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Abstract
Action-angle variables for the Levi-Civita regularized planar Kepler problem were intro-
duced independently first by Chenciner and then by Deprit and Williams. The latter used
explicitly the so-called Lissajous variables. When applied to the transformed Keplerian
Hamiltonian, the Lissajous transformation encounters the difficulty of being defined in terms
of the constant frequency parameter, whereas the Kepler problem transformed into a har-
monic oscillator involves the frequency as a function of an energy-related canonical variable.
A simple canonical transformation is proposed as a remedy for this inconvenience. The prob-
lem is circumvented by adding to the physical time a correcting term, which occurs to be
a generalized Kepler’s equation. Unlike previous versions, the transformation is symplectic
in the extended phase space and allows the treatment of time-dependent perturbations. The
relation of the extended Lissajous–Levi-Civita variables to the classical Delaunay angles and
actions is given, and it turns out to be a straightforward generalization of the results published
by Deprit and Williams.

Keywords Perturbed Kepler problem · Regularization · Levi-Civita variables · Lissajous
transformation

1 Introduction

The combination of Sundman time regularization and parabolic coordinates, first studied by
Goursat (1889) and then by Levi-Civita (1906), converts the planar Kepler problem into an
isotropic harmonic oscillator with two degrees of freedom. However elegant, this Levi-Civita
(LC) transformation involves a subtle point: it has to be performed on a fixed energy level—
the value defining the oscillator’s frequency. When executed as a canonical transformation,
theLC transformationmust be performed in the extended phase space, and then, the frequency
becomes an explicit function of the momentum conjugate to physical time. Sometimes the
problem is discarded by replacing the momentum with its numerical value, but such kind of
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sweeping under carpet cannot withstand the addition of time-dependent perturbation terms
to the Keplerian Hamiltonian.

The set of action-angle variables for the LC-transformed Keplerian problem should
preferably account for the degeneracy, so that the transformed Hamiltonian depends on a
single-action variable. This goal was first achieved by Chenciner (1986), but his results, pub-
lished in a lecture notes preprint of the Paris Observatory, remained practically unknown,
until they were picked up by Jacques Féjoz—first in his 1999 Ph.D. dissertation, and then
in an article (Féjoz 2001). Yet, Féjoz has not noticed that meanwhile, Deprit and Williams
(1991) obtained a similar set of the action-angle variables, as the crowning of the sequence of
papers introducing the so-called Lissajous transformation (Deprit 1991). The latter approach
will serve as the landmark in the present work, so we will refer to the variables under the
name of the Lissajous–Levi-Civita (LLC) set.

For the completeness of the picture, let us add that the LLC variables appear to be closely
related (if not identical) to the action-angle set of the Kepler problem derived already by
Levi-Civita himself (Levi-Civita 1913), yet without resorting to regularization. The variables
attracted some attention for a while (Andoyer 1913; de Sitter 1913), but then apparently fell
into oblivion, with few exceptions like Ferrer and Lara (2009). Indeed, without the Sundman
time as an independent variable, the ‘isoenergetic variables’ of Levi-Civita lose much of their
flavour.

The last section ofDeprit andWilliams (1991) signals the problemarising from the fact that
the Lissajous transformation is defined for an oscillator with a fixed frequency—a parameter
independent on time and variables. But the Levi-Civita transformation is performed in the
extended phase space, so the frequency depends on one of the variables—the energy-related
momentum. In the present work, we show how to adapt the Lissajous transformation to the
regularized perturbed (possibly time-dependent) Kepler problem in the extended phase space.
In Sect. 2, we briefly recall the canonical LC regularization and the Lissajous transformation
for an oscillator with constant frequency parameter. As a minor novelty, the canonicity of
the latter is shown using a differential one form. Then, the extended LLC transformation is
presented in Sect. 3. Against the common habit, we do not restrict the discussion of the LC and
LLC transformations to the purely Keplerian Hamiltonian, where some difficulties disappear,
although a separate subsection is devoted to this case. Finally, the relations between the LLC
and the Delaunay variables are derived in Sect. 4.

