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Abstract
The Kustaanheimo–Stiefel transformation of the Kepler problem with a time-dependent per-
turbation converts it into a perturbed isotropic oscillator of four-and-a-half degrees of freedom
with additional constraint known as bilinear invariant. Appropriate action–angle variables
for the constrained oscillator are required to apply canonical perturbation techniques in the
perturbed problem. The Lissajous–Kustaanheimo–Stiefel (LKS) transformation is proposed,
leading to the action–angle set which is free from singularities of the LCF variables earlier
proposed by Zhao. One of the actions is the bilinear invariant, which allows the reduction
back to the three-and-a-half degrees of freedom. The transformation avoids any reference to
the notion of the orbital plane, which allowed to obtain the angles properly defined not only
for most of the circular or equatorial orbits, but also for the degenerate, rectilinear ellipses.
The Lidov–Kozai problem is analysed in terms of the LKS variables, which allow a direct
study of stability for all equilibria except the circular equatorial and the polar radial orbits.

Keywords Perturbed Kepler problem · Regularization · KS variables · Lissajous
transformation · Lidov–Kozai problem

1 Introduction

TheKustaanheimo–Stiefel (KS) transformation is probably themost renowned regularization
technique for the three-dimensional Kepler problem. In the planar case, the conversion of the
Kepler problem into a harmonic oscillator has been known since Goursat (1889) and Levi-
Civita (1906), but its extension to the three-dimensional problem took many decades of futile
efforts. Finally, Kustaanheimo (1964) discovered that the way to the third dimension is not
direct, but requires a detour through a constrained problemwith four degrees of freedom. The
KS transformation gained popularity in the matrix–vector formulation of Kustaanheimo and
Stiefel (1965), but it is much easier to interpret and generalize in the language of quaternion
algebra, very closely related to the original spinor formulation of Kustaanheimo (1964).
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The most common use of the KS transformation is the numerical integration of perturbed
elliptic motion, wheremany intricacies introduced by the additional degree of freedom can be
ignored, although—as recently demonstrated by Roa et al. (2016)—they can be quite useful
in the assessment of a global integration error. Analytical perturbation methods for KS-
transformed problems often follow the way indicated by Kustaanheimo and Stiefel (1965)
and developed by Stiefel and Scheifele (1971): variation of arbitrary constants is applied
to constant vector amplitudes of the KS coordinates and velocities. But those who want to
benefit from the wealth of canonical formalism require a set of action–angle variables of the
regularized Kepler problem.

The first step in this direction can be found in the monograph by Stiefel and Scheifele
(1971), where the symplectic polar coordinates are introduced for each separate degree of
freedom. However, this approach does not account for degeneracy of the problem and thus
is unfit for the averaging-based perturbation techniques. Moreover, no attempt was made
to relate this set to the constraint known as the ‘bilinear invariant’, effectively reducing the
system to three degrees of freedom. Both problems have been resolved by Zhao (2015), who
proposed the ‘LCF’ variables [presumably named after Levi-Civita (1906) and Féjoz (2001)].
In his approach, the motion in the KS variables is considered in an osculating ‘Levi-Civita
plane’ (Deprit et al. 1994) as a two-degree-of-freedom problem. The third degree of freedom
is added by the pair of action–angle variables orienting the plane. The redundant fourth degree
is hidden in the definition of the Levi-Civita plane. The transformed Keplerian Hamiltonian
depends on a single action variable, the other two actions being closely related to the angular
momentum and its projection on the polar axis. Interestingly, the result is identical to the
‘isoenergetic variables’ found by Levi-Civita (1913) without regularization.

The LCF variables respect the degeneracy and bring the oscillations back to three degrees
of freedom. Yet they possess a significant weakness: they are founded on the orientation of
a plane determined by the angular momentum. Whenever the angular momentum vanishes
(even temporarily), the angles become undetermined and equations of motion are singular. It
turns out that seeking the proximity to the Delaunay variables, Zhao (2015) reintroduced the
singularities of unregularized Kepler problem. Of course, some singularities are inevitable
when the problemhaving spherical topology ismapped onto a torus of action–angle variables.
But there is always some freedom in the choice of the singularities. Recalling that the main
purpose of regularization is to allow the study of highly elliptic and rectilinear orbits, we
find it worth an effort to construct the action–angle set that—unlike the LCF variables—is
regular for this class of motions.

The main goal of the present work is to derive an alternative set of the action–angle
variables which is not based upon the notion of an orbital plane (thus avoiding singulari-
ties when the orbit degenerates into a straight segment) and to test it on some well-known
astronomical problem. Section 2 introduces some preliminary concepts related to the KS
coordinate transformation in the language of quaternions. We use its generalized form with
an arbitrary ‘defining vector’ (Breiter and Langner 2017), which helps to realize how the
choice of the KS1 or KS3 convention allows or inhibits the use of the Levi-Civita plane in the
construction of the action–angle sets. We have also benefited from the opportunity to polish
and extend the geometrical interpretation given to the KS transformation by Saha (2009). In
Sect. 3, we complement the KS coordinates with their conjugate momenta and provide the
Hamiltonian function in the extended phase space as the departure point for further trans-
formations. Section 4 builds the new action–angle set—the Lissajous–Kustaanheimo–Stiefel
(LKS) variables. Two independent Lissajous transformations are followed by a linear Math-
ieu transformation. In Sect. 5, we show how to interpret the new variables not only in terms
of the Lissajous ellipses, but also by the reference to the angular momentum and Laplace
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vectors of the Kepler problem. As an application, we discuss the classical Lidov–Kozai prob-
lem (Sect. 6), showing that stability of rectilinear orbits can be discussed directly in terms of
the LKS variables, which has not been possible using the Delaunay or the LCF framework.
Conclusions and future prospects are presented in the closing Sect. 7.

2 KS transformation in quaternion form

2.1 Quaternion algebra

Adhering to the convention used by Deprit et al. (1994), we treat a quaternion v ∈ H as union
of a scalar v0 and a vector v,

v = (v0, v) =
3∑

j=0

v je j , (1)

where the standard basis quaternions

e0 = (1, 0), e1 = (0, e1), e2 = (0, e2), e3 = (0, e3), (2)

have been defined by referring to the standard vector basis e j . Downgrading a ‘pure quater-
nion’ u = (0,u) ∈ H

′ to a vector u ∈ R
3 requires application of the projection operator �,

whose action on any quaternion is v� = (v0, v)� = v.
As members of the Euclidean linear space R4, quaternions admit the sum and product-

by-scalar rules

u + v =
3∑

j=0

(
u j + v j

)
e j , αv =

3∑

j=0

αv je j , (3)

as well as the scalar product

u·v =
3∑

j=0

u jv j = u0v0 + u·v, (4)

implying the norm |v| = √
v·v =

√
v20 + ‖v‖2, where ‖v‖ = √

v · v, to distinguish the

norms in R
3 and R

4.
What makes four vectors u and v the members of the quaternion algebra H over R, is the

noncommutative quaternion product definition

uv = (u0v0 − u · v, u0v + v0u + u×v) . (5)

Note that H′ is only a linear subspace, but not a subalgebra of H, because the quaternion
product of two pure quaternions may have a nonzero scalar part.

Two other useful operations to be defined are the quaternion conjugate

v = (v0,−v), (6)

allowing to write |v|2 = vv, and the quaternion cross product

u ∧ v = vū − uv̄
2

= (0, u0v − v0u + u×v), (7)
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always resulting in a pure quaternion, and reducing to a standard vector cross product if
u0 = v0 = 0.

2.2 KS coordinates transformation

2.2.1 Generalized definition

In a recent paper (Breiter and Langner 2017), we have proposed a generalized form of the
standard KS transformation κ that uses an arbitrary ‘defining vector’ c with a unit norm and
its respective pure quaternion c = (0, c), so that

κ : H → H
′ : v �→ x = vcv

α
, (8)

or, equivalently,

αx = (
v20 − v·v) c + 2 (c·v) v + 2v0v×c = (c·v) v + [v ∧ (v ∧ c)]� , (9)

links the KS variables quaternion v with the original Cartesian coordinates x ∈ R
3, the latter

being the vector part of a pure quaternion x = (0, x). A real, positive parameter α was
introduced by Deprit et al. (1994). They gave it the units of length, in order to allow the KS
coordinates v j carry the same units as x j . We adhere to this convention for a while, although
other options will be presented in Sect. 3. With |c| = ‖c‖ = 1, the KS transformation κ

admits the well-known property

‖x‖ = r = v·v
α

. (10)

2.2.2 Fibres

A noninjective nature of the KSmap had been known since its origins, although only recently
it has been considered more an advantage than a nuisance (Roa et al. 2016).

