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Abstract Lawden’s primer vector theory gives a set of necessary conditions that characterize
the optimality of a transfer orbit, defined accordingly to the possibility of adding mid-course
corrections. In this paper a novel approach is proposed where, through a polar coordinates
transformation, the primer vector components decouple. Furthermore, the casewhen transfer,
departure and arrival orbits are coplanar is analyzed using a Hamiltonian approach. This
procedure leads to approximate analytic solutions for the in-plane components of the primer
vector. Moreover, the solution for the circular transfer case is proven to be the Hill’s solution.
The novel procedure reduces the mathematical and computational complexity of the original
case study. It is shown that the primer vector is independent of the semi-major axis of the
transfer orbit. The case with a fixed transfer trajectory and variable initial and final thrust
impulses is studied. The acquired related optimality maps are presented and analyzed and
they express the likelihood of a set of trajectories to be optimal. Furthermore, it is presented
which kind of requirements have to be fulfilled by a set of departure and arrival orbits to have
the same profile of primer vector.
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1 Introduction

The addition of mid-course corrections (or deep space maneuvers, DSM) along an inter-
planetary transfer has the advantage of decreasing the overall cost of a trajectory. In fact,
applying a DSMwill modify not only the trajectory but also the boundary conditions (BC) of
the orbit (Bernelli-Zazzera et al. 2007). In an impulsive thrust case, this implies modifying
the departure and arrival ΔVs since the cost of a mission can be defined as sum of impulses
(magnitudes of the ΔVs). Generally, this process is done in the scenario of the patched
conics method, which means considering a sequence of Keplerian arcs linked together (Bat-
tin 1999). The inclusion of a DSM along a transfer orbit has the main drawback of increasing
the search space complexity of an optimization problem (Vasile and De Pascale 2006). For
this reason, it can be useful to have a method that gives a first guess on where to perturb the
orbit for the possible addition of a mid-course correction.

In the early 1960s, Lawden introduced the concept of the primer vector in Lawden (1963).
Derived with an indirect optimal control method, this variable is associated with the equation
of motion and it has to satisfy a set of necessary conditions (NC) for a transfer to be optimal.
In particular if the NCs are not fulfilled, it is energetically favourable to add a DSM, see
Conway (2010). For a linear system, Prussing (1995) proved that these conditions are also
sufficient.

Later studies such as Lion and Handelsman (1968), Jezewski and Rozendaal (1968), Vinh
(1972) and Jezewski (1975) extensively showed where and how to perturb the trajectory for
the addition of the correction (with gradient based optimization methods). At present, the
primer vector theory is mainly exploited in global optimization scenario as a first estimation
of the position of the DSM and therefore it allows mission planners to reduce the size of the
search space (Olympio et al. 2006). However, due to its computational complexity, its usage
is narrowed also to simple three-body problem cases as in Luo et al. (2010).

The main disadvantage of Lawden’s theory is that it is based on solving a boundary value
problem (BVP) that involves the state transition matrix (STM) of the motion. Currently,
there are no known analytic solutions to the problem and, subsequently, no insights into what
determines whether a given transfer will be optimal or not. In papers like Goodyear (1965), a
formal solution to the differential equations used to derive the STM is provided. Even if the
method presented in Goodyear (1965) is valid for every type of Keplerian transfer, it does
not give a complete understanding of the structure of the problem. In fact, it is defined in a
general inertial frame and therefore no simplifications in the equations (36 terms expressed
as sums and multiplications of series) are possible.

This paper presents a novel approach to the theory which simplifies the structure of the
problem. In particular, the case where departure, arrival and transfer orbits are co-planar is
analyzed.

2 Primer vector theory procedure

The equations of motion can be written as

ẋ(t) =
[
ṙ(t)
v̇(t)

]
=

[
v(t)

g[r(t)] + Γ u(t)

]
(1)

where x(t) is the state, r(t) is the position vector, v(t) is the velocity vector, g(r) is the
gravitational acceleration, u(t) represents the unit vector in the direction of the thrust and Γ

is the impulsive thrust acceleration (Conway 2010).
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Planar optimization of mid-course corrections 369

As described in Bryson and Ho (1975), there exists a Hamiltonian that defines the system
given in Eq. 1:

H = Γ + λr
T v(t) + λv

T [g(r) + Γ u], (2)

where λr/v are the co-state variables associated, respectively, to the position and the velocity
of Eq. 1. In a classic optimization problem, the cost function can be defined as the total
propellant consumption. For an impulsive thrust case, the cost is simply the sum of the
magnitudes of the N impulses fired along the transfer arc (Conway 2010)

J =
N∑
i=1

ΔVi . (3)

The adjoint equations referred to Eq. 2 which minimize the cost are

λ̇r
T = −∂H

∂r
= −λvG(r) (4)

λ̇v
T = −∂H

∂v
= −λr

T (5)

where G(r) �
∂g(r)
∂r

is the 3 × 3 gravity gradient matrix.