2 Basic tools

2.1 The Levi-Civita transformation

Let us consider a time-dependent, planar problem in the extended phase space of Cartesian
coordinates

x = x1e1 + x2e2, (1)

and momenta
X = X1e1 + X2e2, (2)

with the time–energy pair x0, X0 appended, so that the Hamiltonian function

H (x0, x, X0,X) = H0(x,X) + R(x0, x,X) + X0, (3)

123



The extended Lissajous–Levi-Civita transformation Page 3 of 15 68

is the sum of the Keplerian part with the gravitational parameter μ

H0 = X · X
2

− μ√
x · x , (4)

of the perturbation R and of the momentum X0. As it is seen from the canonical equations
of motion

dx
dt

= ∂H

∂X
= X + ∂R

∂X
, (5)

dX
dt

= −∂H

∂x
= − μx

(x · x) 3
2

− ∂R

∂x
, (6)

dx0
dt

= ∂H

∂X0
= 1, (7)

dX0

dt
= −∂H

∂x0
= − ∂R

∂x0
, (8)

the variable x0, formally distinct from time t , is actually equal to it up to an additive con-
stant. Let us simply set x0 = t as the solution of Eq. (7), because then we can identify the
time-dependent perturbation R(x0, x,X) = R(t, x,X) as the function obtained by a direct
replacement of time t by its formal counterpart x0, the latter being a dependent variable.
Accordingly, Eq. (8) implies that the variations ofH0 +R, induced by the time dependence
of R, are compensated by X0, so that H = const. along the solution. The value of H
depends on the choice of X0 as one of the initial conditions, and it can be arbitrary. But if the
change of independent variable is to be performed using the ‘Poincaré trick’ (in the words
of Meyer et al. 2009), it is necessary to choose X0 = −H0 − R, so that the motion takes
place on the manifoldH = 0. In addition, we assume that only the motion leading to strictly
positive values of X0 is to be considered in the present work. The collision singularity of
H0 imposes another constraint of ||x|| �= 0, so the initial problem is considered in the phase
space Σx defined as

Σx = {
(x0, x, X0,X) : x0 ∈ R, x ∈ R

2/{0}, X0 ∈ R+, X ∈ R
2} . (9)

The LC transformation combines two ingredients: the Sundman time transformation that
regularizes themotion, and the parabolic coordinates linearizing the system. FollowingDeprit
and Williams (1991), we consider the transformation φ depending on a constant parameter
α > 0 having the dimension of length, which helps to conserve the units of time and length
in the new variables. Then, in the extended phase space

Σy = {
(y0, y, Y0,Y) : y0 ∈ R, y ∈ R

2, Y0 ∈ R+, Y ∈ R
2} ,

Σ ′
y = Σy/ {y = 0} , (10)

the LC transformation is
φ :

(
Σ ′

y; τ
)

→ (Σx ; t) , (11)

where

x = y21 − y22
α

e1 + 2y1y2
α

e2, (12)

X = 1

2r
[(y1Y1 − y2Y2) e1 + (y1Y2 + y2Y1) e2] , (13)

x0 = y0, (14)

X0 = Y0, (15)
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and
r = √

x · x = y · y
α

. (16)

The new independent variable τ is the Sundman time, related to the physical time t through
the differential equation

dτ

dt
= α

4r
= α2

4(y21 + y22 )
, (17)

which mimics the relation between the mean and the eccentric anomalies in Kepler problem.
A straightforward substitution, or the construction of canonical extension of the point

transformation (12), shows that φ is a Mathieu transformation conserving the Pfaffian 1-
form

− H dt + X0dx0 + X · dx = −K dτ + Y0dy0 + Y · dy, (18)

where the transformed Hamiltonian is1

K =
(
dt

dτ

)
φ#H = 1

2

(
Y 2
1 + Y 2

2

) + ω2

2

(
y21 + y22

) − 4μ

α
+ P = 0. (19)

In the above expression, P is a modified perturbing Hamiltonian

P(y0, y,Y) = 4
(
y21 + y22

)

α2 φ#R, (20)

and ω is a function of energy

ω = 2
√
2Y0
α

. (21)

The transformation φ is weakly canonical (equality (18) holds only on the manifold
K = 0) and 2:1 homomorphic. It could be made bijective if the phase space Σ ′

y is replaced
by a quotient space with the equivalence class (y,Y) ∼ (−y,−Y), but we are not going to
follow this path in the present work. Let us also add that restricting φ toΣ ′

y does not mean that
we cannot consider trajectories passing through y = 0 while studying the flow generated by
K ; it only means that such a point cannot be mapped to Σx because of singular expressions
(13).

