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Abstract  Lung cancer is a common malignancy that 
is frequently associated with systemic metabolic dis-
orders. Early detection is pivotal to survival improve-
ment. Although blood biomarkers have been used in 
its early diagnosis, missed diagnosis and misdiagno-
sis still exist due to the heterogeneity of lung cancer. 
Integration of multiple biomarkers or trans-omics 
results can improve the accuracy and reliability for 
lung cancer diagnosis. As metabolic reprogramming 
is a hallmark of lung cancer, metabolites, specifically 

lipids might be useful for lung cancer detection, yet 
systematic characterizations of metabolites in lung 
cancer are still incipient. The present study profiled 
the polar metabolome and lipidome in the plasma of 
lung cancer patients to construct an inclusive metabo-
lomic atlas of lung cancer. A comprehensive analysis 
of lung cancer was also conducted combining metabo-
lomics with clinical phenotypes. Furthermore, the dif-
ferences in plasma lipid metabolites were compared 
and analyzed among different lung cancer subtypes. 
Alcohols, amides, and peptide metabolites were sig-
nificantly increased in lung cancer, while carboxylic 
acids, hydrocarbons, and fatty acids were remark-
ably decreased. Lipid profiling revealed a significant 
increase in plasma levels of CER, PE, SM, and TAG 
in individuals with lung cancer as compared to those 
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in healthy controls. Correlation analysis confirmed 
the association between a panel of metabolites and 
TAGs. Clinical trans-omics studies elucidated the 
complex correlations between lipidomic data and 
clinical phenotypes. The present study emphasized 
the clinical importance of lipidomics in lung cancer, 
which involves the correlation between metabolites 
and the expressions of other omics, ultimately influ-
encing clinical phenotypes. This novel trans-omics 
network approach would facilitate the development of 
precision therapy for lung cancer.

Keywords  Lipidomics · Polar metabolites · Lung 
cancer · Clinical phenoms · Trans-omics

Introduction

Among cancers related to cigarette smoking, environ-
mental pollution, toxic substances, or chronic diseases, 
lung cancer is the most common malignancy (Bray 
et al. 2018;Fang et al. 2011). Numerous targeted thera-
pies have been developed as the first-line treatment for 
lung cancer. However, the sensitivity to these thera-
pies varies widely, and cancer recurs often after treat-
ment, largely due to the intratumoral and intertumoral 
heterogeneity of metabolic disturbances. Metabolic 
regulation of tumor cells mainly includes tumor cell 
intrinsic metabolism, interactions between cancer and 
non-cancer cells, tumor location and heterogeneity, and 
systemic metabolism(Elia and Haigis 2021). The exist-
ence of systemic metabolic disorders in lung cancer 
could potentially serve as a foundation for the devel-
opment of biomarkers used in diagnosis and prognosis. 
The progression of technology has led to an increased 
scientific significance of metabolomics in comprehend-
ing the molecular mechanisms of lung cancer(Chen 
et al. 2019; Singh et al. 2022; Zhang et al. 2020).

Based on qualitative and quantitative analyses of 
the metabolites in cells, tissues, and whole organisms, 
metabolomics focuses on polar metabolites (water 
solubility) such as amino acids, carbohydrates, and 
organic acids. Lipidomics is an emerging independ-
ent branch of metabolomics, with a clear focus on 
the comprehensive identification and quantification 
of lipids (Han 2016; Liu et  al. 2021a, b). Systemic 
metabolic disorders in lung cancer patients include 
abnormalities of polar metabolites and lipid metabo-
lism. The abnormality of plasma-free amino acid 

profiles or glucose-related metabolites, as well as the 
difference of glucose metabolism in lung cancer cells 
between lung cancer and healthy, has signified the 
values of amino acids or glucose metabolism diver-
sity, i.e., pathways of glycolysis and gluconeogenesis, 
for early diagnosis of lung cancer (Ding et al. 2019; 
Liu et al. 2021a, b; Louis et al. 2016; Shingyoji et al. 
2013; Singh et  al. 2022). Lipid classes of plasma 
include phosphatidylcholines (PC), phosphatidyle-
thanolamine (PE), lysophosphatidylcholine (LPC), 
lysophosphatidylethanolamine (LPE), sphingomyelin 
(SM), triacylglycerol (TAG), diacylglycerol (DAG), 
and cholesteryl ester (CE). Alterations in circulat-
ing lipid profiles have been identified as potential 
plasma lipid markers for the early detection of lung 
cancer and for distinguishing between different can-
cer subtypes, including lung adenocarcinoma (ADC), 
squamous cell carcinomas (SCC), and small cell 
lung cancer (SCLC) (Ros-Mazurczyk et al. 2017; Yu 
et al. 2018; Zhang et al. 2020; Zhu et al. 2020). It has 
been reported that plasma levels of LPC 16:0, 18:0, 
18:1 and 18:2, PCs, PEs, and some phospholipids in 
lung cancer patients were significantly different from 
healthy (Chen et  al. 2018; Marien et  al. 2015; Yu 
et al. 2018; Zhu et al. 2020).

The metabolic disturbance is caused by dysfunctional 
activation of certain enzymes and ultimately affect sign-
aling pathways (Wang et al. 2022). Integrated metabo-
lomics and lipidomics offer a holistic view of the meta-
bolic landscape, facilitating a comprehensive network 
analysis to uncover pivotal metabolic factors in diseases. 
This approach has been applied for investigating poten-
tial metabolism-associated biomarkers of malignant 
pleural effusion in late-stage lung cancer with metasta-
sis (Yang et al. 2020a, b). Lipidomic and metabolomic 
profiles of lung cancer tissues and para-cancer normal 
tissues also revealed a clear association between central 
carbon metabolic pathways with the disorder of lipid 
metabolism related to glycerophospholipids, sphingolip-
ids, and cholesteryl esters (Cifkova et al. 2022). Using 
clinical lipidomics, we can discover the correlation and 
regulation between various lipids and clinical pheno-
types (Zhu et al. 2020). Using this tool, it has been found 
that plasma lipids of lung cancer patients are signifi-
cantly correlated with clinical phenomes such as gen-
der, age, stage, metastatic status, nutritional status, and 
severity of clinical symptoms (Zhu et al. 2020).

Although studies have demonstrated mighty 
metabolic dysfunctions in lung cancer, large-scale 
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researches connecting multiple metabolomic with 
clinical phenoms of lung cancer, which is crucial for 
a better understanding of the metabolic characteris-
tics of lung cancer, are still lacking. This study aimed 
to investigate the specificity and correlation between 
plasma metabolic profiles and disease manifestations 
in lung cancer. By combining metabolomics, lipid-
omics, and clinical phenotypes associated with the 
disease, the study sought to identify potential meta-
bolic targets that could potentially serve as prospec-
tive markers for lung cancer. Furthermore, the study 
would pave the path to explore the clinical phenotypi-
cally dependent metabolic pathways and the underly-
ing mechanisms in lung cancer subtypes, including 
ADC, SCC, and SCLC.