The primer vector p(t) and its derivative ṗ(t) have been defined in Lawden (1963) as

p(t) � −λv(t) (6)

ṗ(t) = λr (t). (7)

Equations 4, 5, 6 and 7 combined together, give the ‘primer vector equation’:

p̈ = G(r)p. (8)

Furthermore, Lawden characterized the theory with a set of NC for the impulsive thrust
case, when the cost is simply expressed as a sum of the magnitudes of ΔVs (as in Eq. 3).
The satisfaction of the NCs defines the optimality of a trajectory [extensive explanation in
Jezewski (1975)]:

1. The primer vector and its derivative are continuous everywhere.
2. The magnitude of the primer vector is always below 1, aside from the instants where the

impulse occurs, where p = 1.
3. At the impulse times, the primer vector is a unit vector in the direction of the thrust.
4. As a consequence of the above conditions, dp/dt = ṗ = ṗT p = 0 at an intermediate

impulse.

Equation 7 needs to be integrated to obtain the primer vector profile along the transfer orbit
and then to verify if the NC are satisfied. Its solution can be expressed in the form of[

p(t)
ṗ(t)

]
= Φ(t, t0)

[
p(t0)
ṗ(t0)

]
(9)

where Φ is the STM associated to the state (Jezewski 1975). The third NC gives the BC on
the primer vector, defining it as unit vector in the direction of the thrust:

p0 ≡ p(t0) = ΔV0

‖ΔV0‖
p f ≡ p(t f ) = ΔV f

‖ΔV f ‖
. (10)
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370 E. Iorfida et al.

However, both initial conditions on p(t) and ṗ(t) are required for the propagation of Eq. 9.
p0 is known from Eq. 10 and the initial condition of ṗ comes inverting Eq. 9 as:

ṗ(t0) = Φ12
−1(t f , t0) · [p(t f ) − Φ11(t f , t0) · p(t0)] (11)

where Φ11 and Φ12 represent partition matrices of Φ, and they are the only unknowns of
Eq. 11. As a consequence, this procedure implies solving a BVP where firstly the STM is
integrated along the arc to solve Eq. 11 for ṗ(t0) and, afterwards, Eq. 9 is propagated to verify
Lawden’s NCs.

3 Polar coordinates transformation

This paper presents a novel procedure framed in a local polar coordinate system defined by
êr , êϑ and êh . They are, respectively, unit vectors in the direction of the local position vector,
of the derivative of êr with respect to the true anomaly (ν) and of the orbital momentum
vector (h):

êr = r
‖r‖; êϑ = −êr × êh; êh = h

‖h‖ . (12)

It can be demonstrated that this coordinate system is an eigenvector basis of the gravity
gradient matrix G (Eq. 8), defined to first order approximation as

G = − μ

r3
I3 + 3μ

r5
r · rT . (13)

The corresponding eigenvalues of G, with respect to the unit vectors of Eq. 12, are 2μ/r3,
of algebraic multiplicity 1, and −μ/r3, of algebraic multiplicity 2.

Combining together Eq. 8 and the eigen-decomposition of G, the primer vector equation
can be expressed in polar form as

p̈ = Gp = μ

r3
(2pr êr − pϑ êϑ − ph êh). (14)

Finally the first derivative of the primer vector with respect to time in polar coordinates can
be derived:

dp
dt

=
(
ṗr − h

r2
pϑ

)
êr +

(
ṗϑ + h

r2
pr

)
êϑ

︸ ︷︷ ︸
IN PLANE

+ ṗh êh︸︷︷︸
OUT OF PLANE

. (15)

From Eq. 15, it is clear that the out-of-plane component is decoupled from the in-plane
components.

The analysis related to the out-of-plane component is treated in a complementary paper
from the authors, now in press.

3.1 In-plane components

Concerning the in-plane part of Eq. 15, pr and pϑ do not have formal analytic solutions.
Even so, it is possible to find an analytic approximation for which the time-variant variable
is considered to be constant for a small integration step size.

123



Planar optimization of mid-course corrections 371

From Eq. 15, two new variables can be defined:
⎧⎪⎨
⎪⎩

Pr � ṗr − h

r2
pϑ

Pϑ � ṗϑ + h

r2
pr

. (16)

Pr and Pϑ are the components of the first derivative of the primer vector with respect to time
in the local orbital reference frame. Therefore, the in-plane part of Eq. 15 becomes

ṗ = Pr êr + Pϑ êϑ . (17)

Taking into account the derivatives with respect to time of the eigenvectors:

⎧⎨
⎩

˙̂er = ν̇êϑ˙̂eϑ = −ν̇êr˙̂eh = 0
, (18)

the second derivative of the primer vector can be easily derived as

p̈ = (
Ṗr − h

r2
Pϑ

)
êr + (

Ṗϑ + h

r2
Pr

)
êϑ . (19)