The canonical equations of motion

dy j
dτ

= Y j + ∂P

∂Y j
, (22)

dY j

dτ
= −ω2y j − ∂P

∂ y j
, (23)

dy0
dτ

= ∂K

∂Y0
= 4

ωα2

∂K

∂ω
= 4(y21 + y22 )

α2 , (24)

dY0
dτ

= −∂P

∂ y0
, (25)

with j ∈ {1, 2}, represent a perturbed isotropic harmonic oscillator (22, 23), whose frequency
varies according to Eq. (25), since

dω

dτ
= 4

ωα2

dY0
dτ

. (26)

1 We use the pull-back symbol φ#H as the equivalent of the composition H ◦ φ.
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Equation (24) simply repeats the Sundman transformation (17).
In the original formulation (Goursat 1889; Levi-Civita 1906), the parameter α was absent

(i.e. equal to 1 and dimensionless). Moreover, only the time-independent problems (with
Hamiltonians constant in the phase space (x,X)) were discussed. This allowed to detach
the time transformation (17) from the canonical framework and to speak about the motion
on a given, fixed energy level H0 + R = K , instead of the manifold H = 0. In other
words, our Y0 was replaced by a fixed parameter K = −Y0, not being a canonical variable.
This approach is widespread; even if some scaling is applied to the parabolic coordinates,
it is either using a constant α (Deprit and Williams 1991), or some function of the constant
parameter K (Chenciner 1986). Obviously, problems are to be expected with this approach
in the time-dependent problems, because then K is neither a constant, nor even an explicit
function of time alone.

2.2 Lissajous transformation

Although Deprit (1991) proposed three distinct variants of what he named the Lissajous
transformation, we focus on only one of them, which results from a simple combination of
two canonical polar transformations, and in such form had been found by Chenciner around
1986 or byVorobyev and Zaslavsky (1987). In one step, it could be defined as a homomorphic
map

λ : ΣL → ΣY , (27)

from
ΣL = {

(l, g, L,G) : (l, g) ∈ T2, L � 0,−L � G � L
}
, (28)

to
ΣY = {

(y1, y2, Y1, Y2) ∈ R
4} , (29)

depending on a fixed parameter ω > 0:

y1 =
√

L + G

2ω
cos (l + g) −

√
L − G

2ω
cos (l − g),

y2 =
√

L + G

2ω
sin (l + g) +

√
L − G

2ω
sin (l − g),

Y1 = −
√

ω (L + G)

2
sin (l + g) +

√
ω (L − G)

2
sin (l − g),

Y2 =
√

ω (L + G)

2
cos (l + g) +

√
ω (L − G)

2
cos (l − g). (30)

The variables admit a transparent interpretation, describing the motion on the coordinate
plane (y1, y2), where the orbit is an ellipse with the centre at y1 = y2 = 0. In terms of the
ellipse major and minor semi-axes a and b, the momenta are L = ω(a2 + b2)/2, G = ωab,
the angle g is the polar angle of the minor semi-axis2, and l + g is related to the polar angle
of the moving point (Deprit 1991, Fig. 1).

Asking if the Lissajous transformation is canonical, one finds that the Pfaffian 1-forms of
the two variable sets differ by a total differential (Deprit 1991)

Y1dy1 + Y2dy2 − Ldl − Gdg = dJ2, (31)

2 Actually, it is better to define the polar angle of the major axis as g + π
2 , to avoid problems with G = 0,

when the minor axis vanishes.
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where J2, the primitive function of the transformation (Arnold et al. 1997), is

J2 = y1Y1 + y2Y2
2

=
√
L2 − G2 sin 2l

2
. (32)

But the differential form (31) makes sense only if y,Y defined through relations (30) are
differentiable with respect to the Lissajous variables. It means that we have to exclude |G| =
L , and (as a consequence of new bounds |G| < L) also L = 0, where singularities appear.
Thus, the canonical Lissajous transformation