Materials and methods

Chemical agents

All laboratory standards, chemicals, and reagents 
met the needs of mass spectrometry. The internal 
standard for polar metabolite detection was tride-
canoic acid (Sigma-Aldrich, St. Louis, MO, USA). 
Internal Standards Kit for Lipidyzer™ Platform 
(SCIEX, Darmstadt, Germany) was used for lipids 
detection. Fisher Chemical (Waltham, MA, USA) 
supplied methanol, water, acetonitrile, isopropanol, 
and chloroform. The methoxyamine hydrochloride, 
ammonium hydroxide solution, pyridine, acetone, 
ammonium acetate, and N-methyl-N-(trimethylsilyl) 
trifluoroacetamide were obtained from Sigma-Aldrich 
(St. Louis, MO, USA).

Patient cohort

Pathologically confirmed lung cancer (ADC, SCC, 
and SCLC) patients were recruited from June 2018 
to December 2020. In accordance with the 8th edi-
tion of the TNM classification for lung cancer, the 
stage and severity were delineated (Goldstraw et  al. 
2016). Healthy controls (HC) were consisted of age- 
and gender- matched adult volunteers enrolled dur-
ing the same study period. Peripheral venous blood 
samples were collected upon admission, along with 
their clinical records. Samples of 111 lung cancer 
patients and 111 volunteers were processed for polar 
metabolite analysis, and 204 lung cancer patients 

and 204 volunteers for lipid analysis. Among these 
lung cancer patients, pathological classification was 
confirmed in 33 patients. These patients included 
20 adenocarcinoma (ADC), 4 squamous cell carci-
nomas (SCC), and 9 small cell lung cancer (SCLC). 
The study protocol obtained the approval of the 
Institutional Review Board of the hospital (# IEC-
2020-S34). Written informed consents were obtained 
from all participants upon enrollment.

Digital evaluation score system

DESS (Digital Evaluation Score System) is a scoring 
index system employed to convert clinical descrip-
tive information into clinical informatics (Zhang 
et  al. 2020). A scoring system was used to evaluate 
each component, assigning scores of 0, 1, 2, or 4. A 
score of 4 denoted the most severe condition, while a 
score of 0 indicated a normal physiological state, as 
detailed in Supplementary Table 1. The DESS scores 
spanned from 0 to 1868, with higher scores indicating 
greater severity of the condition. In the current study, 
467 clinical phenomes were scored and collected 
from lung cancer patients, including 54 from patient 
history, 64 from symptoms, 62 signs, 142 from clini-
cal chemical measurements, 92 from image features, 
and 53 from pathology indexes.

Polar metabolomics detection

Samples were kept at -80  °C until use and thawed 
overnight in a refrigerator prior to sample prepara-
tion. We used 100 μl of plasma from each sample for 
metabolites extraction. For quality control, equal ali-
quots of samples were combined. An internal standard 
of 5 μg/ml tridecanoic acid was added to the plasma 
samples in a 400 μl solution (ratio of volume, metha-
nol: water = 4:1). After vigorous mixing at 37 °C for 
30 s, the mixtures were gently shaken at 1200 rpm for 
30  min. We centrifuged the mixtures at 14,000  rpm 
for 15  min at 4  °C and collected the supernatant. 
Supernatants were concentrated, frozen, and freeze-
dried. Per manufacture’s two-step derivatization pro-
tocol, samples were resuspended in 50 μl of 20 mg/
ml methoxyamine hydrochloride in pyridine. The 
tubes were vortexed, sonicated for one minute, and 
then incubated with shaking at 30  °C for 90  min to 
form methoxyamine derivatives. Subsequently, 40μl 
of N-methyl-N-(trimethylsilyl) trifluoroacetamide 
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was added to the sample for silylation reaction and 
incubated in 37 °C for 30 min. For GC–MS analysis, 
the supernatants were collected after centrifugation 
at 14,000  rpm for 5  min. Untargeted metabolomics 
analysis employed gas chromatography mass spec-
trometry (GC–MS). Agilent 7890B GC and 5977B 
inert mass selective detector (MSD) system (Agilent 
Technologies, Santa Clara, CA, USA) were used. The 
raw data from GC–MS was performed using Agilent 
MassHunter Qualitative Analysis software (version 
10.0, Agilent, CA, USA). The identification of metab-
olites was conducted by referencing the Agilent Fiehn 
database (Kind et al. 2009). To quantify the metabo-
lite content in the sample, the following formula was 
employed: standard sample peak area divided by 
standard sample concentration equals sample peak 
area divided by sample concentration.

Lipidomics detection

Twenty microliters, processed plasma, and reagents 
for quality control were maintained at -80  °C. Iso-
propanol was precooled at -20  °C, of which 350 μl 
isopropanol was precooled to 4 °C, and a 9 μl inter-
nal standard mixture was used for each sample. For 
improved protein precipitation, the solution was 
mixed for 1 min before being incubated at room tem-
perature for 10  min. The samples were stored over-
night at -20  °C. On the next day, the samples were 
centrifuged at 12,000  rpm for 20  min. The 200  μl 
supernatant was collected in a sample tube and 
stored at -80  °C for MS analysis. Plasma lipidom-
ics was detected by AB SCIEX QTRAP 5500 liquid 
chromatography mass spectrometry (LC–MS)/MS 
system (Foster City, CA, USA). The extracted sam-
ples were introduced into a Waters Acquity UPLC 
BEH HILIC column (100  mm × 2.1  mm, 1.7  µm) 
coupled with a Waters Acquity UPLC BEH HILIC 
VanGuard Pre column (2.1  mm × 5  mm, 1.7um) for 
analysis. A phase was 95% acetonitrile (ratio of vol-
ume, acetonitrile: water = 95:5) contained 10 mmol/L 
ammonium acetate, and B phase was 50% acetonitrile 
(ratio of volume, acetonitrile: water = 50:50) contain-
ing with 10 mmol/L ammonium acetate. Ammonium 
hydroxide was incorporated into the B phase until it 
reached the same pH level as the A phase. The flow 
rate was set at 0.5  ml/minute. The gradient elution 
procedure involved the following steps: The B phase 
commenced at 0.1% and gradually increased to 20% 

over a period of 10 min, followed by a rapid increase 
to 98% between 10 to 11 min. The eluent was main-
tained at 98% B phase for 2  min before returning 
to the initial condition of 0.1% in 13.1  min. Subse-
quently, the system was held at 0.1% B phase for 
16 min. The injection volumes for positive and nega-
tive electrospray ionization (ESI + and ESI-) modes 
were 2 and 5  μl, respectively, with N2 used as the 
dissolvent. The parameter settings were as follows: 
curtain gas at 35 psi, GS1 at 50 psi, GS2 at 60 psi, 
ion spray voltage at 5500 V, declustering potential at 
80 V, entrance energy at 10 V, and collision energy at 
50 V. Data were acquired using the Analyst software 
(version 1.7, SCIEX, MA, USA).