The primer vector equation in polar form (Eq. 14) combined with Eq. 16 and Eq. 19 gives
the derivatives of Pr and Pϑ ⎧⎪⎨

⎪⎩
Ṗr = 2μ

r3
pr + h

r2
Pϑ

Ṗϑ = − μ

r3
pϑ − h

r2
Pr

. (20)

To simplify the structure of the equations, two new variables can be defined:

σ �
r

l
≡ 1

1 + e cos ν

ω �
h

r2
= h

(lσ)2

, (21)

which satisfy also the following equivalence

σ · ω2 = r

l

h2

r4
= μ

r3
r

r

l

l
= μ

r3
(22)

where l = a(1 − e2) is the semi-latus rectum of the orbit (Battin 1999).
The new variables, linked together, give a new first order ODE set in [pr , pϑ , Pr , Pϑ ]:

⎡
⎢⎢⎣
ṗr
ṗϑ

Ṗr
Ṗϑ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 ω 1 0
−ω 0 0 1
2σω2 0 0 ω

0 −σω2 −ω 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
pr
pϑ

Pr
Pϑ

⎤
⎥⎥⎦ . (23)

Equation 23 can be represented in compact matrix format as

ṗpolar(t) = M(t)ppolar(t). (24)

123
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3.2 Palmer coordinates conversion and integration scheme

The system of Eq. 23 can be written in terms of the Hamiltonian:

HPV = 1

2
(Pr

2 + Pϑ
2) + ω(pϑ Pr − pr Pϑ) − 1

2
σω2(2pr

2 − pϑ
2). (25)

If HPV is compared to the one of Hill’s problem, HHill of Quinn et al. (2010), there is a
noticeable similarity:

HHill = 1

2
(px

2 + py
2) + Ω(ypx − xpy) − 1

2
Ω2(2x2 − y2). (26)

The substantial difference between the two Hamiltonian forms is that, while in HHill the
coefficient Ω is constant during the motion, in HPV both σ and ω vary in time. However,
for the circular orbit case (Hill’s problem), σ = 1 and ω = Ω , which implies a one-to-one
correspondence between the two Hamiltonians. This fact validates a fundamental result: for a
circular orbit transfer there is an analytic solution to the planar primer vector problem, which
is exactly the Hill’s solution.

For Hill’s problem, themotion of the in-plane state vector of Eq. 26, z = (Ωx, ẋ,Ωy, ẏ)T,
can be separated into two parts: an oscillation and a linear drift. This result is presented in
Palmer (2007), where the transformation of coordinates p̃ = Pz = (p1, p2, p3, p4)T on z
allows this separation to be explicit (as a note, the original notation of Palmer (2007) has
been changed to avoid confusion).

The combination of Eqs. 16, 25 and 26 results in the relationship between the state vector
z and ppolar:

{
x = pr
y = pϑ

;

{
px = Pr = ẋ − Ωy
py = Pϑ = ẏ + Ωx

⇒
{
ẋ = px + Ωy = Pr + ωpϑ

ẏ = py − Ωx = Pϑ − ωpr
(27)

where the frequency associated with z is Ω , while the one of ppolar is ω.
If the transformation of coordinates presented in Palmer (2007) is applied to the primer

vector problem (Eq. 27), it becomes
⎡
⎢⎢⎣

p1
p2
p3
p4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−3 0 0 −2
0 1 0 0
0 2 −1 0
2 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ωpr
Pr + ωpϑ

ωpϑ

Pϑ − ωpr

⎤
⎥⎥⎦ . (28)

3.2.1 Integration of the Palmer coordinates

The coordinates p̃ (also called Palmer coordinates) can be expressed as functions of
(pr , pϑ , Pr , Pϑ ) as shown in Eq. 28, where two couplings are evident: one between p1
and p4 and the other between p2 and p3.

If p̃ is first combined with the system of Eq. 23 and then differentiated with respect to
time (while σ , and therefore ω, are kept constant for small intervals of time), it yields

⎡
⎢⎢⎣
ṗ1
ṗ2
ṗ3
ṗ4

⎤
⎥⎥⎦ = ω

⎡
⎢⎢⎣

0 4σ − 3 −2(σ − 1) 0
2σ − 3 0 0 4(σ − 1)
4(σ − 1) 0 0 8σ − 5

0 −2(σ − 1) σ − 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
p1
p2
p3
p4

⎤
⎥⎥⎦ . (29)
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Fig. 1 Elliptical transfer orbit
divided into three regions (I, II,
III) according to the nature of the
eigenvalues λ1,2

±

From this system of equations, it is then possible to differentiate even further to a second
order system as⎡