Let us introduce a quaternion-valued function of angle φ

q(φ) = (cosφ, sin φc), (11)

with a number of useful properties, such as

|q(φ)| = 1, (12)

q(φ)q(ψ) = q(φ + ψ), (13)

[q(φ)]−1 = q(−φ) = q(φ), (14)

q(φ)cq(φ) = c, (15)

and special values q(0) = e0, q(π/2) = c. Property (15) clearly implies that the KS transfor-
mation (8) is only homomorphic: given some representative KS quaternion v, all quaternions
vq(φ) belonging to the fibre parameterized by 0 � φ < 2π render the same vector x, i.e.
κ(v) = κ(vq(φ)). Indeed, since (15) describes the rotation of vector c around the axis c, the
left-hand side of the equality can be substituted for c in Eq. (8), and then vc v = (vq)c(vq),
leading to the same x.

On the other hand, one might ask about the possibility of generating the fibre through the
left multiplication by some quaternion function. Multiplying both sides of equality in (8) by
a quaternion p from the left and its conjugate from the right, we find the condition
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p x p = (pv)c (pv)
α

,

where the left-hand side remains equal to x = (0, x) only if p is a function

p(φ) = (cosφ, sin φx̂), (16)

that rotates vector x around itself. Thus, given some representative KS quaternion v, we can
create the fibre p(φ)v parameterized by 0 � φ < 2π , such that κ(v) = κ(p(φ)v) = x.

The action of the fibre generators (11) and (16) with the same argument φ is equivalent;
direct computation demonstrates that

p(φ)v = vq(φ), and p(φ)vq(φ) = v. (17)

A kind of symmetry between the defining vector c and the normalized Cartesian position
vector x̂ implied by the form of q(φ) and p(φ)manifests also in the geometrical construction
of the next section.

2.3 KS quaternionsmore geometrico

Given the transformation (9), let us polish the geometrical interpretation of the KS variables
proposed by Saha (2009). Scalar multiplication of both sides of (9) by v leads to the basic
relation

x̂·v = c·v, (18)

with two unit vectors c and x̂ = x/r . This property, valid for any scalar part v0, means that
all quaternions v belonging to the fibre of given Cartesian vector x have vector parts v = v�

forming the same angle with c and x, hence lying in the symmetry plane of this pair of vectors.
The plane, marked grey in Fig. 1, contains c + x̂ and is perpendicular to c − x̂. The norm
|v| = √

rα is the upper bound on the length of v, so the dashed circle in Fig. 1 has the radius√
αr . Setting v0 = 0 in Eq. (9), we see that x is a linear combination of c and v, so the three

vectors must be coplanar. Accordingly, there are exactly two pure quaternions related to x:
vs = (0, vs), and −vs, where

vs = √
αr

c + x̂
||c + x̂|| , (19)

is the ‘Saha–Kustaanheimo–Stiefel (SKS)vector’ of Breiter and Langner (2017).
The entire fibre v can be generated from vs by the application of the generator (11),

v = vs q(−φ), (20)

leading to

v0 = c·vs sin φ, (21)

v = cosφvs + sin φ (c×vs) . (22)

The latter of the formulae is a parametric equation of an ellipse with the major semi-axis√
αr and the eccentricity

√
(1 + c·x̂)/2. The ellipse is drawn with a solid line in Fig. 1. The

position angle β in the figure should not be confused with the parametric longitude φ; the
angles are related by the formula

tan β =
√
1 − c·x̂

2
tan φ. (23)
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9 Page 6 of 28 S. Breiter, K. Langner

Fig. 1 Geometrical construction for the vector part of the KS quaternion v

The line segment with arrowheads at both ends in Fig. 1 complements the length of v to the
full value

√
αr , so its length can be interpreted as the absolute value of the scalar part of v.

Of course, the generic picture shown in Fig. 1 does not include the special case of the
parallel x and c. If x̂ = c, the fibre degenerates to the set of quaternions having vector part
aligned with c, i.e.

v = √
αr (sin φ, cosφc) , (24)

with vs = (0,
√

αrc). The eccentricity of the ellipse from Fig. 1 attains the value 1, so the
ellipse degenerates into a straight segment. The shaded plane from the figure is no longer
defined.

But if x̂ = −c, the situation is different. Observing that then the ellipse from Fig. 1
turns into a circle, we conclude that the fibre consists exclusively of the pure quaternions
v = (0,

√
αr f̂), where f̂ is any vector orthogonal to c.

2.4 Bilinear formJ and LC planes

2.4.1 Definitions

The skew-symmetric bilinear form J : H × H → R, introduced by Kustaanheimo (1964)
and discussed in later works, can be generalized to an arbitrary defining vector c as

J (v,w) = (v̄ ∧ w̄) · c = −v0w·c + w0v·c + (v×w) ·c. (25)

The form plays a central role in the KS formulation of motion. If the motion can be restricted
to the linear subspace of H spun by two basis quaternions u and w, such thatJ (u,w) = 0,
the KS transformation reduces to the Levi-Civita transformation (Levi-Civita 1906). For this
reason, a two-dimensional subspace P of quaternions being the linear combinations of u and
w, hence such that the form J on any two of them equals 0, was dubbed the ‘Levi-Civita
plane’ by Stiefel and Scheifele (1971). We will use the name ‘LC plane’, although, strictly
speaking, a (hyper-)plane in a space of dimension 4 should be spun by three basis quaternions.
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Repeating the proof of Theorem 3 fromDeprit et al. (1994) in our generalized framework,
we conclude that for any unitary quaternion u selected for the orthonormal basis of LC plane
P , the second basis quaternion should be

w = u(0, f) = (−u · f, u0f + u × f) , (26)

where f is any unitary vector orthogonal to the defining vector, i.e. f ·c = 0, and ||f|| = 1. This
meaning of the symbol f will be held throughout the text. The basis is indeed orthonormal,
since u · w = 0, and |u| = |w| = 1, by the definition of u and f .

2.4.2 KS map of an LC plane

Once the LC plane has been defined, a question arises about the possibility of restricting
the motion in KS variables to this subspace. But such restriction implies that the motion in
‘physical’ configuration space R3 is planar.

Let us prove that KS transformation maps any quaternion in the LC plane P onto a plane
Π in ‘physical’R3 space. Using the basis of two orthonormal quaternions u andw = u(0, f),
we consider their linear combination

v = ξu + ηw = u (ξ, ηf), (27)

with real parameters ξ, η having the dimension of length. The KS transform of these v,
belonging to P , is, by the definition (8),

x = κ(v) = u (ξ, ηf) c (ξ, −ηf) u
α

. (28)

Thanks to the orthogonality of c and f , the product in the middle evaluates to

(ξ, ηf) c (ξ, −ηf) = (
ξ2 − η2

)
(0, c) + 2ξη(0, f × c), (29)

so the vector part of κ(v) is a linear combination of two fixed, orthonormal vectors

x = ξ2 − η2

α
x̂1 + 2ξη

α
x̂2, (30)

where

x̂1 = [
u(0, c)u

]� = (2u20 − 1)c + 2(u · c)u + 2u0u × c, (31)

x̂2 = [
u(0, f × c)u

]�

= (2u20 − 1)(f × c) + 2(u · (f × c))u + 2u0u × (f × c). (32)

Since Eq. (30) is actually a parametric equation of a plane in R3, we have demonstrated that
the KS transformation of any LC plane P ⊂ H is a planeΠ inR3 (or inH′, depending on the
context). The parameters ξ , η become parabolic coordinates on Π , i.e. the usual Levi-Civita
variables.

