to the partially averaged Newtonian potential Page 13 of 30 22

Proposition 5 Let h be renormalizably integrable via g. Fix a value I0 for the integrals I
and look at the motion of (y, x) under h and g, on the manifold I = I0. For any fixed initial
datum (y0, x0), let g0 := g(I0, y0, x0). If ω(I0, g0) := ∂gh̃(I, g)|(I0,g0) �= 0, the motion
(yh(t), xh(t)) with initial datum(y0, x0) under h is related to the corresponding motion
(yg(t), xg(t)) under g via

yh(t) = yg(ω(I0, g0)t), xh(t) = xg(ω(I0, g0)t).

In particular, under this condition, all the fixed points of g in the plane (y, x) are fixed point
to h. Values of (I0, g0) for which ω(I0, g0) = 0 provide, in the plane (y, x), curves of fixed
points for h (which are not necessarily curves of fixed points to g).

Proof All the assertions follow from the formulae, implied by (26):

ẏh = −hx = −h̃x = −ω(I0, g0)gx (I0, y
h, xh)

and, similarly,

ẋ h = ω(I0, g0)gy(I0, y
h, xh).


�
Below, we prove that, under an additional condition, the converse of Proposition 4 holds

true.

Theorem 4 Let h, g two commuting functions of the form (26) on the possibly complex domain
D as in (27), with Ii pairwise Poisson commuting. For any fixed c = (c1, . . . , cn) ∈ I(B),
let Δc be the set of stationary points of the function (y, x) → g(y, x, c1, . . . , cn), and put

U∗
c := U\Δc. Assume that the setD∗ := ⋃

(p,q)∈B
{
(p, q)

}
×U∗

I(p,q) has full closure. Then

h is renormalizably integrable via g.

Proof We firstly observe that, since {h, g} = {Ii , I j } = 0 for all 1 ≤ i < j ≤ n, using, as in
the proof of Proposition 4, Eq. (30), then

∂yh∂x g − ∂yg∂xh = ∂y ĥ∂x ĝ − ∂y ĝ∂x ĥ = 0 . (31)

The assumptions and the implicit function theorem ensure that for any given c =
(c1, . . . , cn) ∈ R

n in the image of the function (p, q) ∈ B → (I1, . . ., In), and cn+1 suffi-
ciently close to in the image of g(c1, . . . , cn, y, x) where (y, x) ∈ U∗

c , equation

g(c1, . . . , cn, y, x) = cn+1

can be uniquely solved with respect to either y or x , via suitable functions

y = Y(c1, . . . , cn+1, x) or x = X(c1, . . . , cn+1, y),

where Y(c1, . . . , cn+1, ·) is defined on a small neighbourhood of x , while X (c1, . . ., cn+1, ·)
is defined on a small neighbourhood of y. We now consider the function

h(c1 . . . cn, cn+1) := ĥ(c1, . . . , cn,Y(c1, . . . , cn+1, x), x) (32)

and/or the function

h′(c1 . . . cn, cn+1) := ĥ(c1, . . . , cn, y,X(c1, . . . , cn+1, y)). (33)
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22 Page 14 of 30 G. Pinzari

We have that h is x-independent, while h′ is y-independent. Let us check the assertion for h
(for h′ is specular). Again by the implicit function theorem:

hx = ĥ y(c1, . . . , cn,Y(c1, . . . , cn+1, x), x)Yx (c1, . . . , cn+1, x)

+ĥx (c1, . . . , cn,Y(c1, . . . , cn+1, x), x)

= −ĥ y(c1, . . . , cn,Y(c1, . . . , cn+1, x), x)
ĝx (c1, . . . , cn,Y(c1, . . . , cn+1, x), x)

ĝy(c1, . . . , cn,Y(c1, . . . , cn+1, x), x)

+ĥx (c1, . . . , cn,Y(c1, . . . , cn+1, x), x)

≡ 0

because of (31). Choosing, for a fixed (p, q) ∈ B, (y, x) ∈ U∗
I(p,q), c1 = I1(p, q), . . .,

cn = In(p, q), cn+1 = g(p, q, y, x), we have the thesis on the set D∗. Then, by smooth
continuation, the thesis holds on all of D = B ×U . 
�
Remark 3 We observe that the proof is constructive: it provides the function ĥ via formu-
lae (32)–(33).

In the following, we prove that h2 is renormalizably integrable via E0 as an application
of Theorem 4. Afterwards, in Sect. 3.1, we exhibit, explicitly, the relative function h̃2 realiz-
ing (29). In Sect. 3.2, as a counter-example to the last assertion of Proposition 5, we exhibit
a curve of fixed points for h2 which is not so for E0.

Application of Theorem 4 to h2 and E0. We aim to apply Theorem 4 to h2 and E0. As in
the former section, we use the coordinates K defined in (15). This map turns to be useful,
because the integrals I1, . . ., I5 are coordinates of such system and hence depend on (p, q)

only via one of the p’s or one of the q’s: see (18). As a first step, we aim to check that h2
and E0 have the form in (26), with

n = 3, I = (I1, I2, I3) = (r1,Λ2,Θ), y = G2, x = g2. (34)

The expression of E0 is given in (16), so it turns to be as claimed. The expression of h2 in
terms of K has been discussed by Pinzari (2018a) and is

h2(r1,Λ2,Θ,G2, g2) = 1

2π∫

T

dl2√

r21 + 2r1a2�2

√
1 − Θ2

G2
2
cos(g2 + f2) + a22�

2
2

, (35)

where

�2 =
(

1 −
√

1 − G2
2

Λ2
2

cos ζ2

)