⎢⎢⎣
p̈1
p̈2
p̈3
p̈4

⎤
⎥⎥⎦ = ω2

⎡
⎢⎢⎣

−(2σ − 1) 0 0 −2(σ − 1)
0 −(2σ − 1) 2(σ − 1) 0
0 −2(σ − 1) 3(σ − 1) 0

2(σ − 1) 0 0 3(σ − 1)

⎤
⎥⎥⎦

⎡
⎢⎢⎣
p1
p2
p3
p4

⎤
⎥⎥⎦ . (30)

In Eq. 30, the variables are coupled again (p1 with p4 and p2 with p3).
The structure of the problem allows to have a 4th order ODE in p1 in the form of

p1
IV − ω2(σ − 2)p1

II − ω4(σ − 1)(2σ + 1) = 0. (31)

Assuming that the coefficients of Eq. 31 are constant for a small interval of time, the
solution will be p1 ≈ eωλt .

The characteristic equation in λ of Eq. 31 is

λ4 − ω2(σ − 2)λ2 − ω4(σ − 1)(2σ + 1) = 0, (32)

whose solutions are

λ±
1 =

√
2

2ω

√
(σ − 2) ±

√
9σ 2 − 8σ

λ±
2 = −

√
2

2ω

√
(σ − 2) ±

√
9σ 2 − 8σ

. (33)

The nature of λ1,2
± depends upon the value of σ . If Δσ � 9σ 2 − 8σ , there are three cases

(the interval σ < 0 is not taken into consideration because it does not have any physical
meaning):

– Δσ > 0: σ > 8/9. λ1,2± can be either real (if sign
(
(σ − 2) ± Δσ

)
> 0) or imaginary

(if sign
(
(σ − 2) ± Δσ

)
< 0);

– Δσ = 0: σ can be either 0 or 8/9 and λ1,2
± are always imaginary;

– Δσ < 0: 0 < σ < 8/9 and λ1,2
± are generally complex.

In the case of an elliptic orbit the nature of the eigenvalues can be summarized, as in Fig. 1,
into three distinguished areas:

Area (I) 0 < σ < 8/9: corresponds to the case ofΔσ < 0, and includes the periapsis of the
transfer orbit, which is the pointwhereσ has itsminimumvalue,σmin = (1+e)−1.
In this interval the eigenvalues are complex.
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374 E. Iorfida et al.

Area (II) 8/9 ≤ σ < 1: corresponds to the case of Δσ > 0 with sign
(
(σ − 2) ± Δσ

)
< 0,

and the eigenvalues are imaginary. For σ = 1, that is r = l, λ1,2+ = 0 while
λ1,2

− are imaginary.
Area (III) σ > 1: corresponds to the case of Δσ > 0; λ1,2

+ are real, while λ1,2
− are

imaginary. At the apoapsis (included in this area) σ reaches its maximum value
σmax = (1 − e)−1.

For values of the eccentricity smaller than 1/8, Δ ≥ 0 and σ ≥ 8/9, therefore there is no
Area (I). In other words, the eigenvalues are either purely imaginary or real (Area (II) and
Area (III)).

After the aforementioned considerations, the complete solution of Eq. 31 can be derived,
and it simply is

p1 = Aeωλ+
1 t + Beωλ+

2 t + Ceωλ−
1 t + Deωλ−

2 t (34)

where A = (A, B,C, D)T is a vector of coefficients given by the initial conditions of p1.
The other components of p̃ can be evaluated as for p1, resulting in a formal matrix

expression
p̃ = Σ(σ )−1Ẽ(t, σ )−1A. (35)

Ẽ(t, σ ) is a diagonal matrix with independent exponential functions as elements of the
diagonal, functions of time t and ω(σ):

Ẽ =

⎡
⎢⎢⎢⎣
eωλ+

2 t 0 0 0

0 eωλ+
1 t 0 0

0 0 eωλ−
2 t 0

0 0 0 eωλ−
1 t

⎤
⎥⎥⎥⎦ , (36)

while Σ(σ ) is a polynomial matrix in σ , written as

Σ = (σ − 1)

(2σ + 1)
√

Δσ

⎡
⎢⎢⎣

(2σ + 1)ξ− −λ+
1 γ − λ+

1 δ− −(2σ + 1)
(2σ + 1)ξ− λ+

1 γ − −λ+
1 δ− −(2σ + 1)

−(2σ + 1)ξ+ λ−
1 γ + −λ−

1 δ+ (2σ + 1)
−(2σ + 1)ξ+ −λ−

1 γ + λ−
1 δ+ (2σ + 1)

⎤
⎥⎥⎦ . (37)

The parameters ξ±, γ ± and δ± are also only functions of σ and they are defined as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ± � [(−3σ + 1) ∓ √
Δσ ]

γ ± �
1

4(1 − σ)
[(24σ 2 − 25σ + 4) ± (8σ − 5)

√
Δσ ]

