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Abstract This paper discusses a constrained gravitational three-body problem with two of
the point masses separated by a massless inflexible rod to form a dumbbell. This problem is
a simplification of a problem of a symmetric rigid body and a point mass, and has numerous
applications in Celestial Mechanics and Astrodynamics. The non-integrability of this system
is proven. This was achieved thanks to an analysis of variational equations along a certain
particular solution and an investigation of their differential Galois group. Nowadays this
approach is the most effective tool for study integrability of Hamiltonian and non-Hamiltonian
systems.

Keywords Three-body problem · Morales-Ramis theory · Differential Galois theory ·
Non-integrability

1 Equations of motion, symmetries and reduction

Considered is the gravitational three-body problem with a single constraint. Three point
masses, m1, m2 and m3 move in a plane under mutual gravitational interaction. Masses m2

and m3 are connected by a massless inflexible rod of length l > 0 to form a dumbbell. A pic-
torial description of the problem is given in Fig. 1. Various celestial objects are considered
to possess such bimodal mass distribution because do not have enough gravitational force to
form their shape into a spherical object, e.g. some asteroids such as (51) Nemausa and (216)
Kleopatra; meteorites, especially large irons or nucleus of some comets e.g. Comet Borrelly
(for detailed references see Povenmire 2002).The dumbbell satellite has attracted the atten-
tion of scientists since the middle of 20th century because it is suitable for an investigation
of the general properties of the rigid body motion in a gravity field and provides important
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316 A. J. Maciejewski et al.

Fig. 1 A dumbbell and a point
mass in the plane. Point O
denotes the origin of an inertial
frame. Point C is the system
centre of masses. Axis O X1 of
the moving frame is always
parallel to the dumbbell

features for tethered satellite systems. See section 5.9 in Celletti (2010) and some original
articles and references therein (Celletti and Sidorenko 2008; Guirao et al. 2013; Khan and
Goel 2011; Schechter 1964; Vera 2013). Moreover dumbbell can be considered as a simpli-
fied model of a large spacecraft or an orbital cable system equipped with an elevator (see
e.g. Burov et al. 2012; Okunev 1969; Sanyal et al. 2005). In most of the above examples
the restricted version of the problem is considered. That is the mass center of a dumbbell
moves on a given orbit and its rotational motion does not disturb the orbital motion. In many
cases, e.g., for some double asteroids, such approximation is not well justified. This is why
we consider unrestricted problem. An unrestricted problem of a point and axially symmetric
body whose gravity field is approximated by a dumbbell field is considered in Goździewski
and Maciejewski (1999).

The Lagrangian of the system has the form

L = 1

2
m1‖ṙ1‖2 + 1

2
m2‖ṙ2‖2 + 1

2
m3‖ṙ3‖2 − U (r1, r2, r3), (1.1)

where r1, r2 and r3 are the position vectors of the respective masses, and

U (r1, r2, r3) = − Gm1m2

‖r1 − r2‖ − Gm1m3

‖r1 − r3‖ − Gm2m3

‖r2 − r3‖ , (1.2)

is the potential. Let rd is the radius vector of the centre of mass of the dumbbell, and

e: = r3 − r2

‖r3 − r2‖ , (1.3)

is a unit vector along the dumbbell. It follows that

r2 = rd + μ3le, ṙ2 = ṙd + μ3l ė, (1.4)

r3 = rd − μ2le, ṙ3 = ṙd − μ2l ė, (1.5)

where

μ2: = m2

md
, μ3: = m3

md
, md: = m2 + m3. (1.6)

The system has five degrees of freedom. The configuration space of the point m1 is R
2, and

the configuration space of the dumbbell is R
2 × S

1. A configuration of the system is fully
specified by r1, rd, and e. In these coordinates, the Lagrangian is as follows:

L = 1

2
m1‖ṙ1‖2 + 1

2
md‖ṙd‖2 + 1

2
I‖ė‖2 − ˜U (r1, rd, e), (1.7)
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Non-integrability of the dumbbell and point mass problem 317

where

I : = l2 m2m3

md
, ˜U (r1, rd, e) = U (r1, rd + μ3le, rd − μ2le). (1.8)