,

with ζ2, as above, the eccentric anomaly, and f2, the true anomaly, both depending on
(Λ2,G2, l2). We observe that it is possible to have a closed formula for h2, since the inte-
gration in dl2 can be written explicitly by means of the eccentric anomaly

dl2 = �2dζ2

and the true anomaly f2 can be eliminated via the well-known relation

�2 cos(g2 + f2) = cos g2

(

cos ζ2 −
√

1 − G2
2

Λ2
2

)

− G2

Λ2
sin g2 sin ζ2.
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Then we rewrite h2 as

h2(r1,Λ2,Θ,G2, g2) = 1

2π

∫

T

�2dζ2√

r21 + 2r1a2

√
1 − Θ2

G2
2

(
cos g2

(
cos ζ2 −

√
1 − G2

2
Λ2

2

)
− G2

Λ2
sin g2 sin ζ2

)
+ a22�

2
2

(36)

which is precisely of the form (26). As a second step, we check that, for any fixed value
of the integrals I in (34), the set of fixed points of E0 as a function of (G2, g2) is at most
one-dimensional in the plane (g2,G2). Indeed, equations

⎧
⎨

⎩

∂G2E0 = 0

∂g2E0 = 0
,

which read
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2G2

⎛

⎜⎜
⎝1 − m2

2M2r1
2Λ2

2

√
1 − Θ2

G2
2

√
1 − G2

2
Λ2

2

cos g2 + m2
2M2r1Θ2

2G4
2

√
1 − G2

2
Λ2

2√
1 − Θ2

G2
2

cos g2

⎞

⎟⎟
⎠ = 0

r1

√

1 − Θ2

G2
2

√

1 − G2
2

Λ2
2

sin g2 = 0

, (37)

define an algebraic set in having positive co-dimension. Then Theorem 4 applies and we have
the following

Proposition 6 h2 is renormalizably integrable via E0. Namely, there exists a function h̃2 such
that

h2(r1,Λ2,Θ,G2, g2) = h̃2
(
r1,Λ2,Θ,E0(r1,Λ2,Θ,G2, g2)

)
.

In the two following sections, we discuss some insights of dynamical character, related to
the renormalizable integrability of h2.

3.1 The explicit expression of ˜h2

The function h̃2 in Proposition 6 can be written explicitly, and this is the purpose of this
section. Before doing it, let us premise some algebraic consideration.

Definition 2 (The class H∗) We call class H∗ the set of functions of the form

f (a, b, u, v) = 1

2π

∫

T

P(uc(w))dw
√
a2 + 2abQ(vs(w)) + b2P(uc(w))2

, (38)

where: u → P(u), u → Q(u) are smooth functions for u = 0; P(0) > 0; u → Q(u) is
odd; c, s are periodic functions such that there exist two “symmetries”, i.e. transformations
σ , σ ′ : T → T verifying |∂wσ | = |∂wσ ′| ≡ 1 and

c ◦ σ = c , c ◦ σ ′ = −c , s ◦ σ = −s , s ◦ σ ′ = s.
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Definition 2 implies that any f ∈ H∗ is homogeneous of degree −1 in (a, b); even in all of
their arguments

f (−a, b, u, v) = f (a,−b, u, v) = f (a, b,−u, v) = f (a, b, u,−v)

= f (a, b, u, v) ∀ (a, b, u, v) (39)

and, moreover, verifies

f (1, 0, u, v) = f (0, 1, u, v) = 1 ∀ (u, v). (40)

Proposition 7 All the functions in H∗ afford a formal series expansion

f =
∑

h,k

fhk(a, b)u2hv2k, (41)

with

fhk(a, b) = a2b2 phk(a, b)

q(a, b)
1
2+2(h+k)

for (i, j) ∈ N
2\{(0, 0)}, (42)

where q(a, b) is a positive definite quadratic form and pi j (a, b) are polynomials of degree
4(i + j −1) with coefficients in Q, even separately in a and b. In particular, for any f ∈ H∗,
there exist r , s ∈ Q such that

r f10(a, b) + s f01(a, b) ≡ 0 ∀ (a, b) ∈ R
2. (43)

Remark 4 We call identity (43) generalized Herman resonance and underline that its validity
is strongly based on identity (40). For the averaged Newtonian potential, (40) is guaranteed
by the Keplerian property (Proposition 1).

Proof Using formula (38), it is easy to prove, by induction, that any f ∈ H∗ affords an
expansion of the kind

f =
∑

i, j

f i j (a, b)uiv j ,

with

f i j (a, b) = pi j (a, b)

q(a, b)
1
2+i+ j

, (44)

where pi j (a, b) are polynomials in (a, b) and

q(a, b) = a2 + P(0)2b2. (45)

Using the parity of f with respect to all of its arguments, one has, actually, that pi j ’s are
even with respect to a and b separately, and vanish if i , j are not both even, so we have an
expansion of the form (41), with fhk = f 2h,2k . Furthermore, since f is homogeneous of
degree −1, all of its derivatives with respect to u or v are homogeneous of the same degree.
Since q(a, b) is homogeneous of degree 2 (see 45), we have that the p2h,2k in (44) are to be
homogeneous of degree 4(h+k). Finally, due to (40), p2h,2k(1, 0) = p2h,2k j (0, 1) ≡ 0 for all
(h, k) �= (0, 0). Combining this with parity of p2h,2k with respect to a and b separately, (42),
p2h,2k(a, b) = a2b2 phk(a, b) where p(h, k)(a, b) has degree 4(h + k − 1). This proves the
former assertion. The latter follows from this, since, when h + k = 1,

f10 = a2b2 p10(a, b)

q(a, b)
5
2

, f01 = a2b2 p01(a, b)

q(a, b)
5
2

,
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with p10 and p01 having degree 0, namely, p10 and p01 ∈ Q. So, one can take r = −p01,
s = p10. 
�

