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Abstract Accuracy measures are derived for the proper relative extrema in the separation
distance function for co-periodic Kepler orbits. The conventional approach involves two
numerical iterative processes: the method for solving Kepler’s equation for the eccentric
anomaly, and the Newton–Raphson method for identifying times of the extrema. The sensi-
tivity of the accuracy of the solution to the conditioning of the case is determined for stress
tests including sequences of cases approaching a constant, then vanishing, separation. Invari-
ance under interchanged satellite labels, single- and double-precision codes, and condition
number estimates are compared to determine the number of justifiable digits.

Keywords Proper relative extrema · Co-periodic orbits · Satellite relative motion ·
Configuration manifold · Estimated condition number

1 Introduction

A requirement to determine extrema in the separation between satellites and times of their
occurrence arises in many contexts, from the avoidance of collisions to the establishment of
communications or other types of cross-links. An important subset are cases of co-periodic
orbits. For purely Kepler motion, when only a single epoch of input data is available, errors in
the predicted extrema due to real world perturbations will grow with time from the epoch to
the predicted times of the extrema. However, large numbers of satellites are in systems under
centralized command and control. Two examples are the Global Positioning System (GPS)
of thirty satellites in 12 h orbits, and the Tracking and Data Relay Satellite System (TDRSS)
of geosynchronous satellites, some of which may be collocated. A specialized treatment of
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any system must take advantage of available resources, which may include tracking data
collection hardware, orbit determination methodology, operational simulation software to
generate filtered high fidelity estimates of future orbital states, station keeping strategies, and
Monte Carlo representations of data collection errors. State variables estimated by numerical
integration of state transition matrices are variance/covariance uncertainty measures, and
several forms of six parameters describing the best estimate (having maximum likelihood) of
the position and velocity, or their equivalents, of the center of mass of each satellite at any time.
The simple Kepler model employed here can be added to the operational software (OS) of
these systems. To limit the growth of errors in the predicted extrema due to perturbations, the
OS states of motion would determine algorithm inputs for an early epoch, and the algorithm’s
initial estimates of the times of the extrema during the next period would be used by the OS to
simulate states of motion in neighborhoods of those times. An iterative process, again using
this algorithm, would lead to predictions of extrema and of the conditioning of the algorithm
for the case considered, reflecting the fidelity of the OS.

In contrast the problem of non co-periodic two-satellite relative motion is of interest
in studies of the increasing risk of collisions among debris and functional satellite assets
(Klinkrad 2006). Several examples will illustrate the powerful methods that have been applied
to this more general problem.

A two dimensional invariant manifold, embedded in three dimensional configuration
space, to which any solution is confined for the general problem of two arbitrary Kepler
elliptical orbits is determined by Gurfil and Kholshevnikov (2006). The manifold is invariant
because any solution starting on it will remain and evolve on it. Five examples are explicated.
The first illustrates the construction of a relative motion manifold, while others determine
separation extrema. The square of the separation function is expressed in terms of the leader
satellites’s eccentric anomaly at which a relative extreme separation is reached. These anom-
alies are determined from the roots of a trigonometric polynomial of degree 8. In each of these
examples degenerate features allow reduction of the order of the polynomial, and solutions
are straightforward. For general cases in which the full 8 degree polynomial must be solved
the reader is referred to Vassiliev and Kholshevnikov (1999).

A trigonometric polynomial representation of the square of the separation function, of
order no less than 8 in the angular variable determining position on one ellipse, is derived
by Vassiliev and Kholshevnikov (1999). The roots of this polynomial are the critical points
(angular variable values). Reference is made to an earlier article by one of them (Vassiliev) in
which a polynomial with this property was found of degree 16. Imposing the critical condition
on the separation function is shown to be equivalent to the vanishing of three trigonometric
polynomials in the sine and cosine of the critical angular variable. These polynomials are
identified as elements of a ring of polynomials with real coefficients depending on the orbital
elements. Using the MAPLE system of computer algebra a Gröbner basis is constructed
for the ideal consisting of the polynomials of the ring which vanish. Of the 21 polynomials
comprising this basis only one is independent of the follower’s angular variable, which proves
that it coincides with the candidate trigonometric polynomial. A property of the Gröbner basis
shows that its leading term is of eighth order. This establishes a range for the number of real
roots from 4 to 16. The authors experimented with different orbits, were not able to find a
case in which the number of real roots is as high as 16, and assert that the upper bound is
still to be determined. Some degenerate cases were considered and proved consistent with
simpler interpretations admitted by the degeneracy. The authors claim that unlike traditional
iterative schemes this method is insensitive to the occurrence of close multiple roots.

Maruskin (2010) derives a closed form for the distance function in a topology in which
two spheres constitute the configuration manifold for the space of bounded orbits of constant
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energy. The topology is that of a cone passing through the direct product of the two spheres,
and results in a five-dimensional manifold embedded in R6. Analytic steps lead to an expres-
sion for the separation function in terms of orbital elements. See also Kholshevnikov (2008)
for development of the topology and properties of another abstract space representation of
the general solution.

The methods of Gurfil and Kholshevnikov (2006), Vassiliev and Kholshevnikov (1999),
Maruskin (2010) and Kholshevnikov (2008) are algebraically determinate, and involve no
explicit dependence on iterative or sampling processes. A treatment of the general case of two
arbitrary closed or open Keplerian orbits is that of Armellin et al. (2010). A global optimizer
(COSY-GO) based on Taylor model methods results in a “rigorous enclosure of the global
minimum of the objective function[s]”, and is applied effectively to the Potentially Hazardous
Asteroid (PHA) Apophis. A pair of nonlinear equations for the critical point anomalies is
derived, and orbital parameters are treated as interval sets to allow consideration of orbit
determination uncertainties and osculation of the elements. Future work planned by the
authors will increase the rigor of the analysis by taking account of the interval part of the
Taylor model, a further challenge, given the necessity of implementation in floating point
arithmetic, which does not have uniform intervals. These authors provide a generous set of
references on this subject.