The system possesses natural symmetries that are exploited to reduce its dimension. Amongst
these is translational symmetry. This is manifest by defining r: = rd−r1 as the vector between
the mass m1 and the dumbbell’s centre of mass. A configuration of the system can be thus
described by r, e, and rs defined by

msrs = m1r1 + mdrd, ms: = m1 + m2 + m3. (1.9)

As

r1 = rs − md

ms
r, rd = rs + m1

ms
r, (1.10)

the Lagrangian (1.7) is written in the following form:

L = 1

2
mr‖ṙ‖2 + 1

2
I‖ė‖2 + 1

2
ms‖ṙs‖2 − W (r, e), (1.11)

where

mr: = m1md

ms
, (1.12)

is the reduced mass, and

W (r, e) = − Gm1m2

‖r + μ3le‖ − Gm1m3

‖r − μ2le‖ . (1.13)

The components of rs are cyclic coordinates, and the motion of the centre of mass separates
completely. Therefore, the term ms‖ṙs‖2/2 is removed from the Lagrangian (1.11).

It is convenient to introduce dimensionless variables, taking l as the unit of length, mr as
the unit of mass, and

T : =
√

l3

ms
, (1.14)

as the unit of time. Setting l = mr = T = 1, the Lagrangian (1.11) reduces to

L = 1

2
‖ṙ‖2 + 1

2
I‖ė‖2 − W (r, e), (1.15)

where

W (r, e) = − 1

‖ (1 + μ) r + μe‖ − μ

‖ (1 + μ) r − e‖ , μ: = m3

m2
. (1.16)

The reduced system still has a symmetry: it is invariant with respect to the natural action of
the group SO(2, R). This symmetry can be used to reduce the dimension of the configuration
space by one. This is achieved by describing the dynamics in a rotating frame in which the
dumbbell is at rest. The transformation from the inertial frame to the rotating frame is given by

r = AR, A ∈ SO(2, R). (1.17)

An additional assumption, that e is parallel to x-axis of the rotating frame, allows for a
coordinate representation of the transformation as follows:

A =
[

cos ϕ − sin ϕ

sin ϕ cos ϕ

]

, and e = [cos ϕ, sin ϕ]T . (1.18)
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318 A. J. Maciejewski et al.

Then

e = AE, E = [1, 0]T , (1.19)

and

ė = ϕ̇[− sin ϕ, cos ϕ]T , Ȧ = ϕ̇AJ, J =
[

0 −1
1 0

]

. (1.20)

The Lagrangian expressed in the coordinates R = [X1, X2]T , and ϕ has the form

L = 1

2
‖Ṙ‖2 + ϕ̇ṘT JR + 1

2
ϕ̇2‖R‖2 + 1

2
I ϕ̇2 − V (R), (1.21)

where

V (R): = − 1

‖ (1 + μ) R + μE‖ − μ

‖ (1 + μ) R − E‖ . (1.22)

The generalised momenta P: = [P1, P2]T and Pϕ , are given by

P: = ∂L

∂Ṙ
= Ṙ + ϕ̇JR, Pϕ : = ∂L

∂ϕ̇
= ϕ̇

(‖R‖2 + I
)+ ṘT JR. (1.23)

Coordinate ϕ is cyclic, so Pϕ is a first integral of the system. Thus, the Hamiltonian of the
system is written as

H = 1

2
‖P‖2 + 1

2
α
(

γ − PT JR
)2 + V (R), (1.24)

where α = 1/I , and γ is a fixed value of the first integral Pϕ corresponding to the cyclic
variable ϕ. Hence, the equations of motion have the form

d

dt
R = P − α

(

γ − PT JR
)

JR,

d

dt
P = −α

(

γ − PT JR
)

JP − (1 + μ)
(1 + μ) R + μE

‖ (1 + μ) R + μE‖3 −

μ (1 + μ)
(1 + μ) R − E

‖ (1 + μ) R − E‖3 . (1.25)

2 Problem

Numerical experiments suggest that the considered system is not integrable. The complex
behaviour of the system is apparent from the Poincaré cross-section. For fixed values of the
parameters and the energy the equations (1.25) are integrated numerically by the Bulirsch-
Stoer method (Press et al. 1992). The cross-section plane is specified as X1 = 0, and the
cross direction is chosen Ẋ1 > 0. The coordinates of the cross-section are (X2, P2). The
cross-sections presented in the subsequent figures are obtained for parameters μ = 1 and
α = 4