Let us now proceed to write down an explicit expression of function h̃2 in Proposition 6.
We let

U(a, b, u, v) = 1

2π

∫

T

(1 − u cosw)dw
√
a2 + b2 − 2b(av sinw + bu cosw) + b2u2 cos2 w

; (46)

E(Λ2,E0) =
√

Λ2
2 − E0

Λ2
I(Λ2,Θ,E0) =

√
E0 − Θ2

Λ2
. (47)

Note that U is in the class H∗, with

P(u, v) = 1 − u, Q(v) = v, c(w) = cosw, s(w) = sinw, σ(w) = −w

σ ′(w) = π − w.

We prove that

Proposition 8 h̃2(r1,Λ2,Θ,E0) = U(r1, a2, E(Λ2,E0), I(Λ2,Θ,E0)).

Proof Reasoning as in the proof of Theorem 4 (see Remark 3), we invert equation

E0(r1,Λ2,Θ,G2, g2) = E0

with respect to G2 in the complex field, fixing a value of g2. We choose g2 = π
2 , so that

cos g2 = 0 and the inversion is immediate:

G2 =
√
E0.

Then h̃2(r1,Λ2,Θ,E0) is given by

h̃2(r1,Λ2,Θ,E0) = h2

(
r1,Λ2,Θ,

√
E0,

π

2

)
. (48)

Using the formula in (36), we obtain

h̃2(r1, Λ2, Θ,E0) = 1

2π

∫

T

dζ2

1 − E(Λ2,E0) cos ζ2√
r21 + a22 − 2a2(r1I(Λ2, Θ,E0) sin ζ2 + a2E(Λ2,E0) cos ζ2) + a22E(Λ2,E0)2 cos2 ζ2

, (49)

with E , I as in (47). 
�
Remark 5 Combining Propositions 6, 8 with (7) and the definitions of G2 and Θ in (15), we
obtain that, for a generic C as in (1),

h2 = U(‖x (1)
C ‖, a2, EC, IC),

with

EC :=
⎛

⎝

√

e22 + e2
x (1) · P(2)

a2

⎞

⎠ ◦ C,

IC :=
(√

‖x (1)‖2‖C(2)‖2 − (x (1) · C(2))2

‖x (1)‖2Λ2
2

− e2
x (1) · P(2)

a2

)

◦ C .

In Sect. 5.1, we use the following consequence of this.
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Proposition 9 Let

C2 : (Λ2, �2, u, v) ∈ A × T ×U → (y(2), x (2)) ∈ (R3)2,

where U is a domain of R
4, verify (2) and let ṽ ∈ R

3. Then

1

2π

∫

T

d�2

‖̃v − x (2)
C2 ‖

= U(‖̃v‖, a2, E2, I2),

E2:=
√

e22,C2+e2,C2
ṽ · P(2)

C2
a2

, I2:=
√√
√
√ ‖̃v‖2‖C(2)

C2 ‖2−(̃v · C(2)
C2 )2

‖̃v‖2Λ2
2

−e2,C2
ṽ · P(2)

C2
a2

, (50)

where the sub-fix C2 denotes the composition with C2.

Proof Choose C = id ⊗ C2 in (1); namely, such that u = (̃u, u), v = (̃v, v) ∈ R
3 × R

2,
with (y(1), x (1)) ◦ C = (̃u, ṽ) ∈ R

3 × R
2, and (y(2), x (2)) ◦ C = (y(2), x (2)) ◦ C2, depending

only on (Λ2, �2, u, v). 
�

3.2 A curve of fixed points for h2 (which is not so for E0)

Proposition 6 implies that any level set (in the plane (G, g)) to E0 is also a level set of h2 and
hence, in particular, any fixed point to E0 is so to h2. Here, we prove that the converse is not
true:

Proposition 10 If Θ �= 0 and r1/a2 is sufficiently small, in the plane (G2, g2), there exists at
least a curve of fixed points of h2 which is a level set of E0, but is not a curve a fixed points
to it.

Proof In principle, to find any such curve, one should solve equation ω(I, h̃) := ∂gh̃(I, h̃) =
0. In the case of h2, such equation seems too difficult, so we shall use a perturbative approach.
We look at the Taylor expansion (20) of h2 in (35) in powers of r1. Letting ε := r1

a2
, we obtain

h2 = 1

a2

[
1 − ε2

4

Λ3
2(3Θ

2 − G2
2)

G5
2

− 3

8
ε3

√

1 − G2
2

Λ2
2

√

1 − Θ2

G2
2

Λ5
2

G5
2

(
1 − 5

Θ2

G2
2

)
cos g2

+O(ε4)
]
.

By (48), a corresponding expansion for the function h̃ in (49) is obtained letting G2 = √
E0

and g2 = π
2 . We obtain:

h̃2(r1,Λ2,Θ,E0) = 1

a2

[
1 − ε2

4

Λ3
2(3Θ

2 − E0)

E0
5/2

+ O(ε4)
]
.