The vector x̂3 = x̂1 × x̂2, normal to the plane, can be most easily derived in terms of the
quaternion cross product (7), with the first lines of (31) and (32) substituted. Thus, letting
x j = (0, x̂ j ), and b = (0, f × c), we find
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x3 = 1

2

[
x2x1 − x1x2

]

= 1

2

[
(ubu)(uc u) − (ucu)(ubu)

]

= u(c ∧ b)u = u (0, f)u

= (
0, (2u20 − 1)f + 2(u · f)u + 2u0u × f

)
. (33)

Thanks to the above equation, we can relate the choice of the LC plane basis to the orientation
of Π . The cosine of the angle between the defining vector c and the normal to the plane of
motion x̂3 is given by the scalar product

c · x̂3 = 2(u · f)(u · c) − 2u0u · (c × f). (34)

2.4.3 KS1 and KS3 setup

Some particular choices of the first basis quaternion u deserve a special comment. Inspecting
Eq. (34), we notice three obvious cases leading to c positioned in the plane of motion: a pure
scalar u = ± (1, 0), or pure quaternions: u = (0,± f), and u = (0,± c). The basis vectors
x̂1, resulting from Eq. (31), are c, − c, and c, respectively. The last case, i.e. u = (0, c), has
been the most common choice in Celestial Mechanics since the first paper of Kustaanheimo
(1964). It allows the most direct identification of the LC plane with the plane of motion, both
spanned by the same vectors (or pure quaternions) u� = x̂1 = c, and w� = x̂2 = c × f . The
freedom of choice for f (any vector perpendicular to c) permits to identify c and −f with the
basis vector e1 and e3 of the particular reference frame used to describe the planar (x3 = 0)
motion. For this reason, let us call the KS transformation based upon the paradigmatic choice
c = e1, the KS1 transformation.

Remaining in the domain of pure quaternions, let us consider u = (0,u). Without loss
of generality, we can assume u = cosψc + sinψf , with 0 � ψ � π . Then, according to
Eq. (34), we have c · x̂3 = sin 2ψ , so an appropriate choice of the parameter ψ may lead to
any orientation of the orbital plane with respect to c. In particular, the defining vector will
coincide with x̂3 when ψ = π/2. The LC plane spanned by the basis quaternions

u =
(
0,

c + f√
2

)
, w =

(
− 1√

2
,
c × f√

2

)
, (35)

is mapped onto the plane of motion Π with basis vectors x̂1 = f , and x̂2 = c × f—both
orthogonal to c. Thus, the choice of c = e3, and f = e1 leads to theKS3 transformation,which
may look less attractive than KS1, with its LC plane no longer consisting of pure quaternions.
Indeed, it is not practiced in Celestial Mechanics, save for two exceptions known to the
authors (Saha 2009; Breiter and Langner 2017). In physics, however, the KS3 transformation
is common at least since 1970s (e.g. Duru and Kleinert 1979; Cordani 2003; Díaz et al. 2010;
Egea et al. 2011; van der Meer et al. 2016); there are good reasons for this, but they come
out only in the context of dynamics and symmetries of a perturbed Kepler (or Coulomb)
problem.

3 Canonical KS variables in the extended phase space

In contrast to earlier works, let us consider from the onset a canonical problem in the extended
phase space (x∗, x, X∗,X), with a Hamiltonian
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H (x∗, x, X∗,X) = H0(x,X) + R(x∗, x,X) + X∗ = 0, (36)

where the Keplerian term

H0 = X · X
2

− μ

r
, (37)

depends on the Cartesian coordinates x, their conjugate momenta X and the gravitational
parameter μ. The time-dependent perturbation R(t, x,X) is converted into a conservative
term by substituting a formal, time-like coordinate x∗ for physical time t . The fact that
x∗(t) = t is a direct consequence of the way its conjugate momentum X∗ appears in Eq.
(36), because

ẋ∗ = ∂H

∂X∗ = 1, (38)

and an appropriate choice of the arbitrary constant leads to the identity map of t on x∗. The
momentum X∗ itself evolves according to

Ẋ∗ = −∂H

∂x∗ = − ∂R

∂x∗ , (39)

counterbalancing the variations of energy in nonconservative problems, or staying constant
in the conservative case.

If the same problem is to be handled canonically in terms of the KS coordinates, their
conjugate momenta V are implicitly defined through

X = Vcv̄
2r

, or V = 2 X v c̄
α

. (40)

In this transformation, we postulate

J (v,V) = (
v̄ ∧ V̄

) · c = 0, (41)

to secure

X0 = J (v,V)

2r
= 0, (42)

so that X = (0,X) remains a pure quaternion. The transformationR2 ×H
2 → R

2 ×H
′ ×H

′,
which maps (v∗, v, V ∗,V) �→ (x∗, x, X∗,X) according to the definitions (8), (40) and the
identities x∗ = v∗, X∗ = V ∗, is known to be weakly canonical [i.e. canonical only on a
specific manifold (41)].

Let us now generalize the transformation by allowing that α, instead of being a fixed
parameter, is an arbitrary differentiable function of the energy-like momentum X∗ or V ∗.
A similar assumption was recently made for the Levi-Civita transformation (Breiter and
Langner 2018). The necessity or at least usefulness of such a generalization will not be clear
until the action–angle variables are introduced, but it has to be introduced already at this
stage. If the generalized transformation is to be kept weakly canonical, while maintaining
the direct relation V ∗ = X∗, the new formal time-like variable v∗ should differ from x∗.1
Then, the transformation

λ : (v∗, v, V ∗,V) �→ (x∗, x, X∗,X), (43)

1 Giving credit to previous applications of this idea in Breiter and Langner (2018), we have overlooked Stiefel
and Scheifele (1971), much earlier than Zhao (2016).
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9 Page 10 of 28 S. Breiter, K. Langner

conserves the Pfaffian one-form up to the total differential of a primitive function Q (Arnold
et al. 1997)

V ∗ dv∗ + V · dv − X∗ dx∗ − X · dx = dQ + J (v,V)J (v, dv)
v · v , (44)

provided

Q =
[
X∗

α

∂α

∂X∗

]
x · X =

[
V ∗

α

∂α

∂V ∗

]
v · V
2

, (45)

x∗ = v∗ − Q

V ∗ , (46)

and with a necessary condition of J (v,V) = 0.
It is worth noting that with an elementary choice of α = k1(X∗)k2 , the expression in the

square bracket evaluates to a single number k2, and the multiplier k1 has no influence on
canonicity; hence, it can be selected at will—for example to conserve (or to modify) the units
of time and length.

In order to convert the Hamiltonian (36) into a perturbed harmonic oscillator, the inde-
pendent variable has to be changed from the physical time t to the Sundmann time τ , related
by

dτ

dt
= α

4r
= α2

4 v · v , (47)

involving α as a function of V ∗ or X∗. Transforming the Hamiltonian (36) by the composition
of λ and t �→ τ , we obtain

K (v∗, v, V ∗,V) = K0(v, V ∗,V) + P(v∗, v, V ∗,V) = 0, (48)

K0(v, V ∗,V) = V · V
2

+ ω2v · v
2

− 4μ

α
+ αJ (v,V)2

2|v|2 , (49)

P(v∗, v, V ∗,V) = 4r

α
R�(v∗, v, V ∗,V), (50)

where R� is the perturbation Hamiltonian R(x∗, x,X) expressed in terms of the extended
KS coordinates and momenta, and

ω = 2
√
2V ∗
α

, (51)

will have a constant value only if the original Hamiltonian H does not depend on time. Let
us emphasize that now every function of x, when expressed in terms of v, will generally
depend on the energy-like momentum V ∗ as well, due to its presence in α. Noteworthy,
the simplification to ω = 1 can be achieved by assuming α = √

8V ∗, which makes the
Sundmann time dimensionless. Choosing α = μ/V ∗, is roughly equivalent to α = 2a, in
terms of the Keplerian orbit semi-axis a.