Comprehensive analyses of multi‑omic profiles

SIMCA 14.1 software (Umetrics, Umea, Sweden) 
was utilized for conducting principal component 
analysis (PCA) and orthogonal projection to latent 
structures discriminant analysis (OPLS-DA). To 
improve the differentiation between groups and gain 
a better understanding of the variables contributing 
to classification, supervised orthogonal projection to 
latent structures discriminant analysis (OPLS-DA) 
was employed. Subsequently, the software provided 
R2Y and Q2Y classification parameters, which were 
assessed for stability and predictive accuracy. The R2 
and Q2 intercept values were obtained through 200 
permutations, with lower Q2 intercept values indi-
cating reduced risk of overfitting and increased reli-
ability. The loading plot, generated using OPLS-DA, 
illustrated the contribution of variables towards the 
group differences. The heatmap analysis to examine 
the differences among the components was performed 
using MetaboAnalyst software 4.0 (www.​metab​oanal​
yst.​ca). For enhanced analysis, the first principal com-
ponent was computed as the variable importance pro-
jection (VIP), which helped prioritize the variables 
based on their significance. Metabolites with VIP val-
ues exceeding 1.0 were selected to identify the altered 
metabolites. Subsequently, Student’s t-tests were con-
ducted on the remaining variables with a significance 
threshold of p > 0.05, and metabolites without signifi-
cant differences were removed. Additionally, the fold 
change (FC) was utilized to evaluate the variations in 
compound levels. The construction of receiver oper-
ating characteristic (ROC) curves involved plotting 
the true positive rate on the y-axis against the false 

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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positive rate on the x-axis. Correlations between 
polar metabolites and lipids were calculated using the 
Pearson correlation. The evaluation of trans-nodules 
between lipidomic profiles and clinical phenomes 
was conducted using the expression quantitative trait 
locus (eQTL) model.

Statistical analysis

The mean ± SE for each group was calculated and 
compared. Statistical significance of differences 
between two groups or multiple groups was assessed 
using either Student’s t-tests or one-way ANOVA 
tests. Statistical significance was affirmed when 
p < 0.05. The statistical analysis of the data obtained 
from the mass spectra was performed using SIMCA 
14.1. The boxplot and heatmaps were constructed 
using the package ggplot2 in Rstudio. The volcano 
maps displayed notable changes in polar metabo-
lites and lipids, indicating significant elevations or 
declines in lung cancer patients. Pie chart was plot-
ted by http://​www.​bioin​forma​tics.​com.​cn. Differential 
multi-omics metabolites contributing to lung cancer 
were identified using VIP value, FC values, and the 
corresponding p values. The lipid quantitative trait 
loci model modified from the eQTL model was used 
to investigate the correlation between lipid elements 
and clinical phenomes. Further, phenome-lipid pairs 
with significant p values were obtained using Matrix-
lQTL R package. Lipid levels in different lung cancer 
subtypes of ADC, SCC, and SCLC were separately 
calculated and then ranked to obtain the top 3 signifi-
cantly changed lipids. We use Graph Pad Prism 7.04 
(Graph Pad Software Inc., CA, USA) to measure the 
value of the specific alternations of differential lipids 
in ADC, SCC, or SCLC.

Results

Polar metabolites and lipid profiling of lung cancer

To comprehensively profile the lung cancer metabo-
lome, the plasma of lung cancer patients and HC were 
detected for polar metabolites and lipids (Fig. 1, panel 
A). Internal standards and quality control samples 
were used for quality assurance. Multiple metabo-
lites of polar metabolites (such as carbohydrates and 
amino acids) closely related to lipids, and together 

with protein metabolism, constitute the human meta-
bolic map (Fig. 1 panel B). A total of 63 polar metab-
olites and 742 lipids were annotated (Fig. 1, panels C 
and D).

The polar metabolomic landscape of lung cancer

The comparison of average concentration levels of 
metabolite species between lung cancer patients 
and HC revealed the detection of 63 polar metab-
olites, out of which 33 exhibited significant dif-
ferential expression (14 were higher and 19 were 
lower, respectively, compared to HC, all p < 0.05), 
demonstrating significant differences in abundance 
between lung cancer and controls. The plasma lev-
els of alcohols, amides, and peptide metabolites of 
lung cancer patients (n = 111) were significantly 
increased than that of HC (n = 111), whereas car-
boxylic acids, hydrocarbons, and fatty acids were 
decreased (Fig.  2 panels A and B). Of those sig-
nificantly changed polar metabolites in patients 
with lung cancer, the top 6 increased metabolites 
(D-lyxose, L-sorboase, galactinol, urea, D-allose, 
and L-threonine) and top 6 decreased metabolites 
(maltitol, palatinitol, eicosapentaenoic acid, D-man-
nitol, glycolic acid, and thymol), compared to HC, 
were also identified (Fig.  2 panels C and D). To 
identify differential metabolite species, OPLS-DA 
models were established and employed. Six metab-
olites, such as D-lyxose, galactinol, urea, D-allose, 
D-glucose, and D-mannose, were upregulated (all 
VIP > 1, FC > 1, and p < 0.05), while 5 metabo-
lites, namely lactic acid, glycolic acid, D-mannitol, 
palatinitol, and maltitol, were down-regulated (all 
VIP > 1, FC < 1, and p < 0.05), defined on the basis 
of VIP score of lung cancer (Fig.  2 panel E). Fur-
thermore, those remarkably changed metabolites 
were mapped to KEGG pathways using Metabol 
Analyst’s pathway enrichment tool. Six upregulated 
pathways, including Arginine biosynthesis, Ami-
noacyl-tRNA biosynthesis, Galactose metabolism, 
Glycine, serine and threonine metabolism, Nitro-
gen metabolism, and D-Glutamine and D-gluta-
mate metabolism, and 8 down-regulated pathways, 
including Glyoxylate and dicarboxylate metabolism, 
Alanine, aspartate and glutamate metabolism, Argi-
nine and proline metabolism, Arginine biosynthe-
sis, Citrate cycle (TCA cycle), Pyruvate metabo-
lism, Glycolysis/Gluconeogenesis and Glycine, and 

http://www.bioinformatics.com.cn
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serine and threonine metabolism, were identified 
(Fig. 2 panel H).