We study equation

ω̃ = ∂E0 h̃ = −ε2

a2

[
Λ3

2

4

−15Θ2 + 3E0

E7/2
0

+ O(ε2)

]

= 0 (51)

via the implicit function theorem, for small ε. Neglecting the O(ε2) inside parentheses, we
obtain the solution

E0 = 5Θ2.
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The non-degeneracy condition at this solution is verified, since indeed

∂E0
−15Θ2 + 3E0

E7/2
0

∣
∣
∣
∣
∣
E0=5Θ2

= 15
7

2Θ7 − 3
5

2Θ7 = 45

Θ2 �= 0.

Then for sufficiently small ε, Eq. (51) has, as a solution, the following level set of E0:

E0 = 5Θ2 + O(ε2)

Replacing the formula for E0 in (16), we rewrite such solution as the curve, in the (G2, g2)
plane,

S : G2
2 − 5Θ2 + m2

2M2r1

√

1 − G2
2

Λ2
2

√

1 − Θ2

G2
2

cos g2 + O(r21) = 0.

By Proposition 5, S is a curve of fixed points for h2. It remains to prove that S is not a curve
of fixed points for E0. The fixed points of E0 are the solutions of system (37). The curve S
includes a point having coordinates

G2 = √
5Θ + O(r21), g2 = ß

2
+ O(r1)

which does not solve system (37). (It does not solve the second equation.) 
�
Remark 6 The proof fails for Θ = 0, because, in such a case, the leading part in Eq. (51) has
no solution.

4 An algebraic property of Legendre polynomials

The Legendre polynomials Pn(t), with P0(t) = 1, P1(t) = t, . . ., are defined via the ε-
expansion

1√
1 − 2εt + ε2

=
∞∑

n=0

Pn(t)ε
n .

Many notices on such classical polynomials may be found in Giorgilli (2008, Appendix B).
The purpose of this section is to present an algebraic property of thePn’s. Roughly, it says

that a certain average of a Legendre polynomial is still a Legendre polynomial. The author
is not aware if it was known before and if there is a “dynamical” explanation of it.

Lemma 2 Let t ∈ R, |t | < 1, Pn the nth Legendre polynomial. Then,

1

2π

∫

T

Pn(
√
1 − t2 cos θ)dθ = δnPn(t), (52)

where

δn =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)m
(2m − 1)!!

(2m)!! if n = 2m is even

0 if n is odd

.

We shall prove Lemma 2 via the following one.
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Lemma 3 The even Legendre polynomials P2m(t) verify, for any h = 0, . . ., m,

Dh
τ P2m(0) = (−1)m−h h!

(2h)!
(2m − 2h − 1)!!

(2m − 2h)!! ,

Dh
τ P2m(1) = 1

2h
(2m + 2h − 1)!!

(2m − 1)!!
(2m)!!

(2h)!!(2m − 2h)!! , (53)

where τ := t2. In particular, the following relation holds

(−1)h
(2h − 1)!!

(2h)!! Dh
τ P2m(0) = (−1)m

(2m − 1)!!
(2m)!! Dh

τ P2m(1).

Proof We first prove the former formula in (53). Let n ∈ N, k = 0, . . ., n with n − k even.
We have x

Dk
t

1√
ε2 − 2tε + 1

∣∣
∣
t=0

= (2k − 1)!! εk

(1 + ε2)
2k+1
2

.

Therefore, denoting as Πn the projection over the monomial εn ,

Dk
t Pn(0) = Dk

t

(
Πn

1√
ε2 − 2tε + 1

)∣∣∣
t=0

= Πn

(
Dk
t

1√
ε2 − 2tε + 1

∣∣∣
t=0

)

= (2k − 1)!!Πn−k
1

(1 + ε2)
2k+1
2

= (2k − 1)!!
((n − k)/2)!D

(n−k)/2
η

1

(1 + η)
2k+1
2

∣∣∣
η=0

= (−1)(n−k)/2 (k + n − 1)!!
2(n−k)/2((n − k)/2)!

= (−1)(n−k)/2 (k + n − 1)!!
(n − k)!! . (54)

Then the desired formula follows, taking n = 2m, k = 2h and noticing that

Dh
τ P2m(0) = h!

(2h)!D
2h
t P2m(0).

The proof of the latter formula in (53) is a bit more complicate. We propose an algebraic one.
First of all, we change variable

t = √
τ = √

1 − 2z.

Since

Dh
τ = (−1)h

2h
Dh
z ,

we are definitely reduced to prove the following identity

Dh
z P2m(

√
1 − 2z)

∣∣∣
z=0

= D2m,2h := (−1)h

(2h)! (2m − 2h + 2)(2m − 2h + 4) · · · (2m)

× (2m + 1)(2m + 3) · · · (2m + 2h − 1). (55)

To this end, we let

g(ε, z) := 1
√

ε2 − 2ε
√
1 − 2z + 1

,
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so that (analogously to (54)) we may identify

Dh
z P2m(

√
1 − 2z)

∣
∣
∣
z=0

= Π2mDh
z g(ε, z)

∣
∣
∣
z=0

. (56)

We introduce the auxiliary functions

ga,b(ε, z) = 1
(
ε2 − 2ε

√
1 − 2z + 1

)α/2

1
(
1 − 2z

)β/2 α, β ∈ R

so that g1,0 = g. Observe that the linear space generated by such functions is closed under
the derivative operation, since in fact

Dzga,b(ε, z) = −εαgα+2,β+1(ε, z) + βga,b+2(ε, z) .