This study is conventional, involves a sampling strategy to locate initial estimates of the
critical points, and the Newton–Raphson method to converge on final estimates. Analytical
forms for the first and second derivatives of the squared separation are required. The literature
relating to this approach is too vast, long-established, and well-known to readers of this journal
to describe.

The objective is a methodology to determine the number of digits justified for any co-
periodic case. This generality bespeaks a treatment to determine the conditioning of the
algorithm rather than a detailed treatment of an actual satellite system’s uncertainties. The
condition number estimate is a measure of the sensitivity of the solution to the data upon
which the predictions depend. For example, an estimated condition number on the order of
109 would reduce by nine the number of significant digits of the solution compared to the
maximum number expected in the absence of ill-conditioning. The effect of perturbations on
the condition numbers is beyond the scope of this article. The Kepler motion model leads to
ill-conditioning in those cases for which some Kepler elements become indeterminate, i.e.,
those in which the inclination and/or eccentricity vanish. A possible similar algorithm based
on equinoctial elements (Battin 1999) (p. 490) should achieve better conditioning in some
of those cases, and may be the subject of a future study to complement this one.

Convenience will be served by reference to proper local extrema: “A function f : R → R
is said to have a proper (or strict) local maximum at p in R provided there exists ε > 0 such
that if 0 <| x − p |< ε, then f (x) < f (p)′′ (Posey and Vaughan 1986). This definition
differs from that of local extrema for which f (x) ≤ f (p). It is a functional definition because
in a series of cases, as one of constant separation is approached the number of proper relative
extrema vanishes instead of becoming infinite by definition. In what follows “proper relative
extrema” often will be shortened to “extrema”.

Section 2 summarizes Kepler solution formulae for the one fixed center problem, in which
the mass of a satellite is negligible compared to a point mass at the origin of the inertially non-
rotating reference frame (Battin 1999) (p. 109, footnote). In Sect. 3 an equation of constraint
between two parameters is derived. Either of these may be considered among the eight
defining a case and is included to facilitate applications to geosynchronous orbits. Section 4
derives formulae for the square of the separation function and its first two derivatives with
respect to the time-like mean argument of latitude of satellite number 1. Section 5 expresses
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the form taken by the Newton–Raphson method. In Sect. 6 a baseline is established, the
condition number estimation method is expressed, and test results are reported. Conclusions
are in Sect. 7. Appendix A describes two arbitrarily chosen cases. Electronic Supplementary
Material consisting of the following are linked to the online version of this article: The first
file is a “pseudo-code”, intended to show the architecture of the coded algorithm. The other
files contain input files, the gfortran code source file, and an output file all suitable to be
downloaded and merged with user codes.

2 Kepler’s laws

Since the motion of a single satellite in the fixed center problem requires 6 classical orbital
elements (or their equivalents), the relative motion of two satellites requires 12. Imposing the
co-periodic condition reduces this to 10, first because the two semi major axes become one,
and second, because the difference between the mean anomalies must be constant at all times,
implying that only the single difference between the mean anomalies at the epoch is required.
Furthermore, only the magnitude of the separation vector is needed. Since this is invariant
under rotations of the reference frame, only the difference between the right ascensions of
the nodes is required, which reduces the number of parameters to 9. While this is true when
the separation distance is expressed in conventional units, the semi-major axis is a scaling
factor, and later will be chosen as the unit of length. By dividing out this scaling factor and
understanding that it is the unit of length, the algorithm will depend on eight independent
parameters. Seven are straightforward orbital elements or differences between them. The
eighth can be either of two parameters, subject to a constraint.

This algorithm will be tested by approaching one case known to cause certain classical
elements to become indeterminate: that of co-orbital circular motion. This is a region of the
domain of the algorithm’ s inputs for which ill-conditioning should occur. Here no greater
effort is made to characterize the behavior of this condition number estimator over the eight
dimensional domain of inputs.

Because the motion is periodic, the number of proper relative extrema in one period will
always be even, and in the form of minimum/maximum pairs.

Conventional symbols for the orbital elements are used, except that the symbol for the
semi major axis will be rc instead of a. The symbols for the right ascension of the ascend-
ing node, inclination, argument of perigee, eccentricity and true anomaly are, respectively,
Ω j , i j , ω j , e j , and ν j , where the j (= 1, 2) index distinguishes satellites 1 and 2. The mean
argument of latitude is the sum of the mean anomaly and the argument of perigee. For exam-
ple, the mean argument of latitude of satellite 2 is M2 + ω2, where M2 is the mean anomaly
of satellite 2. Summarizing: the derivation identifies seven of the independent parameters as:
the difference between the right ascensions of the ascending nodes, δΩ = Ω2 −Ω1, the two
inclinations, the two arguments of perigee, and the two eccentricities. The eighth parameter
is either the difference between the mean arguments of latitude, called δ, or the difference
between the mean equator crossing longitudes, which will be called δξ0.

The separation function and its derivatives are expressed in terms of well-known explicit
functions of the true anomalies and arguments of latitude, u j = ν j + ω j . Since the method
requires the derivatives of the separation function with respect to time, and since the true
anomalies and arguments of latitude are related to the time-like mean anomalies by Kepler’s
transcendental equation, this equation, the method for its solution and other necessary clas-
sical element results will be stated next in terms of these symbols.
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Kepler’s second law expresses the orbit as an ellipse with one focus at the center of
attraction, and polar coordinates r and ν. In this section the j subscripts will not be needed
since only one satellite is involved. However, subscripts will return temporarily to indicate
the order of corrections for the iterative process.