Lipidomic profile of lung cancer

The intensity levels of CER, PE, SM, and TAG in 
the plasma of lung cancer patients (n = 204) were 

significantly higher than those of HC (n = 204), 
whereas the levels of CE, DAG and PC were remark-
ably reduced. Comparison of the mean concentra-
tion of lipid species between lung cancer patients 
and HC identified 742 lipids, of them 541 were dif-
ferentially expressed (287 were higher and 254 were 
lower, respectively, compared to HC, all p < 0.05), 

Fig. 1   Overview of polar metabolome and lipidome detec-
tion in lung cancer. A schematic illustration showing the com-
bined analysis using multi-omic metabolites data in the study 
for lung cancer precision medicine. In summary, blood sam-
ples were collected and subjected to detection and identifica-
tion using LC–MS and GC–MS techniques. Subsequently, a 
multi-omics correlation analysis was conducted to explore the 
relationships between the identified metabolites. A Omics such 
as glycomics, metabonomics, lipidomics and proteomics are 

interconnected B Pie charts showing the numbers and propor-
tions of annotated polar metabolites C and lipids D identified 
in present study. Abbreviations: GC–MS: gas chromatogra-
phy mass spectrometry; LC–MS: liquid chromatography-mass 
spectrometry; PC: phosphatidylcholines; PE: phosphatidyletha-
nolamine; LPC: lysophosphatidylcholine; LPE: lysophosphati-
dylethanolamine; SM: sphingomyelin; TAG: triacylglycerol; 
DAG: diacylglycerol; CE: cholesteryl ester
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indicating significant differences of abundance 
between lung cancer and HC (Fig.  3 panels A and 
B). Of these significantly changed lipids in patients 
with lung cancer, the top 6 elevated lipids and top 6 
decreased lipids were also identified (Fig.  3, panels 
C and D): levels of CE(20:1), CE(20:0), CE(24:0), 
PE(14:0/14:0)-H, TAG42:0-FA16:0, and CE(22:2) 
were significantly increased, compared to that of HC 
(all p < 0.05); levels of TAG56:1-FA16:0, TAG56:1-
FA18:1, PC(20:0/20:2) + AcO, TAG58:2-FA18:1, 
PE(14:0/20:2), and TAG58:3-FA18:1 were sig-
nificantly decreased, comparing to that of HC (all 
p < 0.05). To better identify differential lipid species, 
OPLS-DA models were established and employed 
(Fig.  3, panel E). Twenty-three metabolites, includ-
ing CE(20:0), TAG54:5-FA18:2, and TAG50:3-
FA16:1, were upregulated (all VIP > 1, FC > 1, and 
p < 0.05); 7 metabolites, including PC(18:0/20:4), 
PC(16:0/22:6), and CE(18:2), were down-regulated 
(all VIP > 1, FC < 1, and p < 0.05), defined on the 
basis of VIP score of lung cancer (Fig.  3 panels F 
and G). Lastly, the numbers of lipids that were sig-
nificantly up-or down-regulated in multiple lipid sub-
classes were counted (Fig.  3 panel H). Most of the 
significantly upregulated lipids exist in two major 
classes of lipids as TAG and PE, while the downregu-
lated lipids mainly exist in TAG, PC, PE, and DAG.

Correlation of polar metabolites and lipids

Pearson correlation analysis examined the relation-
ship between polar metabolomics (p < 0.05, com-
pared to HC) and lipids (p < 0.05, logFC > 0.5 or 
logFC < -0.5, compared to HC), explored the com-
plexity of metabolic networks in the plasma of lung 
cancer patients (Fig. 4 panel A), and revealed the sig-
nificant correlations between a few metabolites and 
lipids. The top 5 significant lipids that were positively 
and negatively correlated with the expression of these 
up/down-regulated metabolites were listed in Table 1 
with their functional associations and roles in can-
cers annotated. There was a significant difference in 
TAG levels between lung cancer and HC (p < 0.001). 
Up-regulated lipids with VIP > 1 and p < 0.05 were 
mainly concentrated in TAG. Although lipids in 
the lung cancer group generally had weak negative 
associations with the polar metabolites, a variety of 
metabolites were found strongly positively correlated 
with TAG. In lung cancer patients, the significant 

upregulated amino acids generally had a positive 
correlation with TAG44:0-FA16:0 and TAG48:2-
FA18:0, and upregulated carbohydrates had a signifi-
cant positive correlation with TAG51:1-FA18:0. A 
few carbohydrate metabolites that were significantly 
downregulated in the lung cancer group were posi-
tively associated with TAG44:1-FA14:0, TAG44:1-
FA18:1, and TAG44:2-FA14:0. Down-regulated fatty 
acids that showed a general positive association with 
TAG44:1-FA14:0, TAG46:1-FA18:1, and TAG46:2-
FA18:2.CE(22:0) was negatively correlated with the 
downregulated metabolite D-mannitol and pyruvic 
acid. The discriminative power of significant dif-
ferenced metabolites (p < 0.05, Fig.  4, panel B) and 
lipids (p < 0.05, logFC > 0.5 or < -0.5, Fig. 4 panel C) 
were tested using mean ROC curve analysis generated 
by tenfold cross-validation, and found that both polar 
metabolites and lipids profiles could distinguish lung 
cancer from HC, in particular, lipids showed promis-
ing discriminative power with superior sensitivity and 
specificity.