λ : Σ ′
L → Σ ′

Y , (33)

requires a restricted domain

Σ ′
L = {

(l, g, L,G) : (l, g) ∈ T2, L > 0,−L < G < L
}
, (34)

and, accordingly, a reduced image

Σ ′
Y = {

(y1, y2, Y1, Y2) ∈ R
4/Ξ

}
, (35)

where

Ξ =
{
(y1, y2, Y1, Y2) : 4ω2 (y1Y2 − y2Y1)

2 = (
Y 2
1 + Y 2

2 + ω2 (
y21 + y22

))2}
. (36)

Even if restricted toΣ ′
L , the Lissajous transformation remains homomorphic with respect

to the angles. Indeed, given L and G, the pairs (l, g) and (l + π, g + π) map onto the same
point in Σ ′

Y .
Applying the canonical Lissajous transformation to an isotropic oscillator Hamiltonian

Ho = 1

2

(
Y 2
1 + Y 2

2

) + ω2

2

(
y21 + y22

)
, (37)

one obtains a simple function
λ#Ho = Ko = ωL. (38)

This, together with a 2π -periodicity of Eq. (30) in l and g, shows that the Lissajous variables
form an action-angle set for the harmonic oscillator with 2 degrees of freedom (37), properly
accounting for the degeneracy of the system.

Finally, let us add that the canonicity condition (31) may be violated if ω, instead of
being a constant parameter, depends on some variables. Then, the partial derivatives with
respect to the frequency come into play, and—if their influence cannot be encapsulated into a
total differential—the Hamiltonian (38) becomes meaningless, since the motion is no longer
described by the canonical equations of motion.

For example, in the simple case of ω = ω(t), the new Hamiltonian Ko should be com-
plemented with an appropriate remainder

Ko = ωL + J2ω̇

ω
. (39)

3 Extended Lissajous–Levi-Civita transformation

3.1 Extended transformations

A naive composition of φ and λ transformations, when applied to the Kepler problem (even
unperturbed), would result in a Hamiltonian whose derivative with respect to Y0 does not
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reproduce a correct equation for the evolution of y0. In these circumstances, let us repeat
the Levi-Civita and Lissajous transformations, but this time without fixed parameters. The
domains of both the transformations are restricted to secure the differentiability.

In the extended Levi-Civita transformation φe, we postulate that x and X are still defined
as in Eqs. (12) and (13), that the Sundman time transformation remains in the form (17) and
that the new energy-like momentum remains equal to X0, but we allow α to be a function of
all variables. This choice implies the modification of the formal time variable x0 definition,
so

φe : (Συ; τ) → (Σx ; t) , (40)

with
Συ = {

(υ0, y, Y0,Y) : υ0 ∈ R, y ∈ R
2/{0}, Y0 ∈ R+,Y ∈ R

2} , (41)

and the choice of υ0 is the minimum flexibility needed to secure the canonical form of the
transformation. This can be achieved if the differential forms satisfy

X0dx0 + X · dx − Y0dυ0 − Y · dy = dΦe, (42)

with a primitive function Φe. Assume that

x0 = υ0 + B(y,Y, Y0), (43)

with yet unknown differentiable function B. Substituting Eqs. (12), (13), (15), and (43), we
find the constraint

Y0dB − y · Y
2

dα

α
= dΦe. (44)

Admitting the risk of overlooking some potentially interesting variants, we assume that

α = α(Y0),

B(y,Y, Y0) = y · Y B0(Y0),

Φe(y,Y, Y0) = y · YΦ0(Y0), (45)

because then condition (44) turns into

[Y0B0 − Φ0] d(y · Y) − y · Y
2α

[
dα

dY0
+ 2α

(
dΦ0

dY0
− Y0

dB0

dY0

)]
dY0 = 0, (46)

satisfied if

B0 = −1

2α

dα

dY0
, (47)

Φ0 = Y0B0 = − Y0
2α

dα

dY0
. (48)

Thus, any differentiable α(Y0) chosen, it gives the specific formal time correction B, guar-
anteeing that the transformation φe is canonical, with the new Hamiltonian function

Ke = Y 2
1 + Y 2

2

2
+ ω2

2

(
y21 + y22

) − 4μ

α
+ 4r

α
φ#
eR, (49)

where the frequency ω is a function of Y0 both directly and through α

ω(Y0) =
√
8Y0

α(Y0)
. (50)
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Note that the choice of α can be done up to an arbitrary constant multiplier, with no conse-
quences for the expression for B, or for the canonicity of the transformation.