ξ± �
(5σ − 4) ± √

Δσ )

4(1 − σ)

. (38)

3.2.2 Conversion from time to true anomaly

The propagation process presented so far, is based on time as the integration variable. In
orbital dynamics it is sometimes more convenient to use true anomaly rather than time;
therefore, the variable conversion is

dν

dt
= ω ⇒ dν

ω
= dt ⇒ ν

ω
= t. (39)

Since both σ and ω have been considered constant along an integration step, the conversion
from time to true anomaly does not affect the solutions of Eq. 35, a part from a factor ω.
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Fig. 2 Step Propagation scheme
of ν and σ , with σ = const along
every interval of ν. A general kth
state is highlighted with the two
limiting values (k±) in red

The ODE of Eq. 29 can be converted into true anomaly as

p̃′ =

⎡
⎢⎢⎣

0 4σ − 3 −2(σ − 1) 0
2σ − 3 0 0 4(σ − 1)
4(σ − 1) 0 0 8σ − 5

0 −2(σ − 1) σ − 1 0

⎤
⎥⎥⎦ p̃, (40)

where the symbol ( ′ ) represents the derivative with respect to ν, and in compact form it is
equivalent to

p̃′ = Λp̃. (41)

This implies that the solution shown in Eq. 35 remains in the same form:

A = E(ν, σ )Σ(σ )p̃. (42)

The only difference appears in E, as

E(ν, σ ) =

⎡
⎢⎢⎢⎣
eλ+

2 ν 0 0 0

0 eλ+
1 ν 0 0

0 0 eλ−
2 ν 0

0 0 0 eλ−
1 ν

⎤
⎥⎥⎥⎦ (43)

where the exponents are explicit functions in ν. Through the transformation from time to
true anomaly, the importance of the Palmer coordinates is even more clear. In fact, using p̃
allows a solution which is a linear combination of the eigenvalues of the matrixM (Eq. 24).
This solution depends only on σ through the polynomial matrix Σ and the diagonal matrix
E, with an explicit propagation variable ν.

3.2.3 Matrices propagation scheme

Since Eq. 42 assumes that σ is constant for small interval of ν, it is required to apply a
‘double’ propagation for the Palmer coordinates. This means that every time that the true
anomaly is propagated to the next step, the corresponding value of σ must be updated, as
shown in the scheme of Fig. 2.

At the initial time the coefficients depend upon the initial value of the Palmer coordinates
as

A0 = E(ν0, σ0)Σ(σ0)p̃0. (44)

KnowingA0, p̃ can be propagated to the step ‘1’, but only just before the update of σ . In fact
the value of p̃ after the update will be different. To have a formal expression, this condition
can be considered at a generic kth propagation state (see Fig. 2), where the values of the
Palmer coordinates just before (p̃k− ) and after (p̃k+ ) the variation of σ are

p̃k− = Σ−1(σk−1)E−1(νk, σk−1)Ak−1 (45)

p̃k+ = Σ−1(σk)E−1(νk, σk)Ak (46)
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In the limit towards k, p̃k± are not the same because they depend on two different σ s.
However, for the primer vector the continuity must be guaranteed along the whole transfer
arc. For this reason, a simple propagation scheme (Fig. 2) has to be used, instead of a more
complex one (e.g. leapfrog method). In fact, it guarantees that a ‘continuity check’ on the
primer vector is executed at every update of σ .

From Eq. 28 a relationship between ppolar and p̃ can be derived

p̃ =

⎡
⎢⎢⎣

−ω 0 0 −2
0 ω 1 0
0 ω 2 0
ω 0 0 1

⎤
⎥⎥⎦ppolar ≡ K(ω)ppolar . (47)

ThematrixK(ω), depending onω, will be different before and after the update. Subsequently,
the relations between the Palmer coordinate and the primer vector at a generic kth step are

ppolar k = K−1(ωk−1)p̃k− (48)

p̃k+ = K(ωk)ppolar k . (49)

Combining Eqs. 48 and 49 gives the matrix which guarantees the continuity of the primer
vector, defined as Iωk :

p̃k+ = K(ωk)K−1(ωk−1)p̃k− � Iωk p̃k− . (50)

The procedure for the propagation of the Palmer coordinates from its initial conditions p̃0 to
a generic kth state can be then formalized as

p̃k =
(k−1∏
i=0

Iωi Σ
−1(σi )E−1(νi+1, σi )E(νi , σi )Σ(σi )

)
p̃0. (51)

In summary, Eq. 51 can be written in matrix form as

p̃k = Ψ (νk, ν0)p̃0. (52)

where Ψ (νk, ν0) represents the propagation matrix of the Palmer coordinates.
The final step of the scheme is to convert the Palmer coordinates back into primer vector

at the BC. Combining the definitions of Pr and Pϑ (Eq. 16) and Eq. 28, there is (where ptot
clearly refers to the the primer vector and its derivative with respect to time):

p̃ =

⎡
⎢⎢⎣

−3ω 0 0 −2
0 0 1 0
0 −ω 2 0
2ω 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
pr
pϑ