Standard texts such as (Moulton 1956) derive the following equation relating the true
anomaly to E , the eccentric anomaly:

tan ν/2 = √
(1 + e)/(1 − e) tan E/2. (1)

This determines the true anomaly once the eccentric anomaly is known. Given a time and
corresponding mean anomaly, Kepler’s equation,

M = E − e sin E (2)

allows the calculation of E . Of the many methods available for solving Kepler’s equation, that
of Lagrange (Battin 1999) (p. 202, equation (5.17)) is used to find an initial approximation
to E in terms of M , which includes terms to the seventh power in the eccentricity. While for
eccentricities greater than 0.6624.., the Lagrange series is known not to converge for some
values of M , this is not a problem here since only an initial estimate is needed, only the first
seven terms are retained, and the following iterative procedure will provide convergence.

To this first approximation to E, E0, there corresponds a value of M , called M0, which is
determined by Kepler’s equation as M0 = E0 − e sin E0. The remaining steps are described
in reference (Moulton 1956) (p. 162), where a Taylor series expansion of M about M0 in
powers of E − E0 leads to the iterative procedure for improving the estimate of E until the
correction satisfies a smallness tolerance criterion called τk at which the iterations stop.1

Two final standard results required in what follows in Sect. 4 are the second integral of
the motion expressing the conservation of (specific) orbital angular momentum as

r2dν/dt =
√

rcμ(1 − e2), (3)

and Kepler’s harmonic law expressing the mean orbital angular speed as

d M/dt =
√

μ/r3
c , (4)

where μ is the product of the mass at the center of attraction and the universal gravitational
constant.

3 Equation of constraint

An equation of constraint exists between the difference of the mean equator crossing longi-
tudes and the phase angle, or difference of the mean arguments of latitude. It can be derived
as follows. Let the Earth be the center of attraction and consider a right handed Earth centered
reference frame called the C-frame, which rotates with respect to inertial space at the mean
orbital rate about the Earth’s polar axis. The ZC axis is toward the north celestial pole, and, at
the epoch, the XC axis is toward the zero longitude point on the equator. For geosynchronous
orbits this frame is identified with the conventional Earth-fixed frame in which the XC axis
is toward the zero longitude point on the equator at all times. Let H be the angle between
the XC axis and the direction of the vernal equinox. For geosynchronous orbits H is the

1 The choice of τk is discussed in Sect. 6. In Sect. 5 another tolerance criterion will be introduced to terminate
the Newton–Raphson iterations, and it will be called τn .
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Greenwich hour angle of the vernal equinox. Let the longitude-like coordinate be called ξ .
For geosynchronous orbits ξ is the longitude. Let ξ0 j represent the mean equator crossing ξ

coordinate of the jth satellite. That is, if ξ↑ j and ξ↓ j are, respectively, the ξ coordinates of
satellite j when it crosses the equatorial plane from south to north and from north to south
during one orbital period, then

ξ0 j = 1/2(ξ↑ j + ξ↓ j ). (5)

Given the definition of H , the ξ coordinates of the ascending and descending nodes can be
written

ξAN j (t) = Ω j − H(t),

ξDN j (t) = π + Ω j − H(t).
(6)

Let the time dependence of H and M1 be expressed as H(t) = H(0) + u̇′t and M1(t) =
M1(0)+u̇′t , where u̇′ represents both the common mean orbital rate of the satellites (identified
by Eq. 4 as

√
μ/r3

c ), and the rate at which the C-frame rotates about the north polar axis.
Solving the second equation for u̇′t and substituting into the first yield H(t) = H(0) +
M1(t) − M1(0) which allows Eqs. 6 to become

ξAN j (t) = Ω j − H(0) + M1(0) − M1(t),

ξDN j (t) = π + Ω j − H(0) + M1(0) − M1(t).
(7)

Representing the times of ascending and descending nodal passages by t↑ j and t↓ j , Eqs. 7
imply that

ξ↑ j = ξAN j (t↑ j ) = Ω j − H(0) + M1(0) − M1(t↑ j ),

ξ↓ j = ξDN j (t↓ j ) = π + Ω j − H(0) + M1(0) − M1(t↓ j )
(8)

By the definition of δ, M1(t↑2) and M1(t↓2) in Eq. 8 can be replaced by M2(t↑2)+ω2−ω1−δ

and M2(t↓2) + ω2 − ω1 − δ, respectively, resulting in

ξ↑2 = Ω2 − H(0) + M1(0) − M2(t↑2) − ω2 + ω1 + δ,

ξ↓2 = π + Ω2 − H(0) + M1(0) − M2(t↓2) − ω2 + ω1 + δ.
(9)

At t↑ j or t↓ j the arguments of latitude become 0 or π , and the true anomalies −ω j or π −ω j .
Equation 1 yields the corresponding eccentric anomalies, and Eq. 2 the mean anomalies on
the right of the j = 1 case of Eqs. 8 and on the right of Eq. 9. Substituting from the j = 1
case of Eqs. 8 and from Eqs. 9 into Eq. 5 yields:

ξ01 = π/2 + Ω1 − H(0) + M1(0) − [M1(t↑1) + M1(t↓1)]/2.

ξ02 = π/2 + Ω2 − H(0) + M1(0) − [M2(t↑2) + M2(t↓2)]/2 − ω2 + ω1 + δ.

Since δξ0 = ξ02 − ξ01, the last two equations lead to the constraint:

δξ0 = δ + δΩ − ω2 + ω1 − [M2(t↑2) + M2(t↓2) − M1(t↑1) − M1(t↓1)]/2. (10)

For geosynchronous motion δξ0 can be chosen as the eighth given parameter, and Eq. 10
can be solved for δ. This constraint is not meaningful for vanishing eccentricities and/or
inclinations.

