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Abstract  Cell-based metabolomics provides mul-
tiparametric physiologically relevant readouts that can 
be highly advantageous for improved, biologically 
based decision making in early stages of compound 
development. Here, we present the development of 
a 96-well plate LC-MS/MS-based targeted metabo-
lomics screening platform for the classification of 
liver toxicity modes of action (MoAs) in HepG2 cells. 
Different parameters of the workflow (cell seeding 

density, passage number, cytotoxicity testing, sample 
preparation, metabolite extraction, analytical method, 
and data processing) were optimized and standard-
ized to increase the efficiency of the testing platform. 
The applicability of the system was tested with seven 
substances known to be representative of three dif-
ferent liver toxicity MoAs (peroxisome proliferation, 
liver enzyme induction, and liver enzyme inhibition). 
Five concentrations per substance, aimed at covering 
the complete dose-response curve, were analyzed and 
221 uniquely identified metabolites were measured, 
annotated, and allocated in 12 different metabolite Supplementary Information  The online version 

contains supplementary material available at https://​doi.​
org/​10.​1007/​s10565-​023-​09809-6.
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classes such as amino acids, carbohydrates, energy 
metabolism, nucleobases, vitamins and cofactors, 
and diverse lipid classes. Multivariate and univari-
ate analyses showed a dose response of the metabolic 
effects, a clear differentiation between liver toxicity 
MoAs and resulted in the identification of metabo-
lite patterns specific for each MoA. Key metabolites 
indicative of both general and mechanistic specific 
hepatotoxicity were identified. The method presented 
here offers a multiparametric, mechanistic-based, and 
cost-effective hepatotoxicity screening that provides 
MoA classification and sheds light into the pathways 
involved in the toxicological mechanism. This assay 
can be implemented as a reliable compound screen-
ing platform for improved safety assessment in early 
compound development pipelines.

Keywords  Metabolomics · Toxicology in vitro · 
Toxicometabolomics · Mode of action · Liver 
toxicity · Hepatotoxicity · High throughput

Introduction

Toxicological assessment is a critical step in chemical 
and drug development pipelines. The increasing num-
ber and complexity of candidate compounds keep 
challenging conventional toxicity evaluation proce-
dures (Wang et al. 2020). In addition, the consecutive 
implementation of stringent regulatory frameworks 
(REACH EC No. 1907/2006, European Cosmetics 
Act EC No. 1223/2009, chemical strategy toward 
sustainability COM/2022) aiming to ensure human 
safety and environmental sustainability of both new 
and existing substances have resulted in increased 
testing needs (Crawford et  al. 2017; van Dijk et  al. 
2021). Thus, to warrant the continued production and 
the development of new safe and sustainable chemi-
cals, reliable, cost-effective, and high-throughput 
methods are needed.

The low throughput and high costs of traditional 
animal-based toxicity studies have rendered them 
impractical for assessing large numbers of com-
pounds. In 2007, a new vision and roadmap for 
toxicity testing in the twenty-first century was pro-
posed, consisting of moving away from utilizing 
large animal cohorts and observational sciences to 
incorporate more efficient and human relevant tech-
nologies that provide a better understanding of the 
mechanisms of toxicity (National Research Council, 
2007).

The development and use of in vitro human cell-
based assays has been a major step in the implemen-
tation of the Toxicology of the 21st Century (Tox21 
program) and have been fundamental in the under-
standing of molecular mechanisms of toxicity and 
in the development of adverse outcome pathways 
(AOP) (Vinken 2013; Krewski et  al. 2020). More 
recently, complex in  vitro toxicity models (e.g., 
three-dimensional (3D) organoid models, hiPSCs 
derived systems, organ-on-a-chip platforms) address-
ing systemic toxicity endpoints have been developed 
(Plummer et  al. 2019; Richards et  al. 2020; Shino-
zawa et  al. 2021). Despite the advantage they offer, 
the limited throughput, complexity, and high cost of 
these sophisticated in vitro models reduce their appli-
cability. Additionally, toxicological in  vitro testing 
has been based mainly on mono-parametric strategies 
(one question, one answer) which is time consuming 
and limits the full characterization of toxicological-
related events (Dix et al. 2007).

The use of multiparametric “omics” technolo-
gies allows the simultaneous evaluation of mul-
tiple parameters in a single biological sample and 
offers a more comprehensive tool for elucidating 
the molecular and biochemical events underlaying 
organ toxicity (García-Cañaveras et  al. 2016). In 
particular, metabolites represent the most down-
stream products and final outcome of expression 
of the genome, transcriptome and proteome, thus 
providing a snapshot of the biochemical and physi-
ological status of a system including its response 
to external stressors (Guijas et  al. 2018). For this 
reason, metabolomics is considered to be the omics 
technology which is closest to classical toxicology 
and has shown to have a similar sensitivity (Van 
Ravenzwaay et  al. 2014). Metabolomics has been 
successfully implemented for more than a decade to 
identify toxicological mechanisms in rodent studies 
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(Kamp et  al. 2012; Van Ravenzwaay et  al. 2014; 
Van Ravenzwaay et al. 2015). More recently, it has 
been used in combination with in  vitro models to 
expand the investigation of organ toxicity (García-
Cañaveras et al. 2016; Birk et al. 2021; Huang et al. 
2021; Jeon et al. 2021).