61 .
Figure 2 is a cross-section corresponding to energy e = −0.1 and γ = −1. Chaotic

behaviour is evident.Two cross-sections for γ = 0 are shown in Figs. 3 and 4. Both of them
attest to the non-integrability of the system. Let us remark here that all cross sections were
done for negative energy values. For non-negative values of energy the energy levels are
non-compact. This is why trajectories in such levels usually do not return to the cross section
plane. In the best case investigating Poincaré cross-section we observe that a single trajectory
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Non-integrability of the dumbbell and point mass problem 319

Fig. 2 Cross-section for energy
e = −0.1 and γ = −1

Fig. 3 Cross-section for
e = −0.2 and γ = 0

Fig. 4 Cross-section for
e = −0.15 and γ = 0
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intersects the cross plane along a spiral. No useful information about global properties of the
system can be deduced.

The problem is to prove the non-integrability of the system analytically. It is attractive to
try using the differential Galois approach to the problem of integrability (see e.g. Morales
Ruiz 1999). This method was applied successfully to many systems and in particular to
various Celestial Mechanics problems such as e.g.: three body problem (Boucher and Weil
2003; Maciejewski and Przybylska 2011; see also Tsygvintsev 2001, 2003, 2007), satellite in
geo-magnetic field (Boucher 2006; Maciejewski and Przybylska 2003), two-body problems
in constant curvature spaces (Maciejewski and Przybylska 2003), some n-body problems
(Combot 2012; Simon 2007; Tosel 1998, 1999), Sitnikov’s three-body problem (Morales
Ruiz 1999), Hill’s problem (Morales-Ruiz et al. 2005), generalized two-fixed centres problem
whose interaction potential is V = ar2n (Maciejewski and Przybylska 2004), generalized
anisotropic Kepler problem (Arribas et al. 2003) and many others. However, as is explained
in (Combot 2013), application of this theory directly to the system (1.25) is invalid as the
Hamiltonian function (1.24) is not single-valued.

Proposed in this paper is a solution addressing this deficiency, based on an extension of the
system into a larger phase space. Coordinates of these additional dimensions are denoted by
R1 and R2. This approach further requires a definition of the time derivative consistent with
system (1.25). Following this, coordinates R1 and R2 are considered as lengths of vectors

R1: = (1 + μ) R + μE, R2: = (1 + μ) R − E. (2.1)

That is, equations G1 = G2 = 0, where polynomials G1, G2 ∈ C[X1, X2, R1, R2] given by

G1: =R2
1 − [(1 + μ)X1 + μ)]2 − (1 + μ)2 X2

2 = R2
1 − RT

1 R1,

G2: =R2
2 − [(1 + μ)X1 − 1)]2 − (1 + μ)2 X2

2 = R2
2 − RT

2 R2.

}

(2.2)

define R1 and R2 as algebraic functions of (X1, X2).
The extended phase space is C

6 with coordinates Z: = [X1, X2, P1, P2, R1, R2]. The
Hamiltonian (1.24) expressed in these coordinates reads

K = K (Z): = 1

2
‖P‖2 + 1

2
α
(

γ − PT JR
)2 − 1

R1
− μ

R2
. (2.3)

As

d

dt
Ri = RT

i Ṙi

Ri
= (1 + μ)

RT
i Ṙ

Ri
, i = 1, 2, (2.4)

system (1.25) can be extended to the following one.

d

dt
Z = U(Z), U(Z): = J(Z)K ′(Z), J(Z): =

⎡

⎣

02 E2 02

−E2 02 −A
02 AT 02

⎤

⎦ , (2.5)

where

A = (1 + μ)

[

R1

R1
,

R2

R2

]

, K ′(Z): = (∇Z K (Z))T . (2.6)

It can be shown that matrix J(Z) defines a Poisson structure on C
6. The corresponding Poisson

bracket is given by the following formula

{F, G} (Z) = F ′(Z)T J(Z)G ′(Z), (2.7)
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Non-integrability of the dumbbell and point mass problem 321

where F and G are two smooth functions. The Poisson structure given by J(Z) is degenerated
and has rank 4. It is demonstrable that polynomials G1 and G2 are Casimir functions of this
structure, whose common levels are symplectic manifolds. In particular,

M4
μ: = {

Z ∈ C
6 | G1(Z) = G2(Z) = 0

}

, μ ∈ (0, 1/2]. (2.8)

is a symplectic manifold. System (2.5), when restricted to M4
μ, is equivalent to (1.25).