Each satellite’s equatorial plane crossings’ ξ coordinates (longitudes) are required to be
within that satellite’s assigned “longitude box”. Substituting from the j = 1 case of Eq. 8
and from Eq. 9 the differences are δξ j = ξ↓ j − ξ↑ j = π − M j (t↓ j ) + M j (t↑ j ). To second
order in the eccentricities, this becomes δξ j = 4e j sin ω j .
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4 Separation function and derivatives

Let ρ be the separation distance between satellites 1 and 2. Then,

(ρ/rc)
2 = (r2 − r1) · (r2 − r1)/r2

c ,

where r j are the position vectors relative to the center of attraction. Let the unit of length be
rc by redefining the symbols for the magnitudes, r j , to represent the ratio of the magnitudes
to rc. Then the last equation can be rewritten as ρ2 = r2

2 + r2
1 − r2r12r̂2 · r̂1, where the hats

signify unit vectors. To simplify the notation, let

A = r2
2 + r2

1 ,

B = r2r1,

C = 2r̂2 · r̂1,

(11)

so that ρ2 becomes

ρ2 = A − B·C. (12)

Recall that the independent variable is time, and that for any time the mean anomalies are
known. Therefore, as shown in Sect. 2, the true anomalies and arguments of latitude are to be
considered implicit functions of time. The radial coordinates are implicit functions of time
by virtue of the equation of the ellipse expressed in units of rc as

r j = (1 − e2
j )/(1 + e j cos ν j ). (13)

Both position unit vectors are expressed in the conventional right-handed Earth-centered
inertial frame, the I-frame, in which the X I axis is toward the vernal equinox, and the Z I

axis is toward the north celestial pole. The result is (Battin 1999 Problem 3-21 page 125):

r̂(I )
j =

⎛

⎝
cos Ω j cos u j − cos i j sin Ω j sin u j

sin Ω j cos u j + cos i j cos Ω j sin u j

sin i j sin u j

⎞

⎠ . (14)

The first step is to differentiate A, B and C as defined by Eq. 11 each, twice, with respect to
time. Then the Newton–Raphson procedure is used to find the extrema of ρ as those values
provided by Eq. 12 at the times when the first time derivative of ρ2 vanishes.

Since the semi-major axes are the same, the mean anomalies, M j , have the same propor-
tionality to time, and can be treated as equivalent stand-ins for time. Specifically, given Eq. 4
for the mean orbital rate the time differentiation operator can be written:

d/dt = (d M j/dt)(d/d M j ) =
√

μ/r3
c d/d M j , (15)

Therefore, common factors of d M j/dt can be divided out of any result of differentiation
with respect to time. Given the redefinition of r j stated in the first paragraph of this section
an expression for du j/d M j follows from Eq. 3. Dividing that expression throughout by r2

c
and recalling Eq. 4 yield the following form in length units of rc:

r2
j dν j/d M j = r2

j du j/d M j =
√

1 − e2
j . (16)
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It will be convenient to introduce a special symbol, u′, for the mean argument of latitude of
satellite 12:

u′ = M1 + ω1.

Since δ is the difference between the mean arguments of latitude (δ = (M2 + ω2) − u′),

d/d M1 = d/d M2 = d/du′. (17)

The choice of u′ as the time-like independent variable implies that the true anomalies are
determined by solving Kepler’s equation. Consider A. By the first of Eqs. 11:

d A/du′ = 2
[
r2dr2/du′ + r1dr1/du′] . (18)

By Eqs. 13 and 16 the dr j/du′ factors in the last result become

dr j/du′ = e j sin ν j

/√
1 − e2

j . (19)

Substituting into Eq. 18 yields

d A/du′ = 2

[
r2e2 sin ν2

/√
1 − e2

2 + r1e1 sin ν1

/√
1 − e2

1

]
. (20)

The result for the first derivative of B is

d B/du′ = r2e1 sin ν1

/√
1 − e2

1 + r1e2 sin ν2

/√
1 − e2

2. (21)

Differentiation of Eq. 20 yields (again using Eqs. 13 and 16):

d2 A/du′2 = 2

⎛

⎜
⎝

⎡

⎣ e2 sin ν2√
1 − e2

2

⎤

⎦

2

+
⎡

⎣ e1 sin ν1√
1 − e2

1

⎤

⎦

2

+ e2 cos ν2

r2
+ e1 cos ν1

r1

⎞

⎟
⎠ . (22)

Similar use of Eqs. 16, 17 and 19 applied to the result of differentiating Eq. 21 yields:

d2 B/du′2 = r2

r2
1

e1 cos ν1 + r1

r2
2

e2 cos ν2 + 2
e2e1 sin ν2 sin ν1√

1 − e2
2

√
1 − e2

1

. (23)

Using Eq. 14 in C = 2r̂1 · r̂2 yields a sum of four terms each of which contains one of the
following four forms as a common factor: sin u2 sin u1, sin u2 cos u1, cos u2 sin u1, cos u2

cos u1. The products of sines and cosines of the nodes appear in forms like sin Ω2 sin Ω1 +
cos Ω2 cos Ω1, and by trigonometric identities become sines and cosines of δΩ = Ω2 −Ω1.
Trigonometric identities such as sin u2 cos u1 = [cos (u2 + u1) + cos (u2 − u1)]/2 lead to a
new expression with four new terms, each involving a factor of a sine or cosine of either the
difference u2 − u1, or the sum u2 + u1. With the following definitions,

g = −(cos i2 + cos i1) sin δΩ,

h = (1 + cos i2 cos i1) cos δΩ + sin i2 sin i1,

m = −(cos i2 − cos i1) sin δΩ,

n = (1 − cos i2 cos i1) cos δΩ − sin i2 sin i1,

(24)

the result is

C = g sin (u2 − u1) + h cos (u2 − u1) + m sin (u2 + u1) + n cos (u2 + u1). (25)

2 Recall that the time derivative of u′, u̇′ was introduced following Eqs. 6.
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Note that C is form invariant for co-periodic and non co-periodic orbits. Differentiating
Eq. 25 and using Eqs. 15 and 16 yield

dC/du′ = (g cos (u2 − u1) − h sin (u2 − u1))

[√
(1 − e2

2)/r2
2 −

√
(1 − e2

1)/r2
1

]

+(m cos (u2 + u1) − n sin (u2 + u1))

[√
(1 − e2

2)/r2
2 +

√
(1 − e2

1)/r2
1

]
.