Proceeding to the extended Lissajous transformation λe, we essentially conserve the form
of λ, but adding a new pair of variables from the extended phase space (u,U ), we will be
able to make it canonical in spite of the dependence of ω on Y0, indicated in Eq. (50). Thus,
in

λe : Σu → Σ ′
υ, (51)

with

Σu = {
(u, l, g,U , L,G) : u ∈ R, (l, g) ∈ T2, U ∈ R+, L ∈ R+, −L < G < L

}
, (52)

and
Σ ′

υ = Συ/Ξ, (53)

the transformation (l, g, L,G) → (y,Y) is directly that of λ, i.e. given by Eq. (30), but the
canonicity condition in the extended phase space becomes

Y0dυ0 + Y1dy1 + Y2dy2 −Udu − Ldl − Gdg = dΛe, (54)

with yet unknown primitive function Λe. Like before, we want to conserve the energy level
momentum, assuming U = Y0, so after substitutions, Eq. (54) takes the form

(dυ0 − du) Y0 + d(y · Y)

2
− y · Y

2ω
dω = dΛe. (55)

With similar assumptions as we did for the LC transformation, namely

υ0 = u + y · Y b0(Y0), Λ = y · YΛ0(Y0), (56)

condition (55) becomes
(
1

2
+ Y0b0 − Λ0

)
d(y · Y)

+ y · Y
(
Y0

db0
dY0

− dΛ0

dY0
− 1

2ω

dω

dY0

)
dY0 = 0, (57)

and is satisfied by

b0 = −1

2ω

dω

dY0
= −1

4Y0
+ 1

2α

dα

dY0
, (58)

Λ0 = Y0b0 + 1

2
= 1

4
+ Y0

2α

dα

dY0
. (59)

3.2 Final form

Composing the two steps into a single canonical transformation requires the adjustment of
the final image set:

φe ◦ λe = ψe : (Σu; τ) → (
Σ ′

x ; t
)
, (60)

where
Σ ′

x = Σx/φeΞ. (61)
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Then, we finally obtain

x1 = 1

2ωα

[
(L + G) cos (2l + 2g) + (L − G) cos (2l − 2g)

− 2
√
L2 − G2 cos 2g

]
, (62)

x2 = 1

2ωα

[
(L + G) sin (2l + 2g) − (L − G) sin (2l − 2g)

− 2
√
L2 − G2 sin 2g

]
, (63)

X1 = −1

4r
[(L + G) sin (2l + 2g) + (L − G) sin (2l − 2g)] , (64)

X2 = 1

4r
[(L + G) cos (2l + 2g) − (L − G) cos (2l − 2g)] , (65)

where

r = √
x · x = L − √

L2 − G2 cos 2l

ωα
, (66)

and arbitrary, differentiable functions ω(U ), and α(U ) satisfy the constraint

ωα = √
8U . (67)

The transformation is canonical in the extended phase space thanks to the definition of
the last pair of variables

X0 = U , (68)

x0 = u −
√
L2 − G2 sin 2l

4U
= u − x · X

2U
. (69)

The inverse transformation can be found in Deprit and Williams (1991). Adjusted to the
present notation, it gives a unique solution for the momenta

L =
(
X2
1 + X2

2 + 2X0
)
r√

2X0
, G = 2 (x1X2 − x2X1) . (70)

Knowing L and G, one can find the angles from

√
L2 − G2 cos 2l = 2

(
X2
1 + X2

2 − 2X0
)
r√

2X0
, (71)

√
L2 − G2 sin 2l = x1X1 + x2X2, (72)

√
L2 − G2 cos 2g = x1

(
X2
2 − X2

1 − 2X0
) − 2x2X1X2√

2X0
, (73)

√
L2 − G2 sin 2g = x2

(
X2
1 − X2

2 − 2X0
) − 2x1X1X2√

2X0
. (74)

Having combined two 2:1 homomorphisms, we find that the composition remains 2:1 in
the angles, but in a different manner. This time, the angle π can be added to either l, or g,
or to both of them, whereas in λ and λe the addition had to be applied to the two angles
simultaneously.