ṗr
ṗϑ

⎤
⎥⎥⎦ ≡ B(ω)ptot . (53)

Equations 52 and 53 together yield to

ptot f = B−1(ω f )Ψ (ν f , ν0)B(ω0)ptot 0 � Φ̃( f,0)ptot 0 (54)

where Φ̃( f,0) has been defined as the total propagation matrix of the primer vector.
Equation 54 summarizes the whole propagation scheme for the primer vector.
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3.2.4 Independence from the semi-major axis of the transfer orbit

The value of the ‘continuity’ matrix, Iω, defined in Eq. 50, is actually independent from the
explicit value of ω (and therefore from a) and it is equal to

Iωk =

⎡
⎢⎢⎣

(ωk/ωk−1 + 2) 0 0 (−2ωk/ωk−1 + 2)
0 (2ωk/ωk−1 − 1) (−ωk/ωk−1 + 1) 0
0 (2ωk/ωk−1 − 2) (−ωk/ωk−1 + 2) 0

(ωk/ωk−1 − 1) 0 0 (2ωk/ωk−1 − 1)

⎤
⎥⎥⎦ (55)

where the ratio ωk/ωk−1 can be found to be dependent only on the true anomalies before and
after the update (see definitions of ω and σ from Eq. 21)

ωk

ωk−1
=

( l · σk−1

l · σk

)2 =
( 1 + e cos(νk)

1 + e cos(νk−1)

)2
. (56)

Therefore, since l does not appear in any other terms of the matrices of Eq. 51, Ψ is not a
function of the semi-major axis of the transfer orbit.

On the contrary, by the definition of Eq. 53, B is linearly dependent on ω. This makes
Φ̃( f,0) to be a function of the initial and final values of ω in a ‘block-form’ as

Φ̃( f,0) = B−1(ω f )Ψ (ν f , ν0)B(ω0) ∝

⎡
⎢⎢⎣

1 1 (1/ω f ) (1/ω f )

1 1 (1/ω f ) (1/ω f )

ω0 ω0 1 1
ω0 ω0 1 1

⎤
⎥⎥⎦ . (57)

For the final solution of Eq. 54, it is necessary to have the complete initial state p0tot , but at
this stage of the procedure, the part concerning the derivative is not yet known.

A transformation of the primer vector components from the derivative with respect to
time, to the derivative with respect to true anomaly (as in Eq. 39) gives

dp

dt
= dp

dν

dν

dt
= dp

dν
ω. (58)

The product between the primer vector in true anomaly, which is ptot,ν0 = (pr0, pϑ0, ω0 p′
r0,

ω0 p′
ϑ0)

T and Φ̃( f,0) depends on ω as

Φ̃( f,0) · ptot,ν0 = ptot,ν f ∝

⎡
⎢⎢⎣

1 1 (ω0/ω f ) (ω0/ω f )

1 1 (ω0/ω f ) (ω0/ω f )

ω0 ω0 ω0 ω0

ω0 ω0 ω0 ω0

⎤
⎥⎥⎦ . (59)

Having ptot,ν f = (pr f , pϑ f , ω f p′
r f , ω f p′

ϑ f )
T , from Eq. 59 clearly pr f and pϑ f are inde-

pendent from the semi-major axis, since the ratio between the initial and final ωs of Eq. 59
is of the same form of Eq. 56. The last two rows of Φ̃( f,0) · ptot,ν0 of Eq. 59 are linear in ω0.
Since they respectively correspond to ω f p′

r f and ω f p′
ϑ f , this implies that the derivatives in

true anomaly of the primer vector are also both independent from a.
This is an important conclusion because it states that the primer vector and its derivative

are not influenced by the value of the semi-major axis of the transfer orbit. As a result, the
size of the search space is reduced and the optimization problem is simplified.
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Fig. 3 Geometric representation
of a co-planar departure
(eD, aD), transfer (eT , aT ) and
arrival (eA, aA) orbits case

4 Fixed transfer orbit and variable departure/arrival orbits

From the definition at the BC of the primer vector (Eq. 10), p0 and p f depend only on
the directions of the initial and final ΔVs, but they are independent from their magnitudes.
Therefore, a ‘natural’ application is to consider a problem where the ΔVs are parametrized
by their directions. In the case where the transfer, departure and arrival orbits are coplanar,
the in-plane components of the primer vector can be defined with respect to the orientation
of the two local polar reference frames at initial and final position, expressed through two
angles α and β:

p0 =
[
cosα

sin α

]

p f =
[
cosβ

sin β

] . (60)

If the transfer orbit is fixed (therefore also the velocities v0 and v f ), the departure and arrival
orbits vary according to the orientation (and magnitude) of the ΔVs (see Fig. 3).