Trans‑omic profiles integrating lipidomes with 
clinical phenomes

Based on the eQTL model, we modified the lipid 
quantitative trait loci model to investigate lipid-clini-
cal phenomes correlation. In addition, MatrixlQTL R 
package was used to obtain the significant phenome-
lipid pairs and their p values. Results showed that 
CE(C = 22, 24) were significantly associated with 
lower limb edema, smoking, cough, and hyperten-
sion stratification (Fig. 5, panel A). The close corre-
lation between DAG and clinical phenomes focused 
on C18 (Fig.  5, panel B). Metastasis was related to 
the level of LPC(C = 20) (Fig. 5, panel C). Marasmus 
and diarrhea were associated with LPC(C = 18) and 
SM(C = 18) (Fig.  5, panels C and G). Pulmonary-
related phenotypes including wheeze, chronic lung 
disease history, Velcro, pack-years of smoking, and 
nutritional state were significantly associated with 
LPE(C = 20) (Fig.  5 panel D). Pathological exami-
nation results, ALK, 34βE12, Cam5.2, CK8/18, 
and lymphatic pleural metastasis were related to 
PC(C = 18) (Fig. 5 panel E). PE(C = 18) was associ-
ated with a variety of clinical phenotypes, including 
schistosome and pleural metastasis (Fig. 5, panel F). 
TAG(C = 52, 54, and 56) mainly affect clinical pheno-
type (Fig. 5, panel H).
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The phenotype-related lipid classes were classified 
by different clinical phenotypes. TAG was found to 
be the most abundant lipid class in plasma, and most 
of the lipids that associated with pathological results, 
physical examination, symptoms, primary disease, 
and metastasis belonged to TAG. The results revealed 
that patients with positive expression of Napsin A 
had a strong correlation with lipids (Fig.  6, panel 
A). The lipids most relevant to physical examination 
were DAG, PC, and TAG. Among these phenotypes, 
lower limb edema, voice transmission, thoracocyl-
losis, and intercostal changes were associated with 
lipids (Fig. 6, panel B). Most of the symptoms asso-
ciated with lung cancer were significantly related to 
PE in addition to TAG (Fig. 6, panel C). In patients 
who had a history of drinking or smoking, PC and PE 
were dysfunctional (Fig. 6, panel D). In patients with 
underlying disease, PE was prone to be abnormal 
(Fig. 6, panel E). PC, PE, and TAG were associated 
with tumor metastasis, especially pleural and osseous 
metastasis. Lung cancer was frequently accompanied 
by these two types of metastasis (Fig. 6, panel F).

Lipidomic profiles of lung cancer subtypes

Different lipids are generally interconverted by spe-
cific cellular lipid phosphatases and kinases. DAG is 
derived from phosphatidate and converts into PE, PC, 
and TAG. PC and PE further convert into LPC and 
LPE, respectively. In addition, PC converts into CER 
to generate DAG and SM. And cholesterol produces 
CE (Fig.  7, panel A). The proportions (%) of the 9 
main lipid elements of ADC (n = 20), SCC (n = 4), 
and SCLC (n = 9) were plotted through the pie charts 
(Fig. 7 panel B). Notably, SM, CE and LPE increased 
mainly in SCLC, whereas PC and PE significantly 
decreased, compared with ADC and SCC. In addi-
tion, LPC and TAG were decreased in SCC. Differ-
ences exist in the changed lipids among lung cancer 
subtypes. Among the lipid elements that showed 
significant changes in lung cancer, the top three 
lipids from each group were identified. Levels of 
TAG(49:1-FA16:1, 49:1-FA17:0, and 49:2-FA16:1) 
were significantly higher (Fig.  7, panel C), and 
TAG(53:4-FA16:0, 53:6-FA20:4), LPC(20:3) were 
lower (Fig. 7 panel D) in ADC as compared with that 
of SCLC. Levels of CE(18:2), SM(18:0, and 18:1) 
were higher (Fig. 7, panel E), and PC(18:2/20:5) and 
DAG(18:0/18:1, and 18:1/18:1) were lower (Fig.  7 
panel F) in ADC as compared with that of SCC. Lev-
els of PE(O-16:0/22:6, P-16:0/22:6, and P-18:1/22:6) 
in SCC were up-regulated (Fig. 7 panel G), and lev-
els of LPC(16:0, 18:0, and 20:0) in SCC were down-
regulated (Fig. 7 panel H), when compared with that 
of ADC and SCLC. In SCLC, the levels of SM(22:1, 
24:0, and 26:1) were increased compared to the 
groups of ADC and SCC (Fig.  7, panel I). Moreo-
ver, the levels of PE(O-16:0/22:6, O-18:0/22:6, and 
P-16:0/22:6) were decreased in SCLC when com-
pared with SCC (Fig. 7 panel J). Levels of LPC(16:1 
and 22:5), and CE(24:1) were also decreased when 
compared with ADC (Fig. 7, panel K).

Discussion

Metabolic disturbance has shown potential for 
cancer diagnosis. Given its importance, stud-
ies to define the role of metabolic disturbances in 
lung cancer are warranted, yet related literatures 
have been limited. In the present study, a compre-
hensive metabolomic network was constructed to 

Fig. 2   The metabolomic landscape of lung cancer. A Changes 
in metabolic profiles in plasma of lung cancer patients and 
health controls detected by GC–MS. Scatterplots with box-
plots showing the significantly changed metabolite classes in 
lung cancer. B Volcano plots of significantly up/down-reg-
ulated expressed metabolites in lung cancer. The most differ-
entially expressed polar metabolites were mainly concentrated 
in 3 types of metabolites: carbohydrates, amino acids and 
carboxylic acids (log2FC > 0.5 or log2FC < -0.5 and p < 0.05, 
compared with HC). C D-lyxose (FC = 5.17, p < 0.01), L-sor-
boase (FC = 1.66, p < 0.01), galactinol (FC = 1.65, p < 0.01), 
urea (FC = 1.54, p < 0.01), D-allose (FC = 1.50, p < 0.01), and 
L-threonine (FC = 1.46, p < 0.01) were the top 6 significantly 
increased metabolites in patients with lung cancer. D Maltitol 
(FC = 0.37, p < 0.01), palatinitol (FC = 0.38, p < 0.01), eicosa-
pentaenoic acid (FC = 0.44, p < 0.01), D-mannitol (FC = 0.55, 
p < 0.01), glycolic acid (FC = 0.59, p < 0.01), and thymol 
(FC = 0.60, p < 0.01) were the top 6 significantly decreased 
metabolites in patients with lung cancer. E OPLS-DA score 
plot showed the high separating capacity of polar metabo-
lites. F The top 6 up-regulated polar metabolites in VIP chart 
(VIP > 1, FC > 1, and p < 0.05). The top 6 up-regulated polar 
metabolites. G The top 5 scored down-regulated polar metab-
olites in VIP chart (VIP > 1, FC < 1, and p < 0.05). H Enrich-
ment pathway analysis to identify signaling pathways related to 
changed metabolites. The 3 most significantly activated signal-
ing pathways were arginine biosynthesis, aminoacyl-tRNA bio-
synthesis, and galactose metabolism. The 3 most significantly 
inhibited signaling pathways were glyoxylate and dicarboxy-
late metabolism, alanine, aspartate and glutamate metabolism, 
and arginine and proline metabolism. *p < 0.05; ** p < 0.01; 
*** p < 0.001

◂
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systematically describe the metabolomic landscape 
of lung cancer. We also investigated the associa-
tion between polar metabolites and lipids, effects 
of lipids on clinical phenotypes, and differences in 
lipidomic profiles between subtypes of lung cancer. 
The study revealed that the changes in clinical phe-
notypes may be the result of the combined effects of 
metabolomics and lipidomics, clinical phenotypes 
including pathological results, physical examina-
tion, symptoms, primary disease and metastasis 
were significantly associated with TAG(especially 
with carbon number 52, 54, and 56), and TAG 
expression were strongly positively correlated 
with multiple polar metabolites. Overall, our study 
illustrated the metabolomic landscape of lung can-
cer, highlighted the potential application of plasma 
metabolites, including polar metabolites and lipids, 
to differentiate and diagnose lung cancer, and paved 
the way for developing a novel targeted therapies of 
lung cancer.