4 Action–angle variables

4.1 LLC and LCF variables

When the motion is planar, with x3 = 0, an appropriate action–angle set l, g, L,G can
be created using a combination of the Levi-Civita (Levi-Civita 1906) and Lissajous trans-
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formations (Deprit and Williams 1991). This approach has been recently revisited and
discussed by Breiter and Langner (2018). Viewed as the special case of the KS frame-
work, the Lissajous–Levi-Civita (LLC) variables are inherently attached to the KS1 setup,
requiring the identification of the LC plane P ⊂ H

′ of pure quaternions and the plane of
motion Π ⊂ R

3. A generalization of this approach was proposed by Zhao (2015). Roughly
speaking, he attached the LC plane to an osculating plane of motion Π and added the third
action–angle pair h, H orienting Π in R

3 by direct analogy with the third Delaunay pair:
longitude of the ascending node, and projection of the angular momentum on the axis x̂3. As
noted by the author, this approach has the same drawbacks as in the Dalunay set—in par-
ticular, the singularity when the orbit in physical space is rectilinear, thus having no unique
orbital plane.

4.2 Lissajous–Kustaanheimo–Stiefel (LKS) variables

4.2.1 Intermediate set

The starting point for the new set of variables wewould like to propose is completely different
than in Zhao (2015). First, we choose the KS3 framework, assuming the defining vector
c = e3. Then, we select two subspaces of H: P03 with the basis e0, e3, and P12 spanned by
e1 and e2. None of them is a Levi-Civita plane, because in the KS3 framework

J (e0, e3) = J ((1, 0), (0, c)) = −1,

J (e0, e3) = J ((1, f), (0, c × f)) = 1. (52)

Thus, even for the planar case, we do not restrict motion to an invariant plane P , but merely
project v on two orthogonal subspaces. The orthogonality is readily checked by

(v0e0 + v3e3) · (v1e1 + v2e2) = 0. (53)

On each plane, with (i, j) = (0, 3), or (i, j) = (1, 2), we perform the Lissajous transforma-
tion of Deprit (1991)

vi =
√

Li j + Gi j

2ω
cos (li j + gi j ) −

√
Li j − Gi j

2ω
cos (li j − gi j ), (54)

v j =
√

Li j + Gi j

2ω
sin (li j + gi j ) +

√
Li j − Gi j

2ω
sin (li j − gi j ), (55)

Vi = −
√

ω(Li j + Gi j )

2
sin (li j + gi j ) +

√
ω(Li j − Gi j )

2
sin (li j − gi j ), (56)

Vj =
√

ω(Li j + Gi j )

2
cos (li j + gi j ) +

√
ω(Li j − Gi j )

2
cos (li j − gi j ). (57)

Similarly to Breiter and Langner (2018), we allow ω > 0 to be a function of V ∗, as given by
Eq. (51)—both directly, and through α. This requires a new time-like variable s to be different
from v∗, while retaining its conjugate S = V ∗. Only then, the 1-forms are conserved up to
the total differential

L03dl03 + G03dg03 + L12dl12 + G12dg12 + Sds − V · dv − V ∗dv∗ = dQ∗, (58)

with

Q∗ = −v · V
2

(
1 − S

ω

dω

dS

)
, (59)
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and

v∗ = s − v · V
2ω

dω

dS
, (60)

where

v · V =
√
L2
03 − G2

03 sin 2l03 +
√
L2
12 − G2

12 sin 2l12. (61)

The Hamiltonian function (48) is converted into the sum of

K ′
0 = ωL03 + ωL12 − 4μ

α
+ α (G03 − G12)

2

8|v|2 , (62)

and of the perturbation P expressed in terms of the Lissajous variables.
This transformation is merely an intermediate step, but before the final move let us inspect

the meaning and properties of the variables in the Kepler problem defined by K ′
0 = 0. As

a generic example, we take a heliocentric orbit in physical phase space with the following
Keplerian elements: major semi-axis a = 10 au, eccentricity e = 0.5, inclination I = 10◦,
argument of perihelion ωo = 60◦, longitude of the ascending node Ω = 10◦, and the
initial true anomaly f = 60◦. From these elements, we compute first the position x(0)
and momentum X(0), and then the representative KS3 quaternions v(0) and V(0)—an SKS
vector given by Eq. (19), and its conjugate momentum defined by Eq. (40), both with c = e3.
These initial conditions are labelled with black dots in Fig. 2a. The ellipses described in the
(v0, v3) and (v1, v2) planes have different semi-axes and different eccentricities; however,
both are traversed in the same direction—retrograde (clockwise) in the discussed example.
The retrograde motion follows from the fact that G03 = G12 < 0 (the momenta are equal
due to the postulate (41), where

(
v̄ ∧ V̄

) · e3 = (G03 −G12)/2). The constant angles g03 and
g12, measured counterclockwise, position the ellipses in the coordinate planes. The initial
angles l03 and l12 are marked according to the geometrical construction similar to that of the
eccentric anomaly. Comparing our Fig. 2 with Fig. 1 of Deprit (1991), the readers may note
the reverse direction of the li j angle. The difference comes from the fact that Deprit (1991)
assumed G > 0, i.e. the prograde (counterclockwise) motion along the Lissajous ellipse.
Yet, regardless of the sign of Gi j , equations of motion imply dl03/dτ = dl12/dτ = ω > 0.

Each Lissajous ellipse has the major semi-axis ai j and the minor semi-axis bi j defined by
the two momenta and frequency

ai j =
√
Li j + Gi j + √

Li j − Gi j

2ω
, bi j = |√Li j + Gi j − √

Li j − Gi j |
2ω

. (63)

The absolute value operator is necessary for Gi j < 0, unless one adopts a convention of
negative minor semi-axis for an ellipse traversed clockwise.

Another point worth observing is the ambiguity in the choice of the li j and gi j pair. Their
values are determined from two possible sets of four equations linking quadratic forms of
vi , v j , Vi , Vj with sine and cosine functions of the angles. Regardless of whether we use

sin 2gi j , cos 2gi j , sin 2li j , cos 2li j ,

or

sin (li j + gi j ), cos (li j + gi j ), sin (li j − gi j ), cos (li j − gi j ),
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(a)

(b)

Fig. 2 Themotion in two configuration planes of the KS3 variables for the Kepler problem. a Initial conditions
v set according to Eq. (19). b Initial conditions are multiplied by q(π/2). More details in the text

the solution will always result in two pairs: (li j , gi j ), and (li j +π, gi j +π)—both giving the
same values of the sine and cosine.2 In other words, one of the two minor semi-axes in each
of the ellipses in Fig. 2 can be chosen at will as the reference one.

Recalling the fibration property of the KS variables, we have plotted the ellipses obtained
from the same Cartesian x(0) and X(0), but with the KS3 initial conditions v(0) and V(0)
right-multiplied by q(π/2) = c = e3, according to Eq. (11) in the KS3 case. The results
are displayed in Fig. 2b. Not only the initial conditions, but the entire ellipses are rotated
by 90◦ in the (v0, v3) plane and by − 90◦ in the (v1, v2) plane. The momenta Li j ,Gi j , and
the angles li j remain intact, compared to Fig. 2a. The new angles positioning the ellipses
are g′

03 = g03 + π/2, and g′
12 = g12 − π/2, but their sum has not changed: g′

03 + g′
12 =

g03 + g12.