(26)

Differentiation of the last expression and substitution from Eqs. 16 and 19 yield

d2C/du′2 = −2(g cos (u2 − u1) − h sin (u2 − u1))
[
e2 sin ν2/r3

2 − e1 sin ν1/r3
1

]

−2(m cos (u2 + u1) − n sin (u2 + u1))
[
e2 sin ν2/r3

2 + e1 sin ν1/r3
1

]

−(g sin (u2 − u1) + h cos (u2 − u1))

[√
1 − e2

2/r2
2 −

√
1 − e2

1/r2
1

]2

−(m sin (u2 + u1) + n cos (u2 + u1))

[√
1 − e2

2/r2
2 +

√
1 − e2

1/r2
1

]2

.

(27)

5 The Newton–Raphson method

The nine functions derived in the last section for A, B, and C and their first and second
derivatives with respect to u′, (the first two of Eq. 11, and Eqs. 20, 21, 22, 23, 25, 26
and 27) will be used in applying the classical Newton–Raphson method to locating the
relative extrema of ρ2. Equation 12 implies that

ρ2 = A − B·C,

dρ2/du′ = d A/du′ − C ·d B/du′ − B·dC/du′,
d2ρ2/du′2 = d2 A/du′2 − 2d B/du′·dC/du′ − d2 B/du′2·C − B·d2C/du′2.

(28)

The Newton–Raphson method requires initial approximations to the values of u′ for which
dρ2

du′ passes through zero. As noted in Sect. 1 branch-and-bound optimizers utilizing domain
reduction methods (Armellin et al. 2010) and employing the techniques of interval analysis
(Moore et al. 2009) also have been used to locate these critical points. The author has chosen
instead to rely upon the conventional sampling method described in this section. It is simple
and fails only if the limit of the arithmetic precision of the host software is approached either

while locating the neighborhood of u′ in which the sign of dρ2

du′ changes or in estimating
a proper relative extreme separation. Before describing this sampling method the limiting
case of near circular motion will be mentioned. In that case the above formulae imply that a
solution is

u′
10 = 1/2 (arctan(m/n) − δ) ,

where m and n are given by Eqs. 24. This results because for circular orbits r1 = r2 = 1 and
C reduces to g sin δ + h cos δ + m sin (2u′ + δ)+ n cos (2u′ + δ). Equating the derivative of
the resulting form for ρ2 to zero implies that m cos (2u′ + δ) = n sin (2u′ + δ) and leads to
this estimate of one of the critical points. Since the orbits are circular the approximations to
the other three critical points differ from this approximation by π/2, π , and 3π/2 radians.
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Initial approximations are found by sampling the values of dρ2

du′ , and identifying those u′ at
which this rate of change changes sign. The sampling is at intervals of 1/8 degree of the true
anomaly of satellite 1 and over the 360 degree range of ν1. To each such initial approximation

to the true anomaly at which the sign of dρ2

du′ changes there corresponds a value of u′. Let the
initial approximations to u′ found in this way be called u′

k0, where k = 1, 2, 3, ...kmax .
Consider a Taylor series expansion of dρ2/du′ about any one of these points:

dρ2/du′]
u′=u′

k
= dρ2/du′]

u′=u′
k0

+ d2ρ2/du′2]
u′=u′

k0
(u′

k − u′
k0) + ...,

where u′
k represents the correct location of the kth zero of dρ2

du′ . The classical Newton–Raphson
method proceeds by dropping the terms of second and higher order in u′

k − u′
k0, setting the

left side to zero, letting u′
k1 be the new estimate of u′

k on the right, and solving for u′
k1, which

yields:

u′
k1 = u′

k0 − dρ2

du′
/d2ρ2

du′2

]

u′=u′
k0

. (29)

Equation 28 now can be reevaluated at u′ = u′
k1, and a second correction calculated by

Eq. 29, where u′
k1 and u′

k0 are replaced, respectively, by u′
k2 and u′

k1. This is repeated until
the absolute value of the correction becomes smaller than the tolerance, τn . The choice of τn

and τk (see footnote 1) will be discussed in the next section.

6 Conditioning estimates

Following a description of the condition number formulation, coded equations are derived,
and a baseline and strategy are developed for estimating the accuracy of solutions. Two tests
demonstrate the strategy: In the first the limit of a sequence of decreasingly eccentric cases is
that of co-planar circular orbits with δ = 1 degree. In a second sequence δ = 0. The second
test involves highly eccentric orbits.

Adopting the conventions of Higham, (cf. pp. 462 ff) (Higham 2002) the input data vector
is called d j , j = 1, ..8 , where

dT = (d1, d2, .., d8)
T = (δ, δΩ, i1, i2, ω1, ω2, e1, e2)

T . (30)

Because the conditioning of the u′
k and ρk (k = 1, .., kmax ) differ two solution vectors are

defined as

f T
u′ (d) = ( fu′1(d), ... fu′kmax (d))T = (u′

1, ..., u′
kmax

)T

f T
ρ (d) = ( fρ1(d), ... fρkmax (d))T = (ρ1, ..., ρkmax )

T . (31)

In the spirit of Higham functions Fu′(xu′ ; d) and Fρ(xρ; d) are defined as

Fu′(xu′ ; d) = xu′ − fu′(d)