The discovery of plasma biomarkers has been her-
alding the ability to differentiate lung cancer patients 
from healthy or non-malignant lung disease patients 
by metabolomics and lipidomics for last decade 
(Zhang et  al. 2020). In patients with non-squamous 

non-small cell lung cancer, a majority of functions 
related to carbohydrate, amino acid, and nucleotide 
pathways demonstrated an association with shorter 
overall survival (OS) (Ivanina Foureau et  al. 2022). 
Increasing evidence found the alterations in plasma 
lipid metabolism in lung cancer patients (Lv et  al. 
2018a, b; Yu et  al. 2024; Zhu et  al. 2020). Due to 
the metabolic heterogeneity of lung cancer, the sen-
sitivity, specificity, and clinical efficacy of a single 
marker is relatively limited. The combined applica-
tions of multiple metabolic biomarkers could enhance 
the precision and sensitivity of early screening while 
contributing to the advancement of personalized 
treatment approaches. Systematic studies have been 
undertaken to explore the potential significance of 
serum metabolites and lipids in the diagnosis of lung 
cancer. Among these studies, eight specific metabo-
lites have been identified, including 1-mristoyl-sn-
glycero-3-phosphocholine, 16b-hydroxyestradiol, 
3-phosphoserine, cholesteryl sulfate, D-lyxose, dioc-
tyl phthalate, DL-lactate and Leu-Phe were identifed 
for their potential value in the early diagnosis of 
SCLC (Shang et  al. 2023). LPC 18:0, L-Phenylala-
nine, oxaloacetic acid and xanthine were also found 
to be significantly altered in the plasma of patients 
with non-small cell lung cancer (NSCLC) (Cang et al. 
2022). However, to date, there are no studies that have 
combined metabolomics, lipidomics and clinical phe-
notypes in lung cancer patients. By integrating metab-
olomics and lipidomics data with clinical phenotype 
of patients, the present study constructed a compre-
hensive functional metabolic network of lung cancer. 
Analyzing metabolic biomarkers in conjunction with 
clinical phenotypes can help to better understand the 
mechanisms of lung cancer, its diagnosis, progression 
prediction, and therapeutic response, and facilitate the 
application of biomarkers in clinical practice.

In the current study, 63 polar metabolites and 742 
lipids in the plasma of lung cancer patients and HC 
were quantified using LC–MS and GC–MS. Multi-
omics data analysis provided a clear differentiation of 
the two groups. The polar metabolic profiling found 
that the expression of alcohols, amides, and peptides 
were increased, whereas carboxylic acids, hydrocar-
bons and fatty acids were decreased in lung cancer 
patients, compared to that of HC. In addition, plasma 
levels of various amino acids such as L-threonine 
and L-glutamic acid of lung cancer patients were 
increased compared to HC. Previous studies have 

Fig. 3   The lipidomics landscape of lung cancer. A Changes 
in lipid profiles in plasma of lung cancer patients and normal 
controls detected by LC–MS. Volcano plots of significantly 
up-/down-regulated expressed lipids in lung cancer group. 
TAGs were the most variable lipids, with multiple TAG con-
tained in both elevated and reduced lipids (log2FC > 1.5 or 
log2FC < -1.5, and p < 0.05, compared with HC). B Scatter-
plots with boxplots showing the significantly changed lipid 
classes in lung cancer. C CE(20:1) (FC = 10.22, p < 0.01), 
CE(20:0) (FC = 6.70, p < 0.01), CE(24:0) (FC = 5.85, p < 0.01), 
PE(14:0/14:0)-H (FC = 5.00, p < 0.01), TAG42:0-FA16:0 
(FC = 4.96, p < 0.01), and CE(22:2) (FC = 4.94, p < 0.01) 
were the top 6 significantly increased lipids in patients with 
lung cancer. D TAG56:1-FA16:0 (FC = 0.08, p < 0.01), 
TAG56:1-FA18:1 (FC = 0.12, p < 0.01), PC(20:0/20:2) + AcO 
(FC = 0.12, p < 0.01), TAG58:2-FA18:1 (FC = 0.13, p < 0.01), 
PE(14:0/20:2) (FC = 0.15, p < 0.01) and TAG58:3-FA18:1 
(FC = 0.20, p < 0.01) were the top 6 significantly decreased 
lipids in patients with lung cancer. E The score plot generated 
by OPLS-DA demonstrated the strong discriminatory ability of 
lipids. F The top 23 up-regulated lipids in VIP chart (VIP > 1, 
FC > 1, and p < 0.05). G The top 7 down-regulated lipids in 
VIP chart (VIP > 1, FC < 1, and p < 0.05). H Among the up-/
down-regulated lipids, the cumulative number of signifi-
cantly changed lipids in each lipid class. The 3 lipid types that 
increased the most were TAG, PE and CE. The 3 most reduced 
lipid types were TAG, PC and PE. *p < 0.05; ** p < 0.01; *** 
p < 0.001
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reported that L-glutamic acid exhibits the potential 
to differentiate lung cancer from pneumonia. Con-
sequently, it could serve as a supplementary tool to 
distinguish benign PET-positive lung lesions from 
lung cancer (Vanhove et al. 2018). Although the main 
energy supply of cancer cells is considered from glu-
cose decomposing, recent studies found that amino 
acids are the largest source of nutrients for cancer 
cells. Furthermore, pathway enrichment analysis 
revealed that arginine biosynthesis, glyoxylate and 
dicarboxylate metabolism were dysregulated in lung 
cancer. In cancer cells, arginine and its metabolites 
regulate proliferation, growth, autophagy, apoptosis, 
and metastasis (Yang et  al. 2020a, b). Arginine bio-
synthesis pathway is also associated with resistance 
to chemotherapy (Liu et al. 2021a, b). Glyoxylate and 
dicarboxylate metabolism disorders would decrease 
the ability to detoxify reactive oxygen species 

generated by chemotherapy and radiotherapy, leading 
to cancer-causing mutations (Cano et al. 2011). Taken 
together, the current study documented the distur-
bance of polar metabolites in lung cancer and iden-
tified L-threonine and L-glutamic acid as potential 
markers for lung cancer diagnosis.