2 The statements about ‘the Lissajous variables [...] determined unambiguously from the Cartesian variables’
made by Deprit (1991) should not be taken too literally.
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4.2.2 Final transformation

Bearing in mind the example shown in Fig. 2, we can establish the final set of the LKS
variables by defining four action–angle pairs

l = 1

2
(l12 + l03) ,

λ = 1

2
(l12 − l03) ,

g = 1

2
(g12 + g03) ,

γ = 1

2
(g12 − g03) ,

L = L12 + L03,

Λ = L12 − L03,

G = G12 + G03,

Γ = G12 − G03, (64)

with s and S retained unaffected. One may easily verify that (64) amounts to an elementary
Mathieu transformation; thus, the complete composition

ζ : (x∗, x, X∗,X; t) → (s, l, λ, g, γ, S, L,Λ,G, Γ ; τ),

is a weakly canonical, dimension raising transformation. The HamiltonianH from Eq. (36)
is transformed into

M (s, l, λ, g, S, L,Λ,G, Γ ) = M0(l, λ, S, L,Λ, Γ ) + Q(s, l, λ, g, S, L,Λ,G, Γ ) = 0,

(65)

where

M0 = ω(S) L − 4μ

α(S)
+ Γ 2

8r
, (66)

and Q is the pullback of 4r
α(S)

R(x∗, x,X) by ζ .
Expressing the Cartesian variables from the initial extended phase space in terms of the

LKS variables, we first introduce six actions-dependent coefficients

A1 = 1

2

√
(L + G)2 − (Λ + Γ )2,

A2 = 1

2

√
(L − G)2 − (Λ − Γ )2,

B1 = 1

2

√
(L + Λ)2 − (G + Γ )2,

B2 = 1

2

√
(L − Λ)2 − (G − Γ )2,

C1 = 1

2

√
(L + Γ )2 − (G + Λ)2,

C2 = 1

2

√
(L − Γ )2 − (G − Λ)2, (67)
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allowing a compact formulation of the expressions for coordinates

x0 = 0, (68)

x1 = 1√
8S

(A1 sin 2(l + g) − A2 sin 2(l − g)

−C1 sin 2(g + λ) − C2 sin 2(g − λ)) , (69)

x2 = 1√
8S

(−A1 cos 2(l + g) − A2 cos 2(l − g)

+C1 cos 2(g + λ) + C2 cos 2(g − λ)) , (70)

x3 = 1√
8S

(−Λ + B1 cos 2(l + λ) − B2 cos 2(l − λ)) , (71)

and momenta

X0 = Γ

2r
= 0,

X1 = A1 cos 2(l + g) − A2 cos 2(l − g)

2r
=

√
8S

2r

∂x1
∂l

,

X2 = A1 sin 2(l + g) + A2 sin 2(l − g)

2r
=

√
8S

2r

∂x2
∂l

,

X3 = −B1 sin 2(l + λ) + B2 sin 2(l − λ)

2r
=

√
8S

2r

∂x3
∂l

, (72)

where

r = L − B1 cos 2(l + λ) − B2 cos 2(l − λ)√
8S

. (73)

Finally, the ‘time deputy’ variable x∗ = t is linked with the formal time-like variable s
through

x∗ = s − B1 sin 2(l + λ) + B2 sin 2(l − λ)

4S
= s − 1√

8S

∂r

∂l
. (74)

We have skipped the explicit expression of the KS variables, because it can be immediately
obtained from the substitution of (64) into (54–57).

Two features of the above expressions for x, X, and x∗ deserve special attention. First,
none of them depends on γ , which means that any dynamical system primarily defined in
terms of x,X, and time, conserves the value of Γ . Secondly, the expressions for the Cartesian
coordinates and momenta in the extended phase space do not depend on the particular choice
of α(S) and ω(S); the choice affects only the form of the Hamiltonian M .

5 LKS variables and orbital elements

Let us interpret the variables forming the LKS set—first themomenta and then their conjugate
angles—by showing their relation to the Keplerian elements or the Delaunay variables.
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5.1 LKSmomenta

Comparing Eqs. (42) and (72), one immediately finds that

J (v,V) = Γ , (75)

when c = e3, so observing that J (v,V) = 0 is the fundamental assumption of the KS
transformation since the time of Kustaanheimo (1964), there is no other choice than Γ = 0.
Recalling the absence of its conjugate angle γ in the Hamiltonian, Γ = 0 is the integral of
motion.

The meaning of G becomes clear once we find the pullback of the orbital angular momen-
tum Go by ζ , obtaining

Go = x × X

= 1

2
(C1 sin 2(g + λ) − C2 sin 2(g − λ)) e1

+1

2
(−C1 cos 2(g + λ) + C2 cos 2(g − λ)) e2

+G

2
e3 + Γ x

2r
. (76)

Thus, settingΓ = 0,we find themomentumG to be twice the projection of the orbital angular
momentum on the third axis (i.e. twice the Delaunay action Ho). Whenever the Hamiltonian
admits the rotational symmetry around e3, the momentum G will be the first integral of the
system.

Proceeding to the momentum L , we have to distinguish the pure Kepler problem and the
perturbed one. In the former case, we can set M0 = 0 in Eq. (66), finding

L = 4μ

αω
= 2μ√

2S
, (77)

at Γ = 0. Moreover, in the pure Kepler problem, the momentum S can be expressed in terms
of the major semi-axis a as S = μ/(2a), which justifies the direct link between the values
of L and of the Delaunay action Lo

L = 2
√

μa = 2Lo. (78)

The two restrictive clauses of the previous sentence (‘values’ and ‘pure Kepler’) deserve
comments. Equation (78) does not imply differential relations, because, for example,
∂x/∂Lo �= 2∂x/∂L (c.f. Deprit and Williams 1991). Moreover, the values of L and 2Lo

generally differ in a perturbed problem due to the fact that Lo is always defined byH0 alone,
whereas the definition of LKS momentum L depends on the complete HamiltonianH0 +R
through the value of S = X∗ (the latter fixed by the restriction to the manifold H = 0).

Similar intricacies are met for the momentum Λ, which turns out to be related to the
Laplace (eccentricity) vector e, or rather the Laplace–Runge–Lenz vector J = Loe, having
the dimension of angular momentum. In the pure Kepler problem, substituting Γ = 0, we
find
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J = Lo

(
X × G

μ
− x

r

)

= 1

2
(C1 sin 2(g + λ) + C2 sin 2(g − λ)) e1

−1

2
(C1 cos 2(g + λ) + C2 cos 2(g − λ)) e2

+Λ

2
e3. (79)

Thus, the momentum Λ has been identified as twice the projection of the Laplace–Runge–
Lenz vector on the third axis, yet this equality, using the property 2SL2

o = μ2, holds only in
the pure Kepler problem. In the perturbed case, one should refer to the general definition of
e in terms of the KS variables (Breiter and Langner 2017).

Closing the discussion of the momenta, let us collect the bounds on their values:

L > 0, |Λ| + |G| � L, Γ = 0. (80)

By the construction, the value of L = L12 + L03 must be nonnegative; but L = 0 implies
the permanent location at the origin (x = X = 0), so we exclude it. The momenta Λ and G
may be either positive or negative, but the above inequality guarantees that all coefficients in
Eq. (67) are real.

5.2 LKS angles

As already mentioned, the angle γ is a cyclic variable, absent in the pullback of any Hamil-
tonianH by ζ . Actually, γ is the ‘KS angle’ parameterizing the fibre of KS variables (v,V)

mapped into the same point in the (x,X) phase space. Thus, unless we are interested in some
topological stability issues (Roa et al. 2016), the angle can be ignored.

The only fast angular variable is l. As expected, its values in the pure Kepler problem are
equal to a half of the orbital eccentric anomaly E . Indeed,

dl

dt
= dl

dτ

dτ

dt
= ∂M0

∂L

α(S)

4r
= ω(S)α(S)

4r
=

√
2S

2r
= μ

2Lor
= 1

2

dE

dt
, (81)

and both angles are equal to 0 at the pericentre. Once again, this direct relation does not
survive the addition of the perturbation. Nevertheless, it also reveals the nature of Eq. (74)
as a generalized Kepler’s equation.