In the local boundary polar reference frames there is

v0 = vr0êr0 + vϑ0êϑ0

v f = vr f êr f + vϑ f êϑ f
, (61)

while the ΔVs are
ΔV0 = ΔV0(cosαêr0 + sin αêϑ0)

ΔV f = ΔV f (cosβ êr f + sin β êϑ f )
. (62)

Defining vD and vA respectively as the velocity at r0 on the departure orbit and the velocity
at r f on the arrival orbit, they will be

vD = v0 − ΔV0 = (vr0 − ΔV0 cosα)êr0 + (vϑ0 − ΔV0 sin α)êϑ0

vA = v f + ΔV f = (vr f + ΔV f cosβ)êr f + (vϑ f + ΔV f sin β)êϑ f
. (63)

With a fixed transfer orbit, the total state transition matrix Φ̃( f,0) of Eq. 54 is fixed as well. In
addition, fixing the transfer orbit means fixing its eccentricity and its semi-major axis. This
implies that for this scenario the optimality can vary only if the directions of the ΔVs, α and
β, change. In an optimization process, such a problem has a 5 dimensional search space:
e, ν0 and ν f , which define the transfer orbit, and α and β, which define the BC on the ΔVs.
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Sequence of maximum values of primer vector maps for a fixed transfer orbit and increasing value of
ν f , versus α and β. The fixed parameters of the transfer orbit are e = 0.8, a = 0.95 DU, ν0 = 5 deg

Hence, the analysis can be approached differently, having restricted the problem to those 5
dimensions.

Lawden’s NCs state that the primer vector is equal to 1 at the BC and at each intermediate
impulse (Lawden 1963). In other words, for a trajectory to be optimal, p must be always
smaller than 1 along the arc and equal to 1 at the boundaries, where theΔVs are fired. Within
this scenario, a set of transfer orbits with the same eccentricity can be parametrized by, for
example, fixing the initial true anomaly and varying ν f .

Figure 4 illustrates the case where a fixed transfer orbit and fixed ν0 are considered. The
maps show the maximum value of the primer vector according to gradual increasing values
of ν f , for fixed e = 0.8 and ν0 = 5 deg. They are plotted in a complete interval (0–360 deg)
of α and β with a computational step of 5 deg.

As already explained, an optimal transfer will have an overall maximum value of the
primer vector equal to 1 (dark blues area in Fig. 4). Non-optimal trajectories have p > 1 and
therefore in Fig. 4 they are represented in colours (‘non-optimality islands’).

The problem is verywell structuredwith a precise geometry: for every specific ν f case, the
‘non-optimal’ islands have always the same dimension, shape and orientation. In particular
for small span of true anomalies the ‘non-optimal’ islands are very stretched but small in size,
therefore almost the whole map of Fig. 4a represents an optimal case. There are two main
motivations behind this result, one is that for small Δν, the modulus of the primer vector
does not change significantly. In fact, it starts and ends in 1 but its variation along the interval
is minimal due to the small span between the initial and final true anomaly. The other reason
can be found in the accuracy of the numerical computation (10−16). Therefore, in Fig. 4a it
can be seen that even ‘non-optimal’ islands have very low peak values.

Along the different plots shown in Fig. 4, the islands rotate and grow in size and eventually
merge for increasingly higher spans ofΔν. Themaximumvalue of the primer vector is always
located in the central area of the islands and it increases with an increasing interval of true
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Sequence of initial and final derivatives maps for a fixed transfer orbit and increasing value of ν f ,
versus α and β. The characteristics of the transfer orbit are e = 0.8, a = 0.95 DU, ν0 = 5 deg

anomalies. In fact, while in the case where Δν = 15 deg there is pmax ≈ 1, in the last case
(Δν = 175 deg), pmax ≈ 3. These kind of maps allow mission planners not only to visualize
the possibility to be in an optimal region but also to change the BC, represented either by the
direction of the thrusts (α and β) or by the true anomalies, to obtain an optimal transfer.

With the same kind of approach, a different scenario can be to exploit the boundary
derivatives of the primer vector. It is clear that for an optimal transfer, since the profile of
the primer vector has to be smaller than 1, the initial derivative must be negative while the
final derivative must be positive. This condition does not ensure that overall the primer vector
will be optimal, but it gives information on the possibility of having an optimal trajectory
and on the BC of the problem. On the other hand, if ṗ0 is positive and ṗ f is negative they
definitely define non-optimal trajectories. The expansions at first order of the initial and final
derivatives are {