Current lipidomics studies revealed remarkable 
differences that mainly concentrated in glycerolipid 
metabolism and glycerophospholipid metabolism 
between lung cancer patients and HC. Lipids are 
made up of fatty acids and other compounds. Fatty 
acids are the main components of lipids and they are 
organic acids consisting of carbon chains and car-
boxylic acid groups. The characteristics of fatty acids 
depend on their chain length, bond length, and satu-
ration. Changes in these characteristics can modulate 
the structure and properties of lipids, thereby affect-
ing their function and effects in organisms (Wenk 

Fig. 4   Correlation between polar metabolome and lipidome. 
Pearson correlation analysis examined the relationship between 
polar metabolomics and lipids. Heatmaps were used to show 
the relationship between these two omics results. The color 
gradients of the heatmap indicates the Pearson correlation 
coefficients. The horizontal line in the middle of heatmap is 
the dividing line between up and down regulated metabolites, 
and above the horizontal line is increased metabolites, below 
the horizontal line is decreased metabolites. A variety of polar 
metabolites were found to have a clear correlation with lipids 

(A). ROC curves of polar metabolites (B) and lipids (C) were 
constructed using tenfold cross-validated evaluation based on 
the random forests algorithm. The averaged ROC curves (rep-
resented in blue) were generated by calculating the mean of all 
ROC curves for polar metabolites or lipids. Our AUC was cal-
culated using the mean ROC curve. AUC stands for the area 
under the curve, the shaded part is 1 standard deviation above 
and below. ROC curves demonstrated that the expression 
of polar metabolites and lipids could distinguish lung cancer 
patients from HC
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2005). A widest amplitude of TAG changes was found 
in lung cancer. TAGs were the most significantly 
changed lipid classes, both in up- and down-regulated 
lipids. Additionally, TAGs concentrations displayed 
significant relationship with the severity of clinical 
signs. TAGs are the primary storage form of intra-
cellular lipids, and its species concentration varies 
considerably. The abnormal concentration of TAG is 
related to the morbidity and mortality of tumors and 
is considered an ideal target for cancer immunother-
apy. PC and PE are the most abundant phospholipids 
and exhibit marked changes during the progression 

of many diseases. With oncogenesis and tumor pro-
gression, the rate of phospholipid synthesis increases. 
Increased concentrations of PE and PC have been 
detected in numerous cancer types. The dysregula-
tion of PE and PC metabolism can be understood as a 
necessity to accommodate the rapid proliferation rate 
of cancer cells. Changes in chain length can affect 
multiple aspects of lipids, including physical proper-
ties, solubility, bioavailability and metabolism, and 
bioactivity (Wang et al. 2024). In present study, PEs 
were found significantly upregulated in lung cancer, 
but multiple PCs were downregulated, especially 

Fig. 5   Trans-omic nodules cross-clinical phenomes and each 
lipid class measured by simulating the expression quantita-
tive trait locus (eQTL) model. Heatmap showing the associa-
tions between the clinical phenomes and CE (A), DAG (B), 
LPC (C), LPE (D), PC (E), PE (F), SM (G) and TAG (H). 

The bluer the color of the heatmap, the weaker the correlation 
between the clinical phenomes and lipids; and the redder the 
color of the heatmap, the stronger the correlation between clin-
ical phenomes and lipids
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C16-C18 PC, including PC(18:0/20:4, 16:0/22:6, 
18:0/18:2, 18:1/18:2, 18:2/18:2 and 16:0/16:0). This 
may be due to the reduction of PC after anticancer 
treatment (Morse et al. 2007). Fatty acids with carbon 
number between 16 and 18 are medium-length fatty 
acids that are relatively abundant in many foods and 
have relatively high stability. They provide the energy 
needed by the body and are essential for cell structure 
and function. Some specific fatty acids with carbon 
atoms between 16 and 18, such as linoleic acid, are 
thought to have immunomodulatory and anti-inflam-
matory effects (Villacorta et  al. 2018). In line with 
our observations, Chen et al. reported a notable eleva-
tion in the levels of PEs among early-stage lung can-
cer patients (Chen et al. 2018). In addition, CEs (spe-
cially 20:0) were found to be significantly increased in 
lung cancer, suggesting that the accumulation of CE 

is a common indicator of cancer (Huang et al. 2020). 
The interrelations among different lipid classes were 
complex, full understanding of the lipid alterations in 
lung cancer requires further study.

Lipids can be converted from carbohydrates or 
amino acid metabolites. To determine the links 
between metabolomics and lipidomics, a correlation 
analysis was carried out to identify carbohydrates 
showing significant activation in lung cancer. Results 
found that most of the carbohydrates were positively 
correlated with TAGs. Increased carbohydrate intake 
and metabolism have been reported to be prominent 
metabolic features of most cancers. Previous research 
has established that increased levels of plasma carbo-
hydrates play a role in the proliferation and migration 
of lung cancer cells. In the current study, a positive 
correlation was identified between the expression of 

Fig. 6   Correlations between various clinical phenotypes and 
lipids. Heatmap showing the associations between lipid classes 
and pathological results (A), physical examination (B), symp-
tom (C), personal history (D), underlying disease (E), and 
metastasis (F). Numbers in the heatmap represent the number 

of related lipids detected per lipid class. The bluer the color 
of the heatmap, the less lipids are associated with the clinical 
phenotypes; and the redder the color of the heatmap, the more 
lipids are associated with the clinical phenotypes
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several amino acids (such as L-threonine, L-glutamic 
acid, L-methionine, L-glutamine, and L-ornithine) 
and TAG levels. Amino acids, especially L-glutamic 
acid, not only provide energy, but also involve in the 
processes of protein folding, de novo nucleic acid 
synthesis, and lipid synthesis. Changes in amino acid 
content can regulate lipid synthesis. As there is no lit-
erature that has studied the association between TAG 
and glucose, the current analysis of the associations 

between metabolites and lipids would provide impor-
tant clues to investigate the driving force of metabolic 
reprogramming in lung cancer.