The two remaining angles are more unusual. A quick look at Eqs. (76) and (79) might
suggest that the role of g and λ in Go and J is similar. But if the norms of the vectors are
evaluated, one finds

Go = 1

2

√
G2 + C2

1 + C2
2 − 2C1C2 cos 4λ = Lo

√
1 − e2, (82)

J = 1

2

√
Λ2 + C2

1 + C2
2 + 2C1C2 cos 4λ = Loe. (83)

The absence of g proves it to be some rotation angle; the presence of λ means that this angle
plays a different role (and is somehow related to the eccentricity e).
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More light is shed on this problem if we introduce the vectors

M = J + Go

2
= C1

2
sin 2(g + λ)e1 − C1

2
cos 2(g + λ)e2 + Λ + G

4
e3, (84)

N = J − Go

2
= C2

2
sin 2(g − λ)e1 − C2

2
cos 2(g − λ)e2 + Λ − G

4
e3. (85)

These are essentially the so-called Cartan or Pauli vectors (Cordani 2003), except that we
use the sign of N opposite to the usual convention. Both the vectors have the same norm
M = N = L/4 = Lo/2 and lie either in the plane perpendicular to orbit, or along a
degenerate radial orbit direction. The angle θ they form depends on the eccentricity alone,
because

cos θ = M · N
MN

= J 2 − G2
o

L2
o

= 2e2 − 1, sin θ = 2e
√
1 − e2. (86)

Obviously, θ is the upper bound for the angle θ ′ between the projections of the Cartan vectors
on the coordinate plane (x1, x2)

M′ = M − Λ + G

4
e3, N′ = N − Λ − G

4
e3. (87)

Using Eqs. (84), (85), and (87), one finds

cos θ ′ = M′ · N′

M ′N ′ = cos 4λ. (88)

Let us make θ ′ an oriented angle by postulating that it is measured from N′ to M′, counter-
clockwise. Then its sine is given by

sin θ ′ = (N′ × M′) · e3
N ′M ′ = sin 4λ. (89)

Thus we have identified the angle λ as the quarter of the angle between the projections of the
Cartan vectors on the reference plane (x1, x2), measured from N′ toM′. Finding θ ′ from the
eccentricity-dependent θ involves orbital inclination and the argument of pericentre, which
means that λ is a function of e, I , and ωo.

Interestingly, whenever the argument of pericentre ωo exists, the statement sin 4λ = 0
means cosωo = 0. Thus, any λ = kπ/4 refers to ωo = π/2 or ωo = 3π/2.

Once we have interpreted λ, the meaning of g comes out of Eqs. (84) and (85): let us create
the sum of normalized vectorsM′/‖M′‖ +N′/‖N′‖ and let us rotate the resulting vector by
π/2 counterclockwise, obtaining

Mm = 2 cos 2λ (cos 2ge1 + sin 2ge2) . (90)

This formula suggests that g is a half of the longitude of Mm, or of −Mm, depending on
the sign of cos 2λ. Whichever the case, changing the value of g we perform a simultaneous
rotation of both N′ and M′ by the same angle. Indirectly, it means the rotation of the orbital
plane (if it exists) around the third axis, which makes g a relative of the ascending node
longitude.

5.3 Special orbit types

Let us inspect how some specific orbit types are mapped onto the LKS variables. The dis-
cussion is restricted to the elliptic orbits (0 � e � 1) in the pure Kepler problem (Table
1).
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Table 1 Particular orbits and their relation to the LKS variables

Orbit type LKS variables Undetermined angles

Generic circular Λ = 0, 0 < |G| < L, λ = (2k + 1) π
4 None

Circular, polar Λ = 0,G = 0, λ = (2k + 1) π
4 None

Circular, equatorial Λ = 0, |G| = L l, g, λ

Generic radial G = 0, 0 < |Λ| < L, λ = k π
2 None

Radial, equatorial G = 0, Λ = 0, λ = k π
2 None

Radial, polar G = 0, |Λ| = L l, g, λ

Generic equatorial Λ = 0, 0 < |G| < L, λ = k π
2 None

5.3.1 Circular orbits

Circular orbits, having e = 0, are characterized by J = 0, and hence all must possess Λ = 0,
since 2Λ = J · e3. Then, the norm of the Laplace–Runge–Lenz vector (83) simplifies, thanks
to C1 = C2 = √

L2 − G2/2, and equating its square to 0, we find the condition

4J 2 = (
L2 − G2) (cos 2λ)2 = 0. (91)

Setting λ = (2k + 1)π/4, k ∈ Z, leads to generic circular orbits with the inclination I =
arccos (G/L), including circular polar orbits when G = 0. However, if |G| = L , then the
first factor is null regardless of λ. This is the case of circular orbits in the ‘equatorial plane’
(x1, x2): prograde for G = L , or retrograde for G = −L .

The values of λ mentioned above well coincide with the interpretation from Sect. 5.2. In
circular orbits, the Cartan vectorsN andM are collinear and opposite; thus, the angle θ = π ,
and its projection θ ′ remains±π as long as the orbit is not equatorial. Thusλ = θ ′/4 = ±π/4,
plus any multiple of (2π)/4.

Another explanation of the LKS variables for e = 0 can be given by inspecting the
Lissajous ellipses in Fig. 2. The orbital distance r is the sum of ρ2

03 = v20 + v23 and ρ2
12 =

v21 +v22 , both divided by α. In order to secure a constant r = (ρ2
12+ρ2

03)/α, it is not necessary
that both ρi j are constant; enough if they oscillate with the same amplitude and a phase shift
of ±π/2. Equal amplitudes result from L12 = L03 (because G12 = G03 by Γ = 0), hence
Λ = L12 − L03 = 0. The phase shift condition is given by l12 − l03 = 2λ = (2k + 1)π/2,
which means the values of λ as above.

The case of constant ρi j , mentioned above, should be related to some special kind of a
circular orbit. Indeed, since it needs L12 = |G|/2 = L03, i.e. two circles of equal radii
in Fig. 2, we obtain the circular equatorial orbits with Λ = 0 and |G| = L (prograde or
retrograde, depending on the sign of G). Observe that due to the lack of distinct semi-axes
in the two circles, the angles li j and gi j are undefined, and so are l, g, γ , and λ. But still one
can use properly defined ‘longitudes’ l + g or l − g in the prograde, and retrograde cases,
respectively—at least until some ‘virtual singularities’ appear (Henrard 1974). In terms of the
Cartan vectors,M = −N = Go, soM′ = N′ = 0, making the angles g and λ undetermined.

5.3.2 Radial orbits

Rectilinear (radial) orbits require Go = 0, hence G = 0 and Go · Go = 0. According to
Eq. (67), G = 0 means C1 = C2 = √

L2 − Λ2/2, wherefrom Eq. (82) implies
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4G2
o = (

L2 − Λ2) (sin 2λ)2 = 0. (92)

Regardless of λ, it is satisfied by |Λ| = L , i.e. by polar radial orbits with J = (Λ/2) e3. For
all other directions of the Laplace–Runge–Lenz vector, radial orbits need λ = kπ/2, where
k ∈ Z; this time Λ can be arbitrary, with Λ = 0 indicating an equatorial radial orbit. In
terms of the Cartan vectors, Go = 0 means N = M, so their angle θ = 0 is projected as
θ ′ = 0 + 2kπ , which (divided by 4) gives the above values of λ.

In terms of the Lissajous ellipses in (v1, v2) and (v0, v3) planes from Fig. 2, G = 0
means that both degenerate into straight segments. The motion along the segments must
obey l12 = l03 + kπ , to guarantee that v0 = v1 = v2 = v3 = 0 at the same epoch. The
direction of x(v) is determined by the difference of lengths of the two segments: equatorial
orbits result if the segments have the same length, whereas polar orbits require that one of the
segments collapses into a point. In the latter case, l and λ are undetermined, but l + λ = l02
or l − λ = l03 retain a well-defined meaning for an appropriate sign of Λ. Problems with
the definition of gi j due to the vanishing minor axes are only apparent, because they can be
solved by an alternative definition: instead of ‘position angle of the minor semi-axis’, one
can equally well say ‘position angle of the major semi-axis minus π/2’.

5.3.3 Equatorial orbits

Since the Laplace–Runge–Lenz vector lies in the plane (x1, x2) for the equatorial orbits, all
they must have Λ = 0, whence C1 = C2 = √

L2 − Λ2/2. Moreover, G2
o = (G/2)2, which

leads to the condition

4(G2
o − G2) = (

L2 − G2) (sin 2λ)2 = 0. (93)

The case of |G| = L brings us back to the circular equatorial orbits, already discussed. Other
values of G require λ = kπ/2, where k ∈ Z. These are the same values as in the case of
radial orbits, which makes sense, because G = 0 should bring us to the radial equatorial
orbit.

For an elliptic (e �= 0) equatorial orbit, the Cartan vectors N and M may form different
angles θ , but since they lie in a polar plane, the projection of these angle is always θ ′ = 0,
exactly as in the radial orbit case—thus the same values of λ.

The two Lissajous ellipses in Fig. 2 must have the same semi-axes, and l12 = l03 + kπ .
This is necessary to obtain v21 + v22 = v20 + v23 , which guarantees x3 = 0 for all epochs,
according to Eq. (9) in the KS3 setup.