In the setting thus described the main result of this paper can be formulated in the following
theorem.

Theorem 2.1 For γ = 0 and μ ∈ (0, 1/2], system (2.5), when restricted to the symplectic
leaf M4

μ, is not integrable in the Liouville sense with meromorphic first integrals.

3 Particular solution and variational equation

If γ = 0, then Eq. (2.5) have an invariant algebraic manifold,

N: = {

Z ∈ C
6 | X2 = P2 = 0, G1(Z) = G2(Z) = 0

}

. (3.1)

On this manifold it can be taken that

R1 = (1 + μ)X1 + μ, R2 = (1 + μ)X1 − 1, (3.2)

so the system (2.5), restricted to N, reduces to

Ẋ = P, Ṗ = −(μ + 1)

(

μ

[(1 + μ) X − 1]2 + 1

[(1 + μ) X + μ]2

)

, (3.3)

where (X, P): = (X1, P1) ∈ C
2. This is a Hamiltonian system with one degree of freedom.

The point and the dumbbell move in one line. Fixing the energy e we have a particular solution
(X (t), P(t)). Thus the manifold N is foliated by phase curves �e on energy levels K|N = e,
that is

�e ⊂ Me: =
{

(X, P) ∈ C
2 | e = 1

2
P2 − μ

(1 + μ) X − 1
− 1

(1 + μ) X + μ

}

. (3.4)

These curves are give parametrically t �−→ (X (t), P(t)) For a generic value of e the level
Me contains three phase curves. If e is real, two or three of these levels have a non-empty
intersection with the real part of the phase space. Depending on the real value of e, the
point can move either between the end masses of the dumbbell or outside them. In further
consideration it is assumed that e ≥ 0, and the chosen phase curve �e contains the half-
line (1/(1 + μ),∞) × {0} ⊂ C

2. The other choices are equally good for the proof of
non-integrability. We made such a choice because it describes real, physically meaningful
solution. In the phase space C

6 this curve is given by

�e: = {Z ∈ N | (X1, P1) ∈ �e } . (3.5)

Application of the Morales-Ramis theory necessitates the linearisation of Eq. (2.5) along
�e. It has the form

d

dt
z = Vz, V = ∂U

∂Z
(Z), Z ∈ �e. (3.6)

This system has three first integrals

k(z): = ∇K (Z) · z, g1(z): = ∇G1(Z) · z, g2(z): = ∇G2(Z) · z, Z ∈ �e. (3.7)
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On the level g1(z) = g2(z) = 0, the following equalities are satisfied

R1r1 = (1 + μ) [(1 + μ)X1 + μ] x1, R2r2 = (1 + μ) [(1 + μ)X1 − 1] x1, (3.8)

where it is assumed that z = [x1, x2, p1, p2, r1, r2]T . On �e, coordinates (R1, R2) can be
expressed by X1,

R1 = (1 + μ)X1 + μ, R2 = (1 + μ)X1 − 1. (3.9)

Hence, on the level g1(z) = g2(z) = 0, variables (r1, r2) can be eliminated from the varia-
tional equations (3.6). The obtained reduced system of variational equations has the form

d

dt

⎡

⎢

⎢

⎣

u1

v1

u2

v2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 1 0 0
A 0 0 0
0 0 −αX P 1 + αX2

0 0 B αX P

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

u1

v1

u2

v2

⎤

⎥

⎥

⎦

, (3.10)

where

A = 2(μ + 1)2
(

μ

[(1 + μ) X − 1]3 + 1

[(1 + μ) X + μ]3

)

,

B = −αP2 − 1

2
A, (3.11)

and (X, P) ∈ �e. This system splits into two subsystems. Variables (u1, v1) describe varia-
tions in the invariant plane N. In fact, (u1, v1) is a vector tangent to N at point (X, P), hence
the subsystem in variables (u1, v1) is called tangential. The second subsystem, correspond-
ing to variables (u2, v2), yields the normal variational equations. The latter subsystem can
be expressed by a single second-order equation,

ü + au̇ + bu = 0, (3.12)

where u = u2, and

a: = − 2αX P

1 + αX2 , b: = 2αP2

1 + αX2 + 1

2

(

1 + αX2) A.