Remarkably, the α-dependent terms in Eqs. (43) and (56) cancel in their sum, and Eq. (69)
is independent on the choice of function α(U ). Nevertheless, this choice matters in the
Hamiltonian function
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ψ#
e

(
4rH

α

)
= M = ω L − 4μ

α
+ F (u, l, g,U , L,G) = 0, (75)

where

F = 4r

α
ψ#
eR. (76)

Although ψ#
eR depends only on U , its multiplier 4r/α still depends on α, as well as the

frequency in the ωL term of Eq. (75). The term 4μ/α also matters in the extended phase
space. On the other hand, M can be factorized as

M = α−1 M ′ = 0, (77)

where
M ′ = √

8U L − 4μ + 4rψ#
eR = 0, (78)

depends on U only, regardless of α. In other words, the dynamics depends on α(U ) only
through the Sundman time definition (17).

Equations of motion generated by M take the form

du

dτ
= ∂M

∂U
= 4L

ωα2 + 4μ − Lωα

α2

dα

dU
+ ∂F

∂U
,

dU

dτ
= −∂M

∂u
= −∂F

∂u
,

dl

dτ
= ∂M

∂L
= ω + ∂F

∂L
,

dL

dτ
= −∂M

∂l
= −∂F

∂l
,

dg

dτ
= ∂M

∂G
= ∂F

∂G
,

dG

dτ
= −∂M

∂g
= −∂F

∂g
. (79)

The first of them can be further simplified using factorization (77)

du

dτ
= 1

α

∂M ′

∂U
= 1

α

[√
2 L√
U

+ 4
∂

∂U

(
rψ#

eR
)
]

, (80)

but it should not be used for further differentiation, because while M ′ = 0, its derivatives
do not vanish in general.

The solutions of the differential Eq. (79) with the initial conditions in the set Σu , param-
eterized by the independent variable τ , are conjugated by the transformation ψe with the
solution of Eqs. (5–8) parameterized by t .

3.3 Pure Kepler problem

In the pure Kepler problem, resulting from F = 0, most of the Eqs. (79) have vanishing
right-hand sides, except for two:

du

dτ
= 4L

α
√
8U

= const, (81)
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where the simplified form (80) has been taken, and

dl

dτ
= ω =

√
8U

α
= const. (82)

Let us now demonstrate that these equations, combined with the canonical transformation
ψe, lead to the Kepler equation for the eccentric anomaly E

√
μ

a3
t = E − e sin E, (83)

describing the motion on ellipse with semi-major axis a and eccentricity e.
Dividing Eqs. (81) by (82), we find

du

dl
= L

2U
. (84)

Assume that both τ and u are measured from the pericentre, when l = 0. Then, using Eq. (69)
we find

x0 = u −
√
L2 − G2 sin 2l

4U
= L

4U

⎛

⎝2l −
√

1 −
(
G

L

)2

sin 2l

⎞

⎠ . (85)

Following Deprit and Williams (1991), introduce the ‘pseudo-eccentricity’ ε

ε =
√

1 − G2

L2 . (86)

In Sect. 4, it is shown that its value becomes equal to e in the pure Kepler problem. On the
other hand, the Keplerian energy is a function of the semi-axis a, so U = μ/(2a), and then
M ′ = 0 implies L = 4μ/

√
8U , which leads to

L

4U
=

√
a3

μ
. (87)

So, with t = x0, we find from (85)
√

μ

a3
t = 2l − ε sin 2l, (88)

which is actually the Kepler equation (83), provided we identify the Lissajous angle l with
a half of the eccentric anomaly, and set e = ε, which is possible only in the absence of
perturbations, and only as the equality of values.

Thus, the Kepler equation has been shown to be an intrinsic fragment of canonical trans-
formation in the extended phase space. Note, however, that relations (84) and (87) are specific
to the pure Kepler problem and should not be abused in the perturbed case.