ṗ0 ≈ ṗr0 pr0 + ṗϑ0 pϑ0

ṗ f ≈ ṗr f pr f + ṗϑ f pϑ f
, (64)

and they are shown in Fig. 5; specifically, ṗ0 is represented in Fig. 5a–c, whereas ṗ f in
Fig. 5d–f. As in Fig. 4, the structure of the maps of Fig. 5 is very well defined. These plots
are evaluated (as in the previous case) for fixed values of e = 0.8 and ν0 = 5 deg, while ν f

is increasing and α and β are defined in the interval from 0 deg to 360 deg.
For small true anomaly spans (ν f = 20.0 deg), both the derivatives have a sort of ‘stripe’

configuration, with opposite values. In fact, it is clear from Fig. 5a, d that ṗ0 > 0 and ṗ f < 0
and they reach a minimum value of ≈ −800 and ≈ +800 respectively. Therefore, the two
derivatives define the same boundary optimality areas. On the other hand, for larger Δν, ṗ0
and ṗ f tend to smaller absolute values and they both have positive and negative values.
Furthermore, as ν f increases, the two structures are no longer comparable: they move and
stretch tending, in the end, into two completely different scenario. At ν f = 180 deg, in fact,
the initial derivative has a vertical stripes structure (Fig. 5c), while the final derivative has
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Fig. 6 Departure (left-side) and arrival (right-side) orbits Keplerian elements (eccentricity and semi-major
axis) versus magnitudes of initial and final ΔVs and semi-major axis of the transfer orbits

Fig. 7 Primer vector profile, in
common to all departure and
arrival orbits of Fig. 6

well-defined rounded non-optimal areas (negative value, represented by dark blue and green
regions) which have the same size (Fig. 5f).

For both cases (Figs. 4, 5), the most interesting area of the map is represented when the
variables cross their critical boundary value (that is 1 for the primer vector and 0 for its
derivative). This aspect represents, in fact, the marginal conditions from which a trajectory
changes its optimality properties.

The important characteristic of the results presented so far is that they encompass an entire
set of orbits with same primer vector profile but different transfer orbits and BC. Specifically,
what is varying are the semi-major axis of the transfer orbit (atransf ) and the magnitudes of the
ΔVs at the beginning and at the end (therefore the departure and arrival orbits themselves).

An interesting complete scenario is represented in Fig. 6, where it is shown how e and
a of the departure and arrival orbits vary according to different magnitudes of ΔV0, f and
atransf . The fixed parameters are the 5 aforementioned dimensions of the search space: BC in
direction of ΔVs (α and β), eccentricity of the transfer orbit and BC in position (ν0 and ν f ).
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In this specific case the values are α = 30 deg, β = 60 deg, e = 0.5, ν0 = 5 deg and ν f =
180 deg. The simulations have been run with the Sun as central body, a set of semi-major
axes of the transfer orbit that goes from 0.01 AU to 1.0 AU and a set of magnitudes ofΔV0, f

that go from 1 to 80% of the magnitudes of v0, f (see Eq. 63).
On the left-hand side of Fig. 7 are the Keplerian elements of the possible departure orbits,

while on the right-hand side are the equivalent parameters for the arrival orbits. With the
chosen intervals of atransf and ΔV0, f , the eccentricities of the departure orbits result in a
possible variation from roughly 0.5 to 0.87, while the ones of the arrival orbits have higher
values (0.8–0.96). On the other hand the values of the semi-major axes of the two orbits are
roughly comparable, but their variation is different with respect to atransf and ΔV0, f .

The main conclusion of this result is that all kinds of departure and arrival orbits summa-
rized in Fig. 6 will meet the same objective, in fact they all correspond to the same primer
vector profile (shown in Fig. 7), that in this case is non-optimal.

In summary, this procedure gives a different approach to the primer vector theory and
allows one to pursue a complete analysis on entire classes of departure and arrival orbits with
common characteristics for specific fixed parameters of the transfer trajectory.

5 Conclusions

This paper shows how applying a reference system transformation to the primer vector
equation causes the de-coupling between the in-plane and out-of-plane coordinates. The
case when the transfer, departure and arrival orbits are co-planar is analyzed. Furthermore, a
coordinates transformation is applied with the support of the Hamiltonian of the equations.
The Palmer coordinates allow the simplification of the structure of the analysis and give a
complete analytical approximation which, given the boundary conditions of the problem, can
propagate the primer vector along the arc. For the circular transfer case, Hill’s solution is also
a solution for the primer vector problem. The primer vector is shown to be independent from
the semi-major axis of the transfer orbit and the mathematical complexity and computational
time of the problem are reduced. Furthermore, fixing the transfer orbit, it is established that
the dimensions of the search space can be reduced to 5. Two approaches to understand the
likelihood of the optimality of a specific set of transfers are examined in the paper, with
related optimality maps. Finally it is shown that a single profile of primer vector is related
to a set of departure and arrival orbits through the directions of the initial and final ΔVs and
the semi-major axis of the transfer trajectory. The simplicity of the new procedure allows the
exploitation of many other properties of the problem, not presented in this paper.
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