Changing the independent variable by

t −→ z = (1 + μ)X (t) (3.13)

transforms equation (3.12) into an equation with rational coefficients. This follows from

d

dt
= ż

d

dz
,

d2

dt2 = (ż)2 d2

dz2 + z̈
d

dz
,

ż = (1+μ)ẋ =(1 + μ)p1, (ż)2 = (1 + μ)2 p2
1 = 2(1 + μ)2

(

e + μ

z − 1
+ 1

z + μ

)

,

z̈ = (1 + μ) p̈1 = −(μ + 1)2
(

μ

(z − 1)2 + 1

(z + μ)2

)

,

where the energy integral

e = 1

2
Ẋ2 − μ

(1 + μ) X − 1
− 1

(1 + μ) X + μ

has been used.
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Resultantly, Eq. (3.12) transforms into

u′′ + p(z)u′ + q(z)u = 0, (3.14)

where the prime denotes the derivative with respect to z, and

p = − [(−1 + z)2(1 + z2(5 + 4ez)α) + (2 + z(−4 + 3z + (4 + z(−8 + 8e(−1 + z)2

+5z2))α))μ + (1 + 3z2 + 2z(2e(−1 + z)2 + z(−4 + 5z))α)μ2 + (1 + z(4 + z − 4α

+5zα))μ3+2(1+z)μ4 + μ5
]

/ [2(z − 1)(z + μ)((z − 1)(1 + ez) + (e(z − 1) + z)μ

+μ2)(z2α + (1 + μ)2)
]

,

q = [

4(z − 1)2α(1 + μ)(z + μ)2((z − 1)(1 + ez) + (e(z − 1) + z)μ + μ2) + ((z − 1)3

+(1 + 3(z − 1)z)μ + (3z − 1)μ2 + μ3)(z2α + (1 + μ)2)2] /
[

2(z − 1)2(1 + μ)

·(z + μ)2((z − 1)(1 + ez) + (e(z − 1) + z)μ + μ2)(z2α + (1 + μ)2)
]

.

Making the next change of variables

u = w exp

[

−1

2

∫ z

z0

p(s) ds

]

, (3.15)

(3.14) is transformed to the canonical form

w′′ = r(z)w, r(z) = −q(z) + 1

2
p′(z) + 1

4
p(z)2, (3.16)

with coefficients given as

r = P

M
,

M = 16(z − 1)2β2(z2 + β2)2(z + μ)2[(z − 1)(1 + ez) + (e(−1 + z) + z)μ + μ2]2,

P =
11
∑

i=0

pi z
11−i . (3.17)

Here β2 = (1 + μ)2/α and coefficients pi of P are given in the Appendix A. This equation
has seven singularities

z1 = 0, z2 = −μ, z3,4 = ±iβ,

z5,6 = e − 1 − (1 + e)μ ±√

(1 + μ)((1 + e)2 + (e − 1)2μ)

2e
,

and z7 = ∞, providing energy is chosen such that

e �∈
{

(1 ± iβ)(±i + β ∓ iμ)(β ± iμ)(1 + μ)

(1 + β2)(β2 + μ2)
,
(
√

μ ± i)2

μ + 1
,

−μ + μ3 ± i(1 + μ3 + β2(1 + μ))|β|
(1 + β2)(β2 + μ2)

}

. (3.18)

Points z1, . . . , z6 are regular poles of second order and the order of infinity is 1 provided that
E(1 + μ) �= 0. Here, the order of a singular point is defined as in (Kovacic 1986), see also
Appendix B.
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The differences of exponents at the singularities in C are as follows

�1 = 1

2

√

1 − 8

β2 , �2 = 1

2

√

1 − 8μ2

β2 , �3 = �4 = 2, �5 = �6 = 1

2
. (3.19)

It is evident that the differences of the exponents at singularities z3 and z4 are integer,
and thus, in local solutions around these points, logarithmic terms may appear. Application
of the method described in Appendix B verifies the presence of such terms. For singularity
z3, solutions of the indicial equation are α1 = 3/2 and α2 = −1/2. The relevant one is
α = α1 = 3/2. The expansion of r(z − z3)