5.3.4 Polar orbits

Polar orbits are generically indicated by the simple condition G = 0. It is only in the special
cases where the angle λ comes into play: circular polar orbits (Λ = 0) need λ = (2k+1)π/4,
whereas radial polar orbits (|Λ| = L) are the ones where λ is undetermined. Since G = 0,
both Lissajous ellipses degenerate into segments, but their lengths may be different, and the
phase shift arbitrary.

5.3.5 Singularities

Inspecting specific types of orbitswemet the situations, whereλ and g become undetermined:
circular equatorial orbitswith |G| = L,Λ = 0 and rectilinear polar orbitswith |Λ| = L,G =
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0. These four points are the vertices of the square on the (G,Λ) plane defined by the constraint
|G| + |Λ| � L . However, all four edges of the square leave the angles undetermined. This is
related to the fact that:

(a) L = G + Λ (upper right edge in Fig. 4) means L03 = G03, i.e. prograde circular motion
on (v0, v3) plane with undetermined l03 and g03 (but l03 + g03 is well defined),

(b) L = −G + Λ (upper left edge in Fig. 4) means L03 = −G03, i.e. retrograde circular
motion on (v0, v3) plane with undetermined l03 and g03 (but l03 − g03 is well defined),

(c) L = G − Λ (lower right edge in Fig. 4) means L12 = G12, i.e. prograde circular motion
on (v1, v2) plane with undetermined l12 and g12 (but l12 + g12 is well defined),

(d) L = −G − Λ (lower left edge in Fig. 4) means L12 = G12, i.e. retrograde circular
motion on (v1, v2) plane with undetermined l12 and g12 (but l12 − g12 is well defined).

The Keplerian orbits obtained by mapping the edges of the (G,Λ) square onto J and G0 or
x and X have e = sin I , and sinωo = ±1. Thus the vertices in Fig. 4 are sin I = e = 0 (left
and right) and sin I = e = 1 (top and bottom). Along the edges, half of the coefficients (67)
does vanish, and one of the vanishing coefficients is always C1 or C2, which implies that
either M′ or N′ is a null vector, so the angles λ and g become undefined.

6 Application to the Lidov–Kozai problem

6.1 Derivation of the secular model

In order to test the LKS variables in a nontrivial astronomical problem, let us revisit the
Lidov–Kozai resonance arising in the artificial satellites theory (Lidov 1962) or asteroid
dynamics (Kozai 1962). In this already classical problem, the Keplerian motion of a small
body (a satellite or an asteroid) around a central mass with the gravitational parameter μ

(a planet or the Sun) is influenced by a distant perturber with the gravitational parameter
μ′ (the Sun or a planet, respectively). The origin of the reference frame is attached to the
central mass, the plane (x1, x2) coincides with the orbital plane of the perturber, and the third
axis basis vector e3 is directed along the angular momentum of the perturber. Further, let us
assume that the perturber moves on a circular orbit with the mean motion np, so its position
vector is

rp = ap cos npt e1 + ap sin npte2. (94)

Compared to the small body, whose position vector is x, the perturber is distant, i.e.
||x||/||rp|| = r/ap is small enough to approximate the perturbing function by the second
degree Legendre polynomial term. Thus we obtain the problem with the Hamiltonian H
from Eq. (36) with the perturbation

R = −μpr2

a3p
P2(x · rp/(rap)). (95)

The perturbation is time dependent, so—after substituting (94)—we replace t by its formal
twin x∗, obtaining

R = − μp

4a3p

[
r2 − x23 + 3(x21 − x22 ) cos 2npx

∗ + 6x1x2 sin 2npx
∗] . (96)

Choosing ω = 1, and α = √
8X∗ = √

8S, we apply the LKS transformation, setting Γ = 0,
because we are not interested in the evolution of the KS angle γ . The resulting Hamiltonian
(65) is
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M = M0 + Q = 0, (97)

with the Keplerian part

M0 = L − 2μ√
2S

. (98)

For a while, the perturbation Q will be given in an intermediate form without the explicit
substitution of the LKS variables into x and r , which leads to a relatively concise form

Q = − μpr

32a3p
√
2S

[
r2 − x23 + 3(x21 − x22 ) cos

(
2nps − σ

) + 6x1x2 sin
(
2nps − σ

)]
,

(99)

where, according to Eq. (74),

σ = np
2S

(B1 sin 2(l + λ) + B2 sin 2(l − λ)) . (100)

By the choice of α, the Sundman time τ is dimensionless and the unperturbed motion gives

dl

dτ
= ∂M0

∂L
= 1, (101)

ds

dτ
= ∂M0

∂S
= μ√

2S3
, (102)

with all the remaining variables constant. Solving (101) we find l = τ + l0. The value of S is
set to giveM = 0, but ignoring the contribution ofQ we may estimate that s ≈ τ/n, where
n is the Keplerian mean motion.

According to the standard Lie transform method (e.g. Ferraz-Mello 2007), the mean
variables can be introduced by a nearly canonical transformation that convertsM intoN =
N0 +Q′, withN0 = M0 andQ′ being constant along the phase trajectory generated byN0.
Up to the first order, the new perturbation Q′ is simply the average of Q with respect to τ ,
assuming l = τ + l0 and s = τ/n.

Since the perturber has been assumed distant, its mean motion n p is small compared to n
and both frequencies can be treated as irrational; even if they are not, the resonance will occur
in high degree harmonics with practically negligible amplitudes. In these circumstances, any
product of sine or cosine of 2nps = 2(np/n)τ with a function which is either constant or
2π-periodic in τ has the zero average.3 Then Q′ simplifies to

Q′ = − μp

64πa3p
√
2S

∫ 2π

0

[
r3 − r x23

]
dl. (103)

Thus we obtain the first order approximation of the secular system

N = L − 2μ√
2S

− μpL

1024a3pS
2

(
L2 − 6Λ2 + 6C1C2 cos 4λ

) = 0, (104)

C1C2 = 1

4

√(
L2 − (G − Λ)2

) (
L2 − (G + Λ)2

)
, (105)

where the mean variables should be given different symbols, but we adhere to a widespread
habit of distinguishing the mean and the osculating variables by context. The following study
ofmotion generated byN will refer only to themean variables, so no confusion should occur.

3 Thegeneral definitionof the average for a function f (τ ) is limτ→∞ τ−1 ∫ τ
0 f (τ ′)dτ ′, so its value for a quasi-

periodic function is null. When f (τ ) is T -periodic, this definition simplifies to the standard T−1 ∫ T
0 f (τ )dτ .
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BothN and the classical secular Hamiltonian of the Lidov–Kozai problem share the same
property: they are reduced to one degree of freedom. In our case, it is the canonically conjugate
pair (λ,Λ) instead of the usual Delaunay pair of the argument of pericentre and the angular
momentumnorm.All othermomenta are constant andwill be treated as parameters. However,
there is a fundamental difference between our formulation and the classical approach: the
equations of motion for λ and Λ are not singular for most of the radial orbits.

6.2 Secular motion and equilibria

Let us set

B = 3μpL

1024apS2
. (106)

The equations of motion derived from (104) are

dλ

dτ
= ∂N

∂Λ
= B Λ

(
4 + L2 + G2 − Λ2

4C1C2
cos 4λ

)
, (107)

dΛ

dτ
= −∂N

∂λ
= −8BC1C2 sin 4λ. (108)

Integral curves of this system are plotted in Fig. 3 for three values of G: 0.9L , 0.75L and
0. The phase plane has been clipped to −π � λ � π , because the reaming range of λ is a
simple duplication of the plotted phase portrait.

Referring to Table 1, one can check that a generic radial orbit does not introduce a singu-
larity into Eq. (107). Indeed, G = 0 and λ = kπ/2 result in a well-defined

dλ

dτ
= 5BΛ,

dΛ

dτ
= 0. (109)

It means that a radial orbit is not an equilibrium, unless Λ = 0, which is exactly the case of a
radial orbit in the equatorial plane. Observing that for G = 0 the points (λ = kπ/2,Λ = 0)
are well-defined local minima ofN , we are able to state that radial orbits in the orbital plane
of the perturber are stable4 equilibria. The bottom panel of Fig. 3 confirms this observation:
the points (0, 0), (90◦, 0), and (− 90◦, 0) are surrounded by closed, oval-shaped contours.
Intersection of any of the integral curves plotted in the bottom panel with the vertical lines
λ = 0 or λ = ± 90◦ marks a temporary passage through the radial orbit degeneracy.