Fρ(xρ; d) = xρ − fρ(d),
(32)

where Fu′(xu′ ; d) = 0 and Fρ(xρ; d) = 0 are satisfied by x∗
u′ = fu′(d) and x∗

ρ = fρ(d)

respectively. Higham concludes that the condition numbers are [his equation (25.11)]:

cond(Fu′ , x∗
u′ ; d) = ||Fu′x (x∗

u′ ; d)−1 Fu′d(x∗
u′ ; d)||(||d||/||x∗

u′ ||)
cond(Fρ, x∗

ρ; d) = ||Fρx (x∗
ρ; d)−1 Fρd(x∗

ρ; d)||(||d||/||x∗
ρ ||), (33)
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where Fu′x and Fρx are Jacobians of partial derivatives of components of Fu′ and Fρ with
respect to components of xu′ and xρ , and Fu′d and Fρd are Jacobians of partial derivatives of
components of Fu′ and Fρ with respect to the components of d . Therefore, by Eqs. 32 each
of Fu′x and Fρx is the kmax × kmax identity matrix. Let J u′

and Jρ represent Fu′d(x∗
u′ ; d)

and Fρd(x∗
ρ; d) so that the last two equations become

cond(Fu′ , x∗
u′ ; d) = ||J u′ ||(||d||/||x∗

u′ ||)
cond(Fρ, x∗

ρ; d) = ||Jρ ||(||d||/||x∗
ρ ||). (34)

Explicitly, the elements of the Jacobians are

J u′
i j = ∂ Fu′i/∂d j

]
xu′=x∗

u′
= − ∂ fu′i (d)/∂d j

]
xu′=x∗

u′

Jρ
i j = ∂ Fρi/∂d j

]
xρ=x∗

ρ
= − ∂ fρi (d)/∂d j

]
xρ=x∗

ρ
.

(35)

The“2-norm” or Euclidean length is chosen for the norms of d , x∗
u′ and x∗

ρ . Therefore,

‖d|| =
⎡

⎣
8∑

j=1

|d j |2
⎤

⎦

1/2

,

‖x∗
u′ || =

[kmax∑

i=1

|x∗
u′i |2

]1/2

,

‖x∗
ρ || =

[kmax∑

i=1

|x∗
ρi |2

]1/2

.

(36)

Using Frobenius norms, i.e.: ||J u′ ||F = [trace(J u′∗ J u′
)]1/2 and ||Jρ ||F = [trace(Jρ∗

Jρ)]1/2 in Eq. 34 results in

cond(Fu′ , x∗
u′ ; d) = [trace(J u′∗ J u′

)]1/2||d||/||x∗
u′ ||,

cond(Fρ, x∗
ρ; d) = [trace(Jρ∗ Jρ)]1/2||d||/||x∗

ρ ||. (37)

The matrices J u′
and Jρ of Eqs. 35 are determined by differencing the results of executing

the algorithm with sequential offsets of each element of the data vector, d . Centered finite
differencing for the partial derivatives involves the following steps: Invoke the Kronecker
delta symbol and define the j th element of the data vector for positive and negative offsets
of the lth element of the data vectors as

pdl
j = d j + εdδl

j

mdl
j = d j − εdδl

j ,
(38)

Let the i th element of the resulting solution vectors be

p f l
u′i = fu′i (pdl),

m f l
u′i = fu′i (mdl),

p f l
ρi = fρi (pdl),

m f l
ρi = fρi (mdl).

(39)
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By Eqs. 35 the centered finite difference approximations to the Jacobians become
(Abramowitz and Stegun 1964) (p. 883, formula 25.3.21)

J u′
i j = −∂ fu′i/∂d j = −

(
p f j

u′i − m f j
u′i

)
/2εd ,

Jρ
i j = −∂ fρi/∂d j = −

(
p f j

ρi − m f j
ρi

)
/2εd .

(40)

These Jacobians have kmax rows and 8 columns.
The choice of εd is half the square root of the Fortran numeric inquiry function called

EPSILON. On an IEEE compliant iMac in double-precision that is about 7.45 × 10−9. This
is a good strategy in this case because differences are required of almost equal quantities.
The estimates of the condition numbers should be of the correct order of magnitude and can
afford to lose many significant digits. Substitutions from Eqs. 40 for the Jacobians, and from
Eqs. 36 for ||d||, ||x∗

u′ || and ||x∗
ρ || into Eqs. 37 yield the condition numbers of fu′ and fρ .

Higham (2002) states that “Accuracy refers to the absolute or relative error of an approx-
imate quantity. Precision is the accuracy with which the basic arithmetic operations +,-,*,/
are performed, and for floating point arithmetic is measured by the unit roundoff u”. Since
the unit roundoff is half the EPSILON intrinsic function introduced in the last paragraph,
about 1.1×10−16 on the iMac in double precision, the number of significant digits in the data
may be taken as 16, and neither tolerance can be chosen smaller than 10−16. Because there
is no reason to impose a smaller tolerance on the stopping of the Kepler equation solver than
on the stopping of the Newton–Raphson iterator the same choice is made for τk and τn . The
solutions will have fewer than sixteen significant digits because they are generated by the
algorithm, and it is characterized by less than perfect conditioning. (Perfection would mean
the condition number estimates would be one.) A baseline case for identifying the highest
accuracy possible is necessary. It involves the important parts of the code, presents no special
difficulty in converging on solutions, and is determined by the data in Table 1, which also
includes the tolerances, “earth rate factor”, initially sampled satellite 1 true anomaly and
sampling interval. The rate factor, per f , multiplies the earth rate physical constant, ω⊕, and
determines the scale factor rc. For example setting per f to unity results in

rc = [
μ/(per f · ω⊕)2]1/3 = 42164.174420503 km,

where ω⊕ and μ are:

ω⊕ = 7.292115145999999 × 10−05 rad/s,

μ = 398600.5 km3/s2.

These physical parameters only determine the scale factor. The accuracy estimates are based
on the normalized units in which the angles and separations are respectively in radians and
rc units. In this sense the accuracy estimates do not depend on per f , ω⊕, or μ.