2, according to (B.4), gives coefficients r0, r1,
and r2. Then f1, f2 and g1, g2 are determined from (B.6) and (B.11), respectively. Since
s = α1 − α2 = 2, the coefficient g2, which multiplies the logarithm, must be found, and it
is given as

g2 = − i(1 + μ)((i + β)2 + μ − 2iβμ − μ2)

8β(i + β)(β − iμ)(1 + eβ2 + (e − μ)μ − iβ(1 + e(−1 + μ) + μ))
. (3.20)

Examination of the real and imaginary part of g2 yields the following conditions

β(1 + μ)[1 + β4(1 + μ) + 2β2(−1 + μ)(−1 − 2eμ + μ2)

+μ(−1 − 2e(−1 + μ)(1 + μ2) + μ(−1 + μ(−1 + (−1 + μ)μ)))] = 0,

(1 + μ)[μ(1 + 3β2 + (−1 + μ)μ)(−1 + μ2) + e(β6 + μ2(−1 + μ − μ2)

+β4(2 + μ(−3 + 2μ)) + β2(1 + μ(−1 + μ(−1 + (−1 + μ)μ))))] = 0.

This system has two solutions satisfying μ > 0, β2 > 0 and e ∈ R

β2 = −1 + μ − μ2, e = 1 + μ

1 − μ
and β2 = μ = 1. (3.21)

The condition precluding a logarithm in a local solution around z4 is g∗
2 = 0, where

∗ denotes complex conjugation. The corresponding solutions are the same as those given
previously.

In the first solution in (3.21), condition

β2 = −1 + μ − μ2, (3.22)

gives

m0

m1
= −μ(μ + 1)

μ2 + 1
≤ 0,

with the only non-negative solution m1 = 0. The second solution in (3.21) also yields m1 = 0
only.

If conditions (3.21) are not satisfied, the two linearly-independent local solutions w1 and
w2 of (3.16) in a neighbourhood of z∗ = z3 or z∗ = z4 have the following forms

w1(z) = (z − z∗)α f (z), w2(z) = w1(z) ln(z − z∗) + (z − z∗)α−2h(z), (3.23)

where f (z) and h(z) are holomorphic at z∗ and f (z∗) �= 0. The local monodromy matrix,
which corresponds to the continuation of the matrix of fundamental solutions along a small
loop encircling z∗ counter-clockwise, gives rise to a triangular monodromy matrix,

[−1 −2π i
0 −1

]

,
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Non-integrability of the dumbbell and point mass problem 325

for details, see Maciejewski and Przybylska (2002). A subgroup of SL(2, C) generated by a
triangular non-diagonalizable matrix is not finite, and thus the differential Galois group is not
finite either. Moreover, the differential Galois group G of this equation is not any subgroup
of the dihedral group because such subgroups contain only diagonalizable matrices. Thus,
G is either the full triangular group or SL(2, C). But since the order of infinity is one, the
necessary condition that G is the full triangular group is not satisfied (see Lemma B.2). This
means that the differential Galois group of (3.16) is SL(2, C), with a non-Abelian identity
component equal to the whole group SL(2, C).

Regarding exceptional values of energies given in (3.18): the condition that the first one
is real gives β(1 +μ3 +β2(1 +μ)) = 0, which further suggests the equality (3.22). Its only
physical solution is m1 = 0. The second expression in (3.18) is never real and the third one
is real when (3.22) holds only.
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Appendices

A. Coefficients of polynomial P in Eq. (3.17)

Explicit form of coefficients pi in r given by (3.17) are as follows.

p0 = − 8e(1 + μ), p1 = −8(1 + μ)(1 + 4e(−1 + μ) + μ)],
p2 = − 8(1 + μ)(−4 + 4μ2 + e(6 + β2 + 2μ(−5 + 3μ))),

p3 = − 48e2β4 − 16e(−1 + μ2)(2 + 2β2 + μ(−3 + 2μ)) − (1 + μ)2(11β2

+ 24(2 + μ(−3 + 2μ))),

p4 = − 4(48e2β4(−1 + μ) + (−1 + μ)(1 + μ)2(8 + 11β2 − 6μ + 8μ2)