As far as the polar radial orbits (with |Λ| = L) are concerned, Eq. (107) becomes singular,
but this singularity is purely geometrical. Such orbits should be located at the upper and lower
edges of the bottom panel in Fig. 3, where λ is undetermined. But since the integral curves
approaching the edges become parallel to them, one should expect that polar radial orbits are
stable equilibria (which is actually the case, if the analysis is performed in terms of vectors
Go and J, or simply observing that for G = 0 the Hamiltonian N has the local maxima at
Λ = ±L regardless of the value of λ).

Actually, the presence of Λ as a factor of the first of Eq. (107) means that for any value
of |G| �= L , the equilibria exist at (λ = j π/4,Λ = 0), as shown in Fig. 3. For even
j = 2k, the equilibria refer to equatorial orbits with the eccentricity depending on G through
e = √

1 − (G/L)2. It is easy to check the they are the local minima of the Hamiltonian
N ; hence, the equatorial orbits are stable. The circular equatorial case with |G| = L is

4 The word ‘stable’ is a bit paradoxical in this context, because it means that the motion starting in such an
orbit will inevitably end up in collision with the central body.
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Fig. 3 Integral curves of the regularized Lidov–Kozai problem on the (λ, Λ) phase plane. Top: G = 0.9 L ,
middle: G = 0.75 L , bottom: G = 0
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Fig. 4 Equilibria in the regularized Lidov–Kozai problem. Grey square—admissible region of G and Λ. The
case of λ = (2k+1)π/4: horizontal line—circular orbits (solid line for stable, dashed for unstable equilibria),
vertical curves—stable classical equilibria (112). The case of λ = kπ/2: horizontal line—stable equatorial
orbits. Solid circles at the vertices—stable equilibria with undetermined λ: polar radial (G = 0) and equatorial
circular (Λ = 0) orbits

problematic, because then the upper and lower limits of Λ merge, and in order to prove that
these are actually the stable equilibria, one has to resort to the analysis of Go and J vectors.

For odd j = (2k + 1), the equilibria are circular orbits with inclinations depending
on G (equatorial if G = 0, prograde for G > 0 and retrograde when G < 0). Their
stability depends on the ratio G/L . Unlike in the Delaunay chart, variational equations can
be formulated directly in the phase plane of (λ,Λ), leading to the eigenvalues that are
pure imaginary for (G/L)2 > 3/5. Thus circular orbits are stable for inclinations below
I1 = arccos

√
3/5 ≈ 39◦.23 and above I2 = arccos−√

3/5 ≈ 140◦.77. At these critical
values, a bifurcation occurs: when (G/L)2 < 3/5 circular orbits become unstable and two
stable equilibria are created at (λ = (2k+1) π/4,Λ = ±Λc) (see themiddle panel of Fig. 3).
Recall that, in general case of inclined, elliptic orbits, this value of λ means the argument of
pericentre equal π/2 or 3π/2. The value ofΛc is the root of the first of Eq. (107) withΛ �= 0
and cos 4λ = −1, i.e.

4 − L2 + G2 − Λ2

4C1C2
= 0, (110)

leading to

Λc = L

√

1 − 8|G|√
15L

+
(
G

L

)2

. (111)

These are the classical equilibria of the Lidov–Kozai problem—the only ones that can be
analysed directly in the Delaunay variables. In terms of the orbital elements, Eq. (111) is
equivalent to the well-known condition (Lidov 1962)

1 − e2 = 3(cos I )2

5
. (112)

The equilibria can be located in the middle panel of Fig. 3 at λ = ±45◦, Λ ≈ ±0.115 L .
Figure 4 shows all the equilibria and their stability, with the dashed lines marking the

unstable equilibrium. The edges of the (G,Λ) square (upper and lower boundaries of the
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plots in Fig. 3) may not be attached to any of the values of λ, but we added the black dots at
the corners to show the stable equilibria of the special type as the natural limits of the stable
branches (solid lines).

It is not unusual that all action–angle-like variables with bounded momentum suffer from
indeterminate angle at the boundary of its conjugate. The LKS variables cannot be different,
even ifmany cases, problematic in theDelaunay chart, have been located inside the boundaries
of Λ. For each value of G �= 0 (and |G| �= L), there exist integral curves passing through
both the extremes: Λ = L −|G| and Λ = −L +|G|. In the top or the middle panel of Fig. 3,
they are seen as four disjoint fragments; for example, the two open curves approaching the
edges at λ±22◦.5 are the fragments of such an integral curve. There is no singularity in these
orbits (see Sect. 5.3.5) other than the indeterminacy of longitude at the poles of a sphere
(Deprit 1994).

7 Conclusions

While commenting a transformation due to Fukushima, Deprit (1994) observed that it
amounts to swapping singularities, and immediately added ‘This remark is not meant to
diminish its practical merit, quite the contrary’. The LKS variables we have presented also
‘trade in singularities’, but the rule of trade we propose is to spare the radial, rectilinear
orbits (except the polar ones) at the expense of some other types. The exceptions include
mostly a family of expendable, rank-and-file orbits with e = sin I and the lines of apsides
perpendicular to the lines of nodes—the cases easily tractable without the KS regulariza-
tion and unlikely to focus attention by becoming equilibria in typical problems of Celestial
Mechanics. More we regret the problems caused by the polar radial, and equatorial circular
orbits. Nevertheless, we believe that more has been gained than lost. Enough to enumerate
the orbits that remain regular points in our chart: circular inclined, equatorial elliptic, and
all radial (except the polar ones). Thanks to refraining from the use of orbital plane in their
construction, the LKS variables are better fitted to study highly elliptic orbits than any other
action–angle set known to the authors.

The analysis of the quadrupole Lidov–Kozai problem in Sect. 6 suggests that the LKS
variables may be a handy tool in the analysis of the more problematic cases, like the eccen-
tric, octupolar Lidov–Kozai problem. In the latter, the ‘orbital flip’ phenomenon occurs:
changing the direction of motion with the passage through an equatorial rectilinear orbit
phase (Lithwick and Naoz 2011). Previous attempts to discuss this phenomenon in terms of
the action–angle variables (e.g Sidorenko 2018) faced the problems which may possibly be
resolved with the newly presented parameterization.

Some of the readers might be sceptical about the unnecessary duplication of the phase
space resulting from the LKS transformation ζ . Indeed, Fig. 3 covers the whole phase space
of in terms of the argument of pericentre ωo, although it has been clipped to the half range of
λ. This feature can be trivially removed by means of a symplectic transformation (λ,Λ) →
(2λ,Λ/2), and similarly for other conjugate pairs.We have not made this move in the present
work for the sake of retaining the fundamental, angle-halving property of both the Levi-
Civita and the Kustaanheimo–Stiefel transformations. Avoiding factor 2 in the arguments of
sines and cosines in Eqs. (69) and (72), we would introduce the factor 1

2 in the expressions
for v and V. Let us mention that the restriction of the LKS transformation to (v,V) →
(l, g, h, γ, L,G, H , Γ ) can be useful also in the studies of perturbed, four-degree-of-freedom
oscillators, not necessarily resulting from the KS transformation (e.g. Crespo et al. 2015; van
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der Meer et al. 2016). In that case, unwanted spurious singularities may arise in course of
the Birkhoff normalization, when the multiple of angle does not properly match the power
of action.

Having based the LKS variables upon the KS3 variant of the KS transformation, we do
not exclude a possibility of performing a similar construction within the KS1 framework. But
then theG andΛ variables will be the projections of the angular momentum and the Laplace–
Runge–Lenz vectors on the x1 axis. With such a choice, the Lidov–Kozai Hamiltonian (104)
would depend on both g andλ, with the rotation symmetry hidden deeply in some complicated
function of all variables, instead of the obvious G = const.
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