To integrate lipidomics with clinical information, 
the study scored clinical phenomes by DESS to com-
bine lipidomic data with clinical phenomes of lung 
cancer patients. Using the modified eQTL model, and 
MatrixEQTL as an achievable additive linear model 
(Zhang et  al. 2020; Zhu et  al. 2020), correlations 



Cell Biol Toxicol           (2024) 40:25 	

1 3

Page 19 of 22     25 

Vol.: (0123456789)

between clinical phenomena and lipid molecules were 
calculated, and patient phenome-specific lipid elements 
were subsequently identified. As one clinical pheno-
type may be associated with changes in multiple lipid 
components, and changes in one lipid component may 
affect multiple clinical phenotypes, alterations of lipids 
may be disease-specific or phenomenon-specific, thus 
their validity as diagnostic biomarkers requires further 
investigation. The number of specific lipids found cor-
responding to the clinical phenomena in the study tes-
tified the complexity of the regulatory mechanisms. 
The study found that headache was corresponded with 
PC and PE, and headache-specific lipid elements pro-
files were further examined. Classified by carbon chain 
length, PC(C = 18) and PE(C = 18) were found to be the 
lipids most frequently associated with headache. These 
results suggested that different metabolic pathways and 
metabolites contributed to the same clinical phenotype. 
Conversely, the same metabolic pathways and metabo-
lites can manifest in different clinical phenomena. For 
example, LPE(C = 20) was found to be involved in the 
appearance of wheeze, chronic lung disease, velcro, 
smoking, and nutritional state. Cancer cells exhibit alter-
ations in their metabolism in response to both internal 
and external microenvironments, which are regulated by 
the modulation of the trans-omic network. In order to 

achieve a comprehensive comprehension of the involved 
biological systems, it is imperative to perform an exten-
sive analysis of pertinent omics datasets. The integration 
of multiple omics data, known as trans-omics, provides a 
synergistic effect that can contribute to the development 
of precise medicine for lung cancer (Zhang et al. 2020). 
Cancer cells enhance lipogenesis to support their rapid 
proliferation. The expressions of corresponding genes 
and epigenetic modifications can regulate lipid metabo-
lites and the associated restriction enzymes. The current 
study demonstrated the manifold interactions between 
developing tumors and the metabolic microenvironment 
and supported the significance of combining multiple 
metabolomics with clinical phenoms in understanding 
the molecular mechanisms of lung cancer pathogenesis.

We also compared lipid profiles in different lung can-
cer subtypes. Results showed that LPC(16:0, 18:0, 20:0) 
were remarkably downregulated in SCC. Decreased 
LPCs were often found in patients with early stage lung 
cancer (Ros-Mazurczyk et al. 2017). Moreover, a large-
scale study suggested that a lower level of plasma LPCs, 
especially LPC(18:0), could be associated with increased 
risk of breast, prostate, and colorectal cancer. In contrast, 
higher levels of certain PC were associated with increased 
cancer risk (Kuhn et al. 2016). According to the annota-
tion of registered masses in the human plasma lipidome 
database, several LPCs were down-regulated in cancers 
(Lv et  al. 2018a, b). Compared with ADC and SCLC, 
SCC had significantly higher levels of PEs, mainly in 
PE(16:0/22:6) and PE(18:0/22:6). Although previous 
research found that PE(16:0/22:6, 18:0/22:6) were mark-
edly increased in type 2 diabetes mellitus, this effect has 
not been reported in any lung cancer studies (Zhang et al. 
2022). The present study revealed that epidemic profiling 
has a unique value for lung cancer early diagnostics, how-
ever its ununiformity needs to be cautiously considered, 
as this malignance is a highly heterogeneous disease.

The study should be viewed and interpreted in the 
light of its limitations. As the study was based on mul-
tiple metabolomicss integrated with clinical phenoms, 
such that the findings need to be further validated. There 
were compounding factors in the process of clinical phe-
nomena and lipid profile integration, including limited 
sample size, especially for SCC and SCLC lung cancer 
patients, relatively low specificity of metabolites, and 
the variability of the disease itself. In addition, most of 
the enrolled lung cancer patients received chemotherapy 
treatment, which might have compromised the results. 
Despite these limitations, the present study, however, 

Fig. 7   Top 3 significantly changed lipids in patients with dif-
ferent lung cancer subtypes. Schematic of interconversions 
among different lipids. DAG is derived from phosphatidate 
and converts into PE, PC and TAG. PC and PE further con-
verts into LPC and LPE, respectively. In addition, PC converts 
into CER to generate DAG and SM. And cholesterol pro-
duces CE (A). Pie charts showing the proportions of multiple 
lipid classes in patients with different lung cancer subtypes 
(B). TAG49:1-FA16:1, TAG49:1-FA17:0, and TAG49:2-
FA16:1 were the top 3 up-regulated lipids in ADC compared 
to SCLC (C). CE(18:2), SM(18:0), and SM(18:1) were the 
top 3 down-regulated lipids in ADC compared to SCLC (D). 
LPC(20:3), TAG53:4-FA16:0 and TAG53:6-FA20:4 were 
the top 3 up-regulated lipids in ADC compared to SCC (E). 
PC(18:2/20:5), DAG(18:0/18:1), and DAG(18:1/18:1) were 
the top 3 down-regulated lipids in ADC compared to SCC 
(F). PE(O-16:0/22:6), PE(P-16:0/22:6), and PE(P-18:1/22:6) 
were the top 3 up-regulated lipids in SCC compared to ADC 
and SCLC (G). LPC(16:0), LPC(18:0) and LPC(20:0) were 
the top 3 down-regulated lipids in SCC compared to ADC and 
SCLC (H). SM(22:1), SM(24:0), and SM(26:1) were the top 
3 up-regulated lipids n SCLC compared to ADC and SCC (I). 
PE(O-16:0/22:6), PE(O-18:0/22:6), and PE(P-16:0/22:6) were 
the top 3 down-regulated lipids in SCLC compared to SCC (J). 
LPC(16:1), LPC(22:5), and CE(24:1) were the top 3 down-reg-
ulated lipids n SCLC compared to ADC (K). For all compari-
sons, *p < 0.05,**p < 0.01,***p < 0.001
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underscores the potential application of plasma metabo-
lites, including polar metabolites and lipids, to differen-
tiate and diagnose lung cancer. Furthermore, this study 
highlights the importance of utilizing trans-omics pro-
files that integrate clinical observations with lipidomics. 
This approach allows for the exploration of the hetero-
geneity in lipid metabolism within lung cancer and the 
identification of lipidome landmarks associated with 
specific clinical phenomena.

In summary, using a comprehensive multi-omics 
metabolomic dataset, the present study illustrated 
the plasma metabolomic landscape of lung cancer. 
By combining multi-omics profiling, the study also 
discovered potential metabolic diagnostic and thera-
peutic targets for lung cancer. Furthermore, the cor-
relation of lipidomics with metabolomics and clinical 
phenotypes of the study would expand the knowledge 
pool of genome-based precision medicine for lung 
cancer. Future large sample size study is warranted 
due to the heterogeneous nature of this malignancy.
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