+ 2e(1 + μ)(1 + 12β4 + β2(6 + μ(−7 + 6μ)) + μ(−5 + μ(5 + (−5 + μ)μ)))),

p5 = − 2(−4(1 + (e − μ)μ)(−1 + μ4) + 3β4(9(1 + μ)2 + 64e(−1 + μ2)

+ 16e2(3+μ(−8+3μ)))+β2(16e(−1 + μ4)+3(1+μ)2(11+μ(−13+11μ)))),

p6 = − 4β2(48e2β2(μ − 1)(1 + (μ − 5)μ) + (μ − 1)(1 + μ)2(11 + 54β2

+ μ(3 + 11μ)) + 2e(1 + μ)(1 + 3β2(24 + μ(−59 + 24μ))

+ μ(−1 + μ(−5 + (μ − 1)μ)))),

p7 = − β2(11 + 3β4(1 + μ)2 + 12β2(4e(−8 + 33μ − 33μ3 + 8μ4) + (1 + μ)2(27

+ μ(−59 + 27μ)) + 4e2(1 + (−2 + μ)μ(8 + (−14 + μ)μ))) + μ(32 + μ(−42μ

+ μ3(32 + 11μ) − 32e(−1 + μ2)))),

p8 = − 4β2(3β4(−1 + μ)(1 + μ)2 − 2(1 + (e − μ)μ)(μ + μ4)

+ 2β2(−24e2(−1 + μ)μ(1 + (−5 + μ)μ) + 27(−1 + μ)(1 + μ)2(1 + (−3 + μ)μ)
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+ 2e(1 + μ)(6 + μ(−76 + μ(157 − 76μ + 6μ2))))),

p9 = − 2β4(27 + 3β2(1 + μ)2(3 + μ(−5 + 3μ)) + μ(−176 − 140e(−1 + 4μ − 4μ3

+ μ4) + 48e2μ(3 + μ(−8 + 3μ)) + μ(4 + μ(414 + μ(4 + μ(−176 + 27μ)))))),

p10 = − 4β4(3β2(−1 + μ2 − μ3 + μ5) − 2μ(1 + (e − μ)μ)(−11 + μ(24

+ 24e(μ − 1) + (24 − 11μ)μ))),

p11 = − 3β4(16μ2(1 + (e − μ)μ)2 + β2(1 + μ3)2). (A.1)

B. Second-order differential equation in reduced form with rational coefficients and its
differential Galois group

Consider the second-order linear differential equation in reduced form with rational coeffi-
cient

w′′ = r(z)w, r(z) ∈ C(z). (B.1)

A point z = c ∈ C is a singular point of this equation if it is a pole of r(z). A singular point
is a regular point if at this point (z − c)2r(z) is holomorphic.

Assume that c is a regular point and look for local solutions of this equation in a neigh-
bourhood of this point. For simplicity, assume that c = 0. Look for a solution of the following
form (see e.g. Whittaker and Watson 1935),

w = zα f (z), f (z) = 1 +
∞
∑

i=1

fi z
i , (B.2)

where α, fi for i ∈ N are constants to be determined. Substituting in (B.1) yields

zα−2

[

α(α − 1) +
∞
∑

i=1

(α + i)(α + i − 1) fi z
i

]

− r(z)zα

(

1 +
∞
∑

i=1

fi z
i

)

= 0. (B.3)

Multiplying by z2, apply Taylor’s formula for the analytic function z2r(z)

z2r(z) = r0 +
∞
∑

i=1

ri z
i , (B.4)

and equating to zero the coefficients of successive powers of t , obtain the sequence of equa-
tions determining unknown coefficients in series (B.2). The first of these equations, called
the indicial equation and determining α, has the following form

α(α − 1) − r0 = 0. (B.5)

From the remaining equations fi is evaluated.

f1 = r1

2α
, fi = 1

i(i + 2α − 1)

⎛

⎝

i−1
∑

j=1

r j fi− j + ri

⎞

⎠ , for i ≥ 2. (B.6)
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Let α1 and α2 be the roots of the indical equation. If the difference s = α1 − α2 is not an
integer, then Eq. (B.1) has two local solutions of the form

w1 = zα1

(

1 +
∞
∑

i=1

fi z
i

)

, w2 = zα2

(

1 +
∞
∑

i=1

f ′
i zi

)

. (B.7)