More in general, by iteration, one finds

Dh
z ga,b(ε, z) =

h∑

j=0

c(h)
j ε j gα+2 j,β+2h− j (ε, z), (57)

where, from the identity

Dh+1
z ga,b(ε, z) = Dz

(
Dh
z ga,b

)
(ε, z),

one easily sees that the coefficients c(h)
j , with j = 0, . . ., h, satisfy the recursion

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(0)
0 = 1

c(h+1)
j = −c(h)

j−1(α + 2 j − 2) + (β + 2h − j)c(h)
j

h = 0, 1, . . . ; j = 0, 1, . . . h + 1

c(h)
−1 := 0, c(h)

h+1 := 0

.

Let c(h)
j ’s be the numbers defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(0)
0 = 1

c(h+1)
j = −c(h)

j−1(2 j − 1) + (2h − j)c(h)
j

h = 0, 1, . . . ; j = 0, 1, . . . h + 1

c(h)
−1 := 0, c(h)

h+1 := 0

(58)

corresponding to the case

α = 1, β = 0.

Specializing formula (57) to this case, we find

Dh
z g(ε, z)

∣∣∣
z=0

= Dh
z g1,0(ε, z)

∣∣∣
z=0

=
h∑

j=0

c(h)
j ε j g1+2 j,2h− j (ε, z)

∣∣∣
z=0

=
h∑

j=0

c(h)
j

ε j

(1 − ε)1+2 j .
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Therefore, applying (56), we find the desired derivatives

Dh
z P2m(

√
1 − 2z)

∣
∣
∣
z=0

=
h∑

j=0

C2m, j c
(h)
j , (59)

with

C2m, j := (2m − j + 1)(2m − j + 2) · · · (2m + j)

(2 j)! .

In order to check (55), let P2h(μ), Q2 j (μ) the polynomials in the real variable μ defined as
the extensions of D2m,2h , C2m,2h on the reals, i.e. such that

P2h(2m) = D2m,2h, Q2 j (2m) = C2m,2 j (60)

and let

D2h(μ) :=
h∑

j=0

c(h)
j Q2 j (μ)

the analogous polynomial extending the right-hand side of (59). We shall prove that

D2h(μ) = P2h(μ) ∀ μ ∈ R, h = 0, 1, . . . ,

which clearly implies (55). Note that D2h(μ), P2h(μ) have degree 2h; P2h(μ) vanishes at
the odd integers −(2h − 1), −(2h − 3), . . . , −1, and the even integers 0, 2, . . . , 2h − 2,
while the Q2 j (μ)’s have degree 2 j and vanish at the integers − j , − j + 1, . . ., j − 1. The
last formula in (60) provides a decomposition of D2h(μ) on the basis of the Q2 j ’s. We then
do the same for P2h , i.e. we decompose

P2h =
h∑

j=0

ĉ(h)
j Q2 j .

We now need to show that

ĉ(h)
j = c(h)

j ∀ h = 0, 1, . . . ; j = 0, 1, . . . , h. (61)

From the relations

P2h+2(μ) = − (μ − 2h)(μ + 2h + 1)

2h + 2
P2h(μ)

and

−(μ − 2h)(μ + 2h + 1) = (2h − j)(2h + j + 1) − (μ − j)(μ + j + 1),

the following recursion rule among the coefficients immediately follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ĉ(0)
0 = 1

ĉ(h+1)
j = − j(2 j − 1)

h + 1
ĉ(h)
j−1 + 4h2 − j2 + 2h − j

2h + 2
ĉ(h)
j

h = 0, 1, . . . ; j = 0, 1, . . . h + 1

ĉ(h)
−1 := 0, c(h)

h+1 := 0

. (62)
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Let

δ
(h)
j := ĉ(h)

j − c(h)
j .

The formulae in (58) and (62) imply
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
(0)
0 = 0

δ
(h+1)
j = − (2 j + 1)( j − h − 1)

h + 1
δ
(h)
j−1 + (2h − j)( j − 1)

2(h + 1)
δ
(h)
j

h = 0, 1, . . . ; j = 0, 1, . . . h + 1

δ
(h)
−1 := 0, δ

(h)
h+1 := 0

.

Those relations immediately enforce, by induction, δ(h)
j ≡ 0 for all h, j , and hence (61). 
�

Proof of Lemma 2 LetQn(t) denote the left-hand side of (52). Observe that, since any Pn(t)
has the same parity, in t , as n and odd powers of cos θ have vanishing average, theQ2m+1(t)’s
vanish, while the Q2m(t)’s are polynomials of degree m in τ := t2. Since also the even
Legendre polynomials P2m’s are polynomial of degree m in τ , we only need to show, e.g.
that

Dh
τ Q2m

∣∣
τ=1 = (−1)m

(2m − 1)!!
(2m)!! Dh

τ P2m
∣∣
τ=1 ∀ h = 0, . . . ,m.

The definition of Q2m implies that, for h = 1, . . ., m

Dh
τ Q2m(1) = (−1)h(cos θ)2h Dh

τ P2m(0) = (−1)h
(2h − 1)!!

(2h)!! Dh
τ P2m(0) h = 0, . . . ,m,

where

(cos θ)2h := 1

2π

∫ 2π

0
(cos θ)2hdθ = (2h − 1)!!

(2h)!! .