3.4 Two special choices of˛

We have demonstrated that the choice of α as a function ofU or X0 influences only the form
of the transformed Hamiltonian, but not the complete transformationψe itself. Let us inspect
the form ofM if the choice of α(U ) is similar to the choice of a fixed parameter α presented
in two reference works: Deprit and Williams (1991) and Chenciner (1986).
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Deprit and Williams (1991) aimed at respecting the units of time, coordinates, and
momenta involved, so they assumed a constant α having the dimension of length. As an
appropriate equivalent using the energy variable U , we propose

α1 = μ

U
, (89)

which implies the frequency

ω1 =
√
8U 3

μ
, (90)

and the transformed Hamiltonian

M1 =
√
8U 3 L

μ
− 4U + F1(u, l, g,U , L,G) = 0. (91)

In the pure Kepler problem, whenU = μ/(2a), the function α1 would have a constant value
α1 = 2a, and the frequency would be equal to the mean motion n (because ω1 = √

μa−3).
The angle l = ω1τ would be equal to E/2, because τ̇ = (a/r)/2, whereas Ė = n(a/r) in
the Keplerian motion.

Chenciner (1986) preferred to use a dimensionless Sundman time and openly stated that
his parameter, albeit fixed and treated as numerical, is based upon the value of energy. An
analogue in the present framework would be simply

α2 = √
8U , (92)

with the dimension of velocity (length divided by time), because thenω2 = 1 (dimensionless),
and

M2 = L − 2μ√
2U

+ F2(u, l, g,U , L,G) = 0. (93)

4 Extended LLC and Delaunay variables

TheDelaunay variables for the planar two body problem are the action-angle set including the
mean anomaly lD, the longitude of pericentre gD, and their conjugate momenta LD = √

μa,
GD = LD

√
1 − e2. More precisely, the momenta are defined through their relation to the

energy H0 of Eq. (4) and to the angular momentum

H0 = − μ2

2L2
D

, GD = ||x × X||. (94)

Establishing the link between the LLC and the Delaunay variables is not a simple matter
because of the essential difference between the definitions of these two sets: the Delaunay
LD is based uponH0 regardless of the problem, whereas the LLC momentum L is related to
the complete, perturbed energy. This difficulty does not manifest in the angular momentum
GD, because using Eqs. (62–65) in the cross-product of Eq. (94), we find a direct, problem
independent relation

GD = |G|
2

, (95)

but such simplicity is an exception in the entire set of relations.
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In order to define LD, let us use Eq. (94) withH0 expressed in term of the LLC variables,
which leads to

H0 = − μ2

2L2
D

=
√
8U L

4r
− μ

r
−U , (96)

where r depends on four variables: l, L , G, and U , as follows from Eq. (66). In spite of the
complicated dependence of the right-hand side on L , the relation can be easily inverted with

L = 4μ√
8X0

+ 2r√
8X0

(

2X0 − μ2

L2
D

)

, (97)

this time with r being a function of the Delaunay variables, in full agreement with Deprit and
Williams (1991), provided their constants are replaced by ωα = √

8X0. In the last equation,
we have returned to X0. Even if it is equal to U , its conjugate x0 (eventually attached to the
Delaunay variables in the extended phase space) is different than u, so it is better to maintain
the distinction.

The disparity between the definitions ofG = 2GD and L = L(lD, LD,GD) is responsible
for the difference between the osculating eccentricity e and the ‘pseudo-eccentricity’ ε.
Comparing the ratios of G/L and GD/LD, we find

1 − e2 = G2
D

L2
D

= (
1 − ε2

) (−H0L2

2μ2

)
, (98)

meaning that e and ε may attain equal values only in the pure Kepler problem.
Linking the angles requires more effort. For the longitude of the pericentre gD, let us use

the Laplace vector

μe = X × (x × X) − μ
x
r

=
(
2H0 + μ

r

)
x + (x · X)X. (99)

Expressing the latter form in terms of the LLC variables, we obtain

μe cos gD =
√
8U

4L
ε cos 2g + (H0 +U ) x1, (100)

μe sin gD =
√
8U

4L
ε sin 2g + (H0 +U ) x2. (101)

Note that only in the pure Kepler problem one may claim g = gD/2, and ε = e, but even
then, the relations refer to the values and cannot be differentiated.