In the case where s is a positive integer or zero, the series w2 may not exist or coincide with
w1, and a second independent solution must be constructed (Whittaker and Watson 1935) as

w2(z) = w1(z)
∫ z dx

w1(x)2 = w1(z)
∫ z

z−2α1
dx

f (x)2 = w1(z)
∫ z

z−s−1 dx

f (x)2 . (B.8)

In the last equality the relation 2α1 = s + 1 is applied.
Denoting

1

f (z)2 = 1 +
∞
∑

i=1

gi z
i , (B.9)

the second solution is written as

w2(z) = w1(z)gs ln z + zα2

(

−1

s
+

∞
∑

i=1

hi t
i

)

, (B.10)

where hi are constants.
Coefficients gi are given by

g1 = −2 f1, g2 = −2 f2 − 2 f1g1 − f 2
1 = −2 f2 + 3 f 2

1 , (B.11)

and

gi = −2 fi −
i−1
∑

j=1

(2gi− j + fi− j ) f j −
i−2
∑

j=1

f j

i− j−1
∑

k=1

fk gi− j−k, (B.12)

for i ≥ 3, while coefficients hi are defined as follows

hi =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− f1

s
− g1

s − 1
for i = 1,

− fi

s
− gi

s − i
−

i−1
∑

j=1

g j

s − j
fi− j for 1 < i < s,

− fs

s
for i = s,

− fs+1

s
+ gs+1 −

s−1
∑

j=1

g j

s − j
fs+1− j for i = s + 1,

− fi

s
+ gi

i − s
−

s−1
∑

j=1

g j

s − j
fi− j +

i−1
∑

j=s+1

g j

j − s
fi− j for i ≥ s + 2.

(B.13)

The differential Galois group of Eq. (B.1) is a subgroup of SL(2, C). Classification of these
subgroups is well known. The following lemma shows that the differential Galois group
determines the form of solutions (see e.g. Kovacic 1986; Morales Ruiz 1999).

Lemma B.1 Let G be the differential Galois group of equation (3.16). Then one of four cases
may occur.
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Case I G is conjugate to a subgroup of the triangular group,

T =
{[

a b
0 a−1

] ∣

∣

∣

∣

a ∈ C
∗, b ∈ C

}

;

in this case equation (3.16) has an exponential solution of the form y = P exp
∫

ω, where
P ∈ C[z] and ω ∈ C(z).
Case II G is conjugate to a subgroup of

D† =
{[

c 0
0 c−1

] ∣

∣

∣

∣

c ∈ C
∗
}

∪
{[

0 c
−c−1 0

] ∣

∣

∣

∣

c ∈ C
∗
}

;

in this case equation (3.16) has a solution of the form y = exp
∫

ω, where ω is algebraic
over C(z) of degree 2,
Case III G is primitive and finite; in this case all solutions of Eq. (3.16) are algebraic,
thus y = exp

∫

ω, where ω belongs to an algebraic extension of C(z) of degree n = 4, 6
or 12.
Case IV G = SL(2, C) and Eq. (3.16) has no Liouvillian solution.

Kovacic (1986) formulated the necessary conditions for the respective cases from
Lemma B.1 to hold.

Write r(z) ∈ C(z) in the form

r(z) = s(z)

t (z)
, s(z), t (z) ∈ C[z],

where s(z) and t (z) are relatively prime polynomials and t (z) is monic. The roots of t (z) are
poles of r(z). Denote �′: = {c ∈ C | t (c) = 0} and �: = �′ ∪ {∞}. The order ord(c) of
c ∈ �′ is equal to the multiplicity of c as a root of t (z), the order of infinity is defined by

ord(∞): = deg t − deg s.

Lemma B.2 The necessary conditions for the respective cases in Lemma B.1 are the
following.

Case I. Every pole of r must have even order or else have order 1. The order of r at ∞
must be even or else be greater than 2.
Case II. r must have at least one pole that either has odd order greater than 2 or else has
order 2.
Case III. The order of a pole of r cannot exceed 2 and the order of r at ∞ must be at
least 2. If the partial-fraction expansion of r is

r(z) =
∑

i

ai

(z − ci )2 +
∑

j

b j

z − d j
, (B.14)

then �i = √
1 + 4ai ∈ Q, for each i,

∑

j b j = 0 and if

g =
∑

i

ai +
∑

j

b j d j ,

then
√

1 + 4g ∈ Q.
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