Using Lemma 3, we find

Dh
τ Q2m(1) = (−1)m

(2m − 1)!!
(2m)!! Dh

τ P2m(1) h = 0, . . . ,m

and hence the thesis follows. 
�

5 Applications

5.1 An explicit formula for a semi-axes–eccentricities–inclination expansion of a
“mixed” averaged Newtonian potential.

In this section, we assume that the map C in (1) satisfies the following conditions:
– the coordinates (u, v) include

u1 := Λ1, v1 := �1 ∈ T, v2 := g1 ∈ T, (63)

123



22 Page 24 of 30 G. Pinzari

where, in addition to (2), also the following holds
(

‖y(1)‖2
2m1

− m1M1

‖x (1)‖

)

◦ C = −m3
1M

2
1

2Λ2
1

=: h(1)
Kep(Λ1), (64)

with suitable other mass parameters m1, M1; �1 in conjugate to Λ1;

– the image of C in (1) is a domain of (y, x) where the left-hand side of (64) takes negative
values;

– the instantaneous ellipse E1 generated by the two-body Hamiltonian (64) has non-
vanishing eccentricity;

– if P(1), ‖P(1)‖ = 1 denotes the direction of its perihelion, and, as above, C(1) := x (1) ×
y(1), the angle g1 in (63) corresponds to the anomaly of P(1) with respect to a prefixed
direction ν1 in (and a prefixed orientation of) the plane orthogonal to C(1);

– x (2)
C := x (2) ◦ C and the angle f1 (“true anomaly of x (1)

C ”) formed by P(1)
C and x (1)

C with

respect to the orientation established by C(1)
C do not depend on g1;

– if Di = (Λi , li , pi , qi ), with pi = (pi1, pi2) ∈ R
2, qi = (qi1, qi2) ∈ R

2 are the
Delaunay coordinates associated with (y(i), x (i)), and D := D1 ⊗D2 := (Λ, l, p, q) :=
(Λ1,Λ2, l1, l2, p11, p12, p21, p22, q11, q12, q21, q22), the change in coordinates

φD
C : D1 ⊗ D2 → C

has the form

φD
C : �2 = l2 + ϕ2(Λ, l1, p, q), (Λ, �1, u, v) = F(Λ, l1, p, q). (65)

Our purpose is to provide, under the previous assumptions, a representation formula for the
function8

h12 := 1

(2π)2

∫

T2

dg1d�2

‖x (1)
C − x (2)

C ‖
which we believe may turn to be useful in applications. We introduce the following

Definition 3 For a given power series in the parameter ε

gε :=
∞∑

n=0

anε
n,

we denote as Πεgε the even power series

Πεgε :=
∞∑

m=0

(−1)m
(2m − 1)!!

(2m)!! a2mε2m,

with (−1)!! := 1.

8 The reader should not confuse the function h12 above with what is commonly called “doubly averaged
Newtonian potential”, defined as

h12 := 1

(2π)2

∫

T2

d�1d�2

‖x(1)
C − x(2)

C ‖

even though, in the case that E1 has identically vanishing eccentricity and C is regular in this limit, h12 and
h12 coincide.
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We shall prove the following formula. We let U as in (46) and

E(r1) =
√√
√
√e22,C + r1e2,C

C(1)
C · P(2)

C
‖C(1)

C ‖a2

I(r1) =
√√
√
√‖C(1)

C ‖2‖C(2)
C ‖2 − (C(1)

C · C(2)
C )2

Λ2
2‖C(1)

C ‖2
− r1e2,C

C(1)
C · P(2)

C
‖C(1)

C ‖a2
, (66)

where the sub-fix C denotes the composition with C. Then
Proposition 11 h12 = Πr1U(r1, a2, E(r1), I(r1))

∣
∣
r1=‖x (1)

C ‖.

Remark 7 (Herman resonance for h12) The functions E(r1), I(r1) in (66) vanish, respec-
tively, in case of zero eccentricity of the exterior planet and mutual inclination. Combining
Propositions 7, 11, Remark 4, we obtain an eccentricity–inclination expansion for h12:

h12 =
∑

h,k

Πr1

(
r21a

2
2 phk(r1, a2)

q(r1, a2)
1
2+2(h+k)

E(r1)
2h

I(r1)
2k

)∣∣
∣
∣
∣
r1=‖x (1)

C ‖
.

The second-order term of this expansion of course exhibits (43), as a by-product of Proposi-
tion 7 (becauseΠr kills the linear terms in r1 in (66) acts on the even terms onlymodifying the
coefficients). This identity reduces to the classical Herman resonance switching to Poincaré
coordinateswith the inner bodymoving on a circle. In this framework,Herman resonance nat-
urally appears as a by-product of parities (39), renormalizable integrability of the Newtonian
potential (Proposition 8), Keplerian property (Proposition 1) and Lemma 2.

To prove Proposition 11, we need an equivalent formulation of Lemma 2, which is as
follows.

Proposition 12 Let r1 > 0, ϕ1 ∈ T, N(1) ∈ R
3, with ‖N(1)‖ = 1, z(2) ∈ R

3, with z(2) �= 0,
z(2) ∦ N(1). Define ν := z(2) × N(1). Let z(1)(r1, ϕ1,N(1), z(2)) be such that z(1) ⊥ N(1),
‖z(1)‖ = r1 and αN(1) (ν, N(1) × z(1)) = ϕ1. Then, the following identity holds

1

2π

∫

T

dϕ1

‖z(1)(r1, ϕ1,N(1), z(2)) − z(2)‖ = 1

r2
Πε

1

‖εN(1) − z̃(2)‖
∣∣∣
ε= r1

r2

, (67)

with r2 := ‖z(2)‖, z̃(2) := z(2)
r2

. Such identity still holds replacing z(1)(r1, ϕ1,N(1), z(2)) with

z(1)(r1, ϕ1 + ϕ̂,N(1), z(2)), with any ϕ̂, independent of ϕ1.