In Sect. 3.3, it has been demonstrated that in the pure Kepler problem l = E/2, which
might be thought to establish a simple link between l and lD through the Kepler equation

lD = E − e sin E . (102)

But here is the trap, because Eq. (88) involved not the variable lD itself, but only its time
dependence in the pure Kepler problem. In order to link l with E properly, we should consider
two functions:

e sin E = x · X
LD

=
(
L

√−8H0

4μ

)
ε sin 2l, (103)

e cos E = 1 − r

a
=

(
− 2H0L

μ
√
8U

)
ε cos 2l +

(
1 + 2H0L

μ
√
8U

)
. (104)

Again, only in the pure Kepler problem (whenH0 = −U and
√
8U L = 4μ) it can be stated

that numerical values of the variables satisfy E = 2l, and e = ε.
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5 Conclusions

We have proposed the extension of the standard procedure leading to the action-angle vari-
ables of the Lissajous type (or the ‘Levi-Civita–Chenciner–Fejoz’ following Zhao 2015) for a
perturbed Keplerian problem subjected to the Levi-Civita regularization. The transformation
remains canonical in the extended phase space and does not require artificial fixed parame-
ters related to the energy level. As such, it can be applied even to problems with explicitly
time-dependent perturbations. The part of the transformation responsible for the relation of
the physical time based x0 to the new formal variable u turns out to be a generalized Kepler’s
equation. After completing the work, we have realized that our approach is a generaliza-
tion of the transformation introduced by Zhao (2016) for a periodically perturbed rectilinear
motion.

Without the extended phase space, the time transformation would be a separate, non-
Hamiltonian differential equation, and—as a side effect—the Kepler problem, whose unique
frequency depends on energy, would become an isochronous, hence more degenerate, prob-
lem of the harmonic oscillator. Both aspects are not without consequences when it comes to
studying variational equations for the purpose of some chaos tests.

The transformation has been expressed using two unspecified functions α(U ), and ω(U )

of the energy-related momentumU . Their choice is arbitrary and influences only the form of
the transformedHamiltonian function. Previously, these functions had been used as numerical
parameters—sometimes to respect the units of time and length, sometimes quite contrarily—
to render the dimensionless quantities. The functions α and ω can be selected according to
the same requests, as long as they are bound by αω = √

8U , which is necessary for the
canonicity in the extended phase space.

Finally, we have linked the LLC and the Delauny variables. Generally, all the relations
between the two sets reduce to those given by Deprit and Williams (1991) if the momentum
U is replaced by the fixed parameters α and ω, at the expense of loosing the canonical trans-
formation properties in the extended phase space. There are many delusive short cuts leading
to simplified variants of these relations. We were lured into some of them, but ultimately
each has been unmasked as either hiding the Keplerian motion postulate, or replacing a vari-
able by its value. Noteworthy, Féjoz (2001) and Zhao (2015) present the simplified relations,
equivalent to the statements LD = L/2 etc., but the formulae were derived within the pure
Kepler problem andmay not be generalized to the perturbed case, even if their modified mass
trick is used. For example, in order to annihilate the last term in Eq. (104) by an appropriate
modification of μ, one must have a constant H0, whereas in perturbed problems, even if
conservative, the energy is being continuously repartitioned into the Keplerian and the per-
turbation terms—both variable. On the other hand, most of the intricacies disappear if one
abandons the ‘isodynamic’ Delaunay variables and works exclusively with the expressions
of x and X in terms of the ‘isoenergetic’ LLC variables (Levi-Civita 1913).

Quoting the quote from Meyer et al. (2009), ‘no set of coordinates is good enough’.
Action-angle sets generally admit the values of actions where the angles are undetermined.
The LLC variables share the same weakness as the Delaunay set: circular orbits do not admit
meaningful values of l and g. But since the sums l + g or l − g remain properly defined, the
solution to this purely geometrical problem is easy to obtain if needed. Yet the LLC variables
are immune to a more profound disease of the Delaunay set: by the definition, the action GD

is nonnegative (as the length of angular momentum), whereas the LLC momentum G can
be negative.3 This difference is essential when it comes to studying the motion, where the

3 The analogous momentum in the isoenergetic set o Levi-Civita (1913) is also nonnegative by the definition.
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perturbation may result in the inversion of the angular momentum direction with the passage
through G = 0. In other words, G = 0 is an internal point in the domain, so functions of
G can be differentiated at this point, whereas GD = 0 is the boundary of the closed interval
with only one-sided limit of functions available.

We hope that the extended LLC variables can be useful in the studies of periodically
perturbed motion, where radial orbits are of interest, forming the collision manifold (e.g.
Boscaggin et al. 2017). In particular, this formulation may be beneficial for planar, elliptic
restricted three body problem and its special cases, like the Hill problem.
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