Table 1 Baseline case data
vector, tolerances, rate factor, sat
1 initial true anomaly, and
sampling interval

δ = 30 deg δΩ = 70 deg

i1 = 5 deg i2 = 25 deg

ω1 = 100 deg ω2 = 300 deg

e1 = .5 e2 = .1

τn = 10−14 τk = 10−14

per f = 1, ν1(0) = 0 deg, �ν = 1/8 deg
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Only one pair of proper relative extrema were found for the baseline (kmax = 2). A second
run exchanged the roles of the satellites and, therefore, required changes of the signs of δ and
δΩ . The results of the two runs were compared, and the smallest number of common most
significant digits was confirmed to be 14 for both solutions. The small condition numbers were
2.13 and 7.24 respectively. Let Nu′ ]d.p. and Nρ

]
d.p.

represent double precision accuracies
based on condition numbers. The baseline then implies that in general

Nu′ ]d.p. = 14 − log [cond(Fu′ , x∗
u′ ; d)],

Nρ

]
d.p.

= 15 − log [cond(Fρ, x∗
ρ; d)], (41)

since both formulae provide the 14 significant digits in the baseline case, when the logarithms
are rounded to nearest integers.

A second test was performed. Creating single precision codes allowed another two solu-
tions to be found and compared by interchanging satellite labels. This showed that the smallest
number of most significant digits held in common by both solutions was six. Using logic
similar to that just applied to the double precision baseline results in the following formulae
for single precision condition number accuracy estimates:

Nu′ ]s.p. = 6 − log [cond(Fu′ , x∗
u′ ; d)]

Nρ

]
s.p.

= 7 − log [cond(Fρ, x∗
ρ; d)], (42)

Between the single- and double-precision results the condition numbers themselves were in
agreement to 5 places for cond(Fu′ , x∗

u′ ; d) and 3 for cond(Fρ, x∗
ρ; d). In the tests reported

later in this section the last four formulae will allow accuracy estimate comparisons for
stressing cases.

The number of data vectors involved in a case totals seventeen. One of these determines the
nominal solution, eight correspond to offsets by +εd to each data vector element, and eight
to offsets by −εd . Each calculation first finds the kmax initial approximations to the mean
arguments of latitude, u′

k0, in a sequence monotone increasing in the angles over the (0,360)
degree range. Each code resorts the extrema found by the filter and leaves them monotone
increasing in the u′

k0 and starting with the smallest.
With these conventions established the first sequence of cases for the first stress test will

be considered. Six data elements are common to all cases in the sequence and are given in
Table 2, where it should be understood that for runs involving the interchange of identities
the sign of δ must be reversed.

In each precision and for each case, a straight run, with the larger eccentricity considered
e1, is followed by a second with the identities interchanged. As in the baseline case, visual
inspection of the solutions allows identification of the number of left-most digits held in
common. These estimates are called N vis

u′ and N vis
ρ . The condition number-based estimates

of accuracy are as defined by Eqs. 41 and 42, where the subscripts distinguish the two
precision models. The subscripts will be dropped unless needed. For each x∗

u′ solution some
correspondence is to be expected among the −log(τk), Nu′ , and N vis

u′ measures of accuracy,
and for each x∗

ρ solution some correspondence is expected between −log(τk) and Nρ . In
this sequence the visual inspections show very high agreement in the N vis

ρ measure. The

Table 2 Vector elements held
constant for the first stress test
sequence 1a

δ = 1 deg δΩ = 0 deg

i1 = 5 deg i2 = 5 deg

ω1 = 330 deg ω2 = 330 deg
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co-planar and near circular nature of the motion renders the separation extremely close to
constant, and this agreement is not a meaningful measure of accuracy for these cases. In the
double precision estimates as the first derivative of the square of the separation is sampled
through zero, the calculated separation is unchanged to 17 significant digits over a range of
u′ on the order of 1/8th degree, and results from taking the square root of ρ2, which cannot
be accurate to 17 significant digits.

In both sequences of the first test the smaller of the two eccentricities is set to εd . This
ensures that negative eccentricities will not occur in constructing the Jacobians. Specifically,
md7

7 = e1 − εd and md8
8 = e2 − εd (cf. Eqs. 38) are prevented from becoming negative.

Under an interchange of satellite identities the Nu′ will not be in exact agreement because
the u′

k solutions are then those of the other satellite. They are in agreement to within three
significant digits. The Nρ are in excellent agreement as expected.

Based upon the data in Table 2, Fig. 1 shows accuracy estimates for which the larger
eccentricity, elarger , ranges from 5 × 10−8 to 10−1 for sequences 1a (left) and 1b (right).
Attempts to drop below the smallest value considered for elarger caused the filter to fail. The
rate became so negligible that its absolute value approached the unit roundoff, and the filter

was unable to detect changes of sign in dρ2

du′ . For δ = 1 degree (left), in both precisions, Nu′
drops sharply at a largest eccentricity of 1.19 × 10−2, where the number of extrema changes
from 2 to 4 as the log of the largest eccentricity increases. In this same neighborhood of the
abscissa the double precision Nρ starts improving from about 12–13 and the single precision
from 4 to 5 at elarger = 10−1. For δ = 0 (right) in both precisions the condition number
estimates (in dot-dashes for Nu′ and dots for Nρ) are superimposed. Also, in the double
precision results the tolerance-based estimates (in solid) and the straight and interchanged
identity estimates (in dashes) are consistently higher than the condition number estimates by
about one significant digit, while that is not true of the single-precision results. In sequence
1b kmax remains unchanged at 4.

In each sequence the coplanar decreasingly eccentric orbits’ condition results in the sep-
aration of the limiting case (of smallest larger eccentricity) becoming 2rc sin δ/2. In units of
rc this is 0.017 for sequence 1a, and near vanishing for sequence 1b.

Fig. 1 Accuracy estimates are shown as a non-zero constant separation is approached [δ = 1 degree (left)]
and as the separation vanishes [δ = 0 (right)]. In both sequences the upper curves are double- and the lower
single-precision estimates. Solid are −log(τk ), dot-dashed Nu′ , dots Nρ , and dashes are Nvis

u′ . The single
precision codes could not converge on solutions for abscissae less than −4
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In sequence 1b, for the smallest value of elarger , 5 × 10−8, the code calculates the func-
tion ρ2(u′) displayed in left panel of Fig. 2. This results from the classical cancellation
effect of subtracting almost equal numbers and losing significance. Because the first and
second derivatives of this function are much smoother and do not suffer from cancellation
the Newton–Raphson method is successful in taming this so well that the proper extrema
estimates are correct to 6 significant digits. The double precision results for that case are in
Table 3.