Proof Let us decompose

z(2) = (z(2) · N(1))N(1) + z(2)⊥

where z(2)⊥ := z(2) − (z(2) · N(1))N(1) is orthogonal to N(1). Since z(1) is orthogonal to N(1)

and ‖z(2)⊥ ‖ = √‖z(2)‖2 − (z(2) · N(1))2‖ = r2
√
1 − (̂z(2) · N(1))2, we have

z(1) · z(2) = z(1) · z(2)⊥ = ‖z(1)‖‖z(2)⊥ ‖ cosψ = r1r2
√
1 − (̂z(2) · N(1))2 cosψ

where ψ is the convex angle formed by z(1) and z(2)⊥ . But ψ is related to ϕ1 via

ψ = ‖π − ϕ1‖,
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and therefore, cosψ = − cosϕ1. This readily implies

‖z(1)(r1, ϕ1,N
(1), z(2)) − z(2)‖ =

√
r21 + 2r1r2

√
1 − (N(1) · ẑ(2))2 cosϕ1 + r22 . (68)

We now use this in the expansion of the inverse distance

1

D(r1, ϕ1,N(1), z(2))
= 1
√
r21 + 2r1r2

√
1 − (N(1) · ẑ(2))2 cosϕ1 + r22

in terms of Legendre polynomials

1

D(r1, ϕ1,N(1), z(2))
= 1

r2

∞∑

n=0

(−1)n
( r1
r2

)n
Pn

(
√

1 − (z(2) · N(1))2

r22
cosϕ1

)
.

To conclude, we only need to use Lemma 2, so that

1

2π

∫

T

Pn

(
√

1 − (z(2) · N(1))2

r22
cosϕ1

)
dϕ1 = δn Pn

( z(2) · N(1)

r2

)
,

which is a rewrite of the thesis. From the formulae from (68) on, it follows that identity (67)
still holds replacing z(1)(r1, ϕ1,N(1), z(2)) with z(1)(r1, ϕ1 + ϕ̂,N(1), z(2)), for any ϕ̂ inde-
pendent of ϕ1. 
�

We can now proceed to prove Proposition 11. We do it in three steps.

First Step. Application of Proposition 12. Let C and ν1 ∈ R
3\{0} be as said at the beginning

of this section. As a first step, we aim to compute the g1-average applying Proposition 12. If

N(1) := C(1)
C

‖C(1)
C ‖

, ν := x (2)
C × N(1)

C ,

then

αN(1)

(
ν,N(1) × x (1)

C
) = g1 + v1 + π

2
− v̂ where v̂ = αC(1)

(
ν1, ν

)
.

Hence, we can write

x (1)
C = z(1)

(

‖x (1)
C ‖, C(1)

C
‖C(1)

C ‖
, g1 + v1 + π

2
− v̂, x (2)

C

)

,

where z(1) is as in Proposition 12. We apply Proposition 12 with this z(1), z(2) = x (2)
C ,

ϕ̂ = v1 + π
2 − v̂, which is independent of g1, by assumption. We find

1

2π

∫

T

dg1

‖x (1)
C − x (2)

C ‖
= 1

r2
Πε

1
∥∥∥∥ε

C(1)
C

‖C(1)
C ‖ − x̃ (2)

C

∥∥∥∥

∣∣∣∣∣∣∣∣
ε= ‖x(1)C ‖

‖x(2)C ‖

= Πr1
1

∥∥∥∥r1
C(1)
C

‖C(1)
C ‖ − x (2)

C

∥∥∥∥

∣∣∣∣∣∣∣∣
r1=‖x (1)

C ‖

,
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with x̃ (2)
C := x (2)

C
‖x (2)

C ‖ . Now we average with respect to �2. We obtain, interchanging Πr1 and
∫
T
d�2,

1

4π2

∫

T2

dg1d�2

‖x (1)
C − x (2)

C ‖
= 1

2π
Πr1

∫

T

d�2∥
∥
∥
∥r1

C(1)
C

‖C(1)
C ‖ − x (2)

C

∥
∥
∥
∥

∣
∣
∣
∣
∣
∣
∣
∣
r1=‖x (1)

C ‖

. (69)

Second Step. Switch to Delaunay coordinates. We apply φD
C in (65) to (69). We obtain

(
1

4π2

∫

T2

dg1d�2

‖x (1)
C − x (2)

C ‖

)

◦ φC
D = 1

2π

⎛

⎜
⎜
⎝Πr1

∫

T

d�2

‖r1,C C(1)
C

‖C(1)
C ‖ − x (2)

C ‖

∣
∣
∣
∣
∣
∣
∣
∣
r1=‖x (1)

C ‖

⎞

⎟⎟
⎟
⎠

◦ φC
D

= 1

2π
Πr1

∫

T

dl2∥
∥∥∥r1,D

C(1)
D

‖C(1)
D ‖ − x (2)

D

∥
∥∥∥

∣
∣
∣
∣
∣
∣
∣∣
r1=‖x (1)

D ‖
= U(r1,D, a2, E2,D2 , I2,D2),

where E2,D2 , I2,D2 are as in (50), with C2 = D2. We have that r1,D
C(1)
D

‖C(1)
D ‖ depends only on

D1 = (Λ1, l1, p1, q1), while x (2)
D depends only on D2 = (Λ2, l2, p2, q2). We have used

Proposition 9 with a given w̃ ∈ R
3, C2 = D2 and next we have taken w̃ = r1,D

C(1)
D

‖C(1)
D ‖ .