High Eccentricity Test: Again six elements of the data vector are unchanged and are as
described in Table 2, except that δ is again 0 degree. Table 4 shows the accuracy estimates
and solution elements in conventional units. The right panel of Fig. 2 displays the behavior
of the rate of change of ρ2 for this test.

Fig. 2 Separation squared versus u′ is shown for the limiting case of sequence 1b (left). Note the effects of
approaching the limit in the number of significant digits. The rate of change of the separation squared versus
u′ is shown for the high eccentricity test (right)

Table 3 Solutions and
accuracies for
elarger = 5 × 10−8 and
δ = 0 deg from sequence 1b

u′
1 = 1.04163 rad ρ1 = 8.56007 × 10−08 rc

u′
2 = 2.61243 rad ρ2 = 3.65002 × 10−08 rc

u′
3 = 4.18322 rad ρ3 = 8.68880 × 10−08 rc

u′
4 = 5.75402 rad ρ4 = 4.47035 × 10−08 rc

cond(Fu′ , x∗
u′ ; d) = 3.36 × 107 cond(Fρ, x∗

ρ ; d) = 3.06 × 108

Nu′ = 6.47 Nρ = 6.51

Table 4 High eccentricity test: input tolerance(s) and eccentricities, and resulting accuracies and extrema for
geosynchronous orbits

τ elarger esmaller Nu′ Nvis
u′ Nρ Nvis

ρ

10−13 0.989 0.984 11.63 12 11.62 12

u′
1 = 1.99685639500 deg ρ1 = 1343.89338779 km

u′
2 = 150.000000000 deg ρ2 = 210.820872102 km

u′
3 = 298.003143605 deg ρ3 = 1343.89338779 km

u′
4 = 330.000000000 deg ρ4 = 210.820872103 km
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7 Conclusions

Using an unperturbed Kepler model of relative motion for co-periodic satellites, three methods
were compared to determine the number of significant digits in estimating separation function
extrema. One is based on the minimum tolerances for the numerical processes that allow
convergence, a second on the symmetry expected in the separation function when satellite
labels are interchanged, and the third on the formalism of condition number estimation.
Two tests’ results suggest that the latter is a reliable measure of conditioning. More extensive
testing of the algorithm is beyond the scope of this article because the domain of the eight input
parameters is too large. The range of the output function is a case-dependent even number,
kmax , of timed relative extrema, where a small change in an input parameter can cause a
change in kmax . It is likely that uncertainties caused by ill-conditioning will be gratifyingly
negligible compared to those caused by real world input uncertainties and modeling errors
in physically meaningful cases.

The ideal case of Kepler motion can be represented to any accuracy by this algorithm
provided the precision of the arithmetic is high enough.

This study is most applicable to common period systems of satellites. However, similar
algebra and logic are easily applied to the more general ten parameter problem of not-
necessarily-equal period relative motion extrema, the subject of a future study.

8 Appendix A: Example cases

Table 5 shows the data vector, tolerances and rate factor for collocated satellites in geosyn-
chronous orbits. Extrema solutions and accuracy estimates for this case are in Table 6.

The last example, case 4, is one of extreme collocation for highly eccentric 12 h orbits
described in Table 7. Solutions and accuracy estimates are in Table 8. For this case rc =
[
μ/(per f · ω⊕)2

]1/3 = 26561.765451915278 km. In this case Nu′ and Nρ are on the order
of 9 and 8, respectively. However, N vis

u′ and N vis
ρ are 5 and 3. Accordingly, the u′ and ρ entries

Table 5 Case 3: Collocated
geosynchronous satellites’ data
vector, tolerances and rate factor

δξ0 = 0 deg δΩ = 5 deg

i1 = 5 deg i2 = 2.5 deg

ω1 = 335 deg ω2 = 330 deg

e1 = 0.0007 e2 = 0.0006

τn = 10−14 τk = 10−14 per f = 1

Table 6 Case 3: Solutions and accuracy estimates

(δ = 354.99999726730 deg)

u′
1 = 85.0067961760 deg ρ1 = 1854.01423055 km

u′
2 = 175.068578871 deg ρ2 = 5.70779121720 km

u′
3 = 265.077443254 deg ρ3 = 1853.12864381 km

u′
4 = 355.015676920 deg ρ4 = 10.6442405987 km

when e1 = 0.0007 and e2 = 0.0006, Nu′ = 13.038 and Nρ = 12.410313

when e2 = 0.0007 and e1 = 0.0006, Nu′ = 13.030 and Nρ = 12.410314
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Table 7 Case 4: Collocated
highly eccentric 12 h satellites’
data vector, tolerances and rate
factor

δ = 0 deg δΩ = 10−7 deg

i1 = 63.4351 deg i2 = 63.4349 deg

ω1 = 270 deg ω2 = 270 deg

e1 = 0.72555875 e2 = 0.72555865

τn = 2 × 10−8 τk = 2 × 10−8 per f = 2

Table 8 Case 4: Extrema
solutions and accuracy estimates

u′
1 = 89.971 deg ρ1 = 0.160 km

u′
2 = 255.22 deg ρ2 = 0.00525 km

u′
3 = 269.99 deg ρ3 = 0.0256 km

u′
4 = 284.77 deg ρ4 = 0.00537 km

for the 1-2 run, Nu′ = 8.54714 and Nρ = 8.2066

for the 2-1 run, Nu′ = 8.54710 and Nρ = 8.2060

in Table 8 are shown to those 5 and 3 digits, respectively. This discrepancy is surprising, and
an explanation is being sought. There is consistency between the tolerance- and condition
number-based estimates.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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