Third Step. Applying (φD
C )−1, we conclude the proof. 
�

5.2 Is the two-centre Hamiltonian renormalizably integrable?

In this section, we outline an underlying open problem in the framework of the paper. We
pose a conjecture that we aim to study in further work, which, if proved, may be applied to
the two-centre Hamiltonian (8), so as to obtain a stronger assertion than Proposition 6.

Throughout the section, V ⊂ R, U ⊂ R
2 are domains, (I , ϕ) ∈ I × T, (p, q) ∈ U

are pairwise conjugate canonical coordinates. We shall be concerned with real-analytic9

functions (“Hamiltonians”) for (I , ϕ, p, q, μ) ∈ P = I × T × U × (−μ0, μ0) having the
form:

h = h0(I ) + μ f (I , ϕ, p, q, μ) with h0(I ) �≡ 0 on V . (70)

Definition 4 We say that h is in p–normal form if there exist {hk(I , p, q)}k=0,...,p hk :
V × U → R such that

h(I , ϕ, p, q) =
p∑

k=0

hk(I , p, q)μk + O(μp+1) ∀(I , ϕ, p, q) ∈ P.

The following result is well known and hence will be not discussed.

9 Following the standard terminology, a real function h is said to be real-analytic on a domain P ⊂ R
p if

there exists an open set P̂ , with P ⊂ P̂ ⊂ C
p , such that h has a holomorphic extension on P̂ .

123



22 Page 28 of 30 G. Pinzari

Proposition 13 Let h be as in (70). For any p ∈ N, it is possible to find a real-analytic,
canonical and μ-close to the identity transformation

φ : (I , ϕ, p, q) ∈ P → (I , ϕ, p, q) ∈ P

such that h := h ◦ φ is in p-normal form:

h(I , ϕ, p, q) =
p∑

k=0

hk(I , p, q)μk + O(μp+1) ∀(I , ϕ, p, q) ∈ P,

with h0(I , p, q) = h0(I ).

Lemma 4 Let h be in p-normal form and let g be a first integral of h. Then

(i) g is in p-normal form;
(ii) {h1, g} = O(μp), where h1(I , p, q, μ) := ∑p

k=1 hk(I , p, q)μk .

Proof (i) Let

g(I , ϕ, p, q, μ) =
∞∑

k=0

gk(I , ϕ, p, q)μk

denote the Taylor–Maclaurin series in μ of g. We prove that the functions g j are ϕ-
independent for all 0 ≤ j ≤ p. We proceed by induction on j . Since h(·, ·, ·, ·, μ) and
g(·, ·, ·, ·, μ) Poisson commute for all μ ∈ (−μ0, μ0), we find

{h0, g0} = ∂I h0(I )∂ϕg0(I , ϕ, p, q) ≡ 0,

where we have used that h0 depends only on I . Since, by assumption, ∂I h0(I ) �≡ 0, it
follows that ∂ϕg0(I , ϕ, p, q) ≡ 0 and hence g0(I , ϕ, p, q) is ϕ-independent, and hence
g0(I , ϕ, p, q) = g0(I , 0, p, q) = g0

(
I , (p, q)

)
for all ϕ ∈ T, with g0

(
I , (p, q)

)
as in (ii).

So the step j = 0 is proved. Assume now that, for a given 0 ≤ j < p and any 0 ≤ k ≤ j , gk
is ϕ-independent. Namely, gk(I , ϕ, p, q) = gk

(
I , (p, q)

)
, for some function gk

(
I , (p, q)

)
,

with 0 ≤ k ≤ j . We prove that g j+1 is so. Since h and g Poisson commute,

{h, g} = O(μp+1). (71)

Since j + 1 ≤ p, the projection of the left-hand side over the monomial μ j+1 vanishes:

{
h0, g j+1

}
+

j∑

k=0

{
h j−k+1, gk

}
= 0.

In this identity, the term
{
h0, g j+1

}
has vanishing ϕ-average, because h0 depends only on

I , while the term
∑ j

k=0

{
h j−k+1, gk

}
is ϕ-independent, due to the fact that the h j−k+1 (by

assumption) and the gk (by the inductive hypothesis) are so. Therefore, such two terms have
to identically vanish separately:

{
h0, g j+1

}
≡ 0 ≡

j∑

k=0

{
h j−k+1, gk

}
.
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The vanishing of the left-hand side implies, as in the base step, that g j+1 is ϕ-independent.
The vanishing of the right-hand side for all 0 ≤ j + 1 ≤ p is a rewrite of10 (ii). 
�
Corollary 1 For any p,

g(p)
tr (I , p, q) = g0(I , p, q) +

p−1∑

k=1

gk(I , p, q)μk , h
(p)
1,tr(I , p, q) =

p−1∑

k=0

hk+1(I , p, q)μk

verify

{g(p)
tr , h

(p)
1,tr(I , p, q)} = O(μp).

We recall that

h1(I , p, q, 0) = 1

2π

∫ 2π

0
h1(I , ϕ, p, q, 0)dϕ.

Definition 5 We shall refer to the formal series
∑∞

k=0 hk(I , p, q)μk as perturbative series
in μ to h.

Conjecture 1 If h as in (70) has an independent first integral, its perturbative series con-
verges, as well as the perturbative series to g. If h, g denote the sum of the two series, h is
renormalizably integrable via g.
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