The liver is one of the most frequent target organs 
of chemical toxicity. Drug-induced liver injury 
(DILI) represents the leading cause of failure in 
new pharmaceutical development and post approval 
compound withdrawals (Onakpoya et  al. 2016). 
Therefore, hepatotoxicity is of primary concern in 
compound development and considerable efforts 
have been directed to the development of assays to 
evaluate liver toxicity (Mirahmad et al. 2022). Sev-
eral liver cell lines have been successfully used for 
in  vitro metabolomics to identify modes of action 
of liver toxicity (Cuykx et  al. 2018b). However, in 
contrast to popular perception, so far, in vitro experi-
ments and, in particular, metabolomics experiments 
are costly and material- and labor-intensive (García-
Cañaveras et al. 2016; Cuykx et al. 2018b; Ramirez 
et al. 2018). We have previously developed a HepG2 
cell-based metabolomics in  vitro platform, capable 
of identifying and characterizing different modes 
of action (MoAs) of liver toxicity. Despite its good 
performance as a research tool, the assay was costly, 
complex, and time consuming (Ramirez et al. 2018). 
These factors have critically limited in vitro metabo-
lomics throughput and scalability and prevented its 
implementation in high-throughput screening during 
early stages of compound development.

Improvements in the sensitivity of analytical tech-
niques for metabolomics have opened the possibility 
of scaling the throughput in metabolomics (Dubuis 
et  al. 2018; Zampieri et  al. 2018; Anglada-Girotto 
et  al. 2022; Malinowska et  al. 2022). We have used 
this opportunity to develop and evaluate a highly 
standardized, 96-well in  vitro metabolomics screen-
ing platform for the identification and classification of 
liver toxicity MoAs in HepG2 cells. Different param-
eters of the workflow such as cell seeding density, 
influence of passage number, cytotoxicity testing, 
sample preparation, metabolite extraction, analytical 
method, and data processing were optimized to per-
form with low biomass samples. This new method-
ology was then tested with seven compounds with 
known hepatotoxicity modes of action (MoA) in five 
different concentrations.

Materials and methods

Cell culture

HepG2 cells (ECACC, UK, maximum passage num-
ber 9) were maintained and grown on Dulbecco’s 
MEM media supplemented with 1% v/v of penicillin/
streptomycin, l-glutamine (200 mM, 1% v/v), non-
essential amino acids (100x, 1% v/v), and 10% FBS 
(PAN-Biotech, Aidenbach, Germany) in 75 cm2 cul-
ture flasks (TPP, Switzerland). For cell passaging (~ 
80% confluency) media was removed and cells were 
washed twice with pre-warmed calcium and magne-
sium free Dulbecco’s PBS (PAN-Biotech, Aidenbach, 
Germany). Trypsin was used for cell detachment. 
Then, 20 mL culture medium was added, and single-
cell suspensions were obtained by passing the sus-
pension through a Combitip (Eppendorf, Germany). 
A fraction of the cell suspension was then transferred 
to a new culture vessel. For experiments, 15,000 cells 
per well (passage 5-9) were seeded in 96-well flat-
bottom plates (TPP, Switzerland) and incubated for 
24 h for cell attachment (37 °C and 5% CO2). After-
wards, culture media were exchanged, test substances 
applied, and plates incubated for 48 h (37 °C and 5% 
CO2).

Test substances

Test substances (Table  1) were selected based on 
their known in  vivo liver toxicity effects and differ-
ent MoAs as well as results from previous in  vitro 
studies in our lab (Ramirez et al. 2018). Acifluorfen, 
bezafibrate, wy-14643, β-naphthoflavone, pendimeth-
alin, and ketoconazole were purchased from Sigma-
Aldrich (Taufkirchen, Germany) and Aroclor 1254 
from Chem-Service (West Chester, PA, USA). Purity 
of all substances ≥ 98%.

Cytotoxicity and cell viability testing

Commercially available cytotoxicity (CellTox™ 
Green) and ATP content based (CellTiter-Glo®) 
assays (Promega GmbH, Walldorf, Germany) were 
multiplexed in a single 96-well plate following the 
manufacturer’s instructions. For positive controls, 
lysis solution 25X was added in wells containing 
vehicle control treated cells (0.5% DMSO). Then, 
10X CellTox Green reagent was added in all wells, 
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plates were shaken for 1 min, and incubated in the 
dark for 15 min at room temperature. Fluorescence 
was measured at λex = 485–500 nm/λem = 520–530 
nm in the GloMax®-Multi Detection System (Pro-
mega). Afterwards, wells were washed with PBS, 
100 μL of Dulbecco’s MEM media were added to 
each well and subsequently 100 μL of 1X CellTiter-
Glo were added. Plates were shaken for 2 min and 
incubated in the dark for 8 min at room temperature. 
Luminescence was measured in the GloMax®-Multi 
Detection System (Promega) and was normalized to 
the values of the vehicle control. Cytotoxicity and 
ATP cell viability analysis were carried out for range 
finder pre-tests and in parallel with metabolomics 
experiments in plates handled and treated exactly as 
the ones used for metabolite profiling.

Range finder experiments for dose setting

In order to define appropriate dose levels, range finder 
experiments were performed prior to metabolome 
experiments. Substances were administered to HepG2 

cells in increasing concentrations and incubated for 48 
h (6 replicates per concentration). Viability and cyto-
toxicity tests were performed as described previously. 
Luminescence values resulting from CellTiter-Glo® 
assays were used to build dose response curves. Curve 
fitting and effective concentrations (ECs) values 
were calculated in R using three-parameter Weibull 
model (W1.3). To obtain a full metabolome-based 
dose-response effect, five concentrations (EC1, EC5, 
EC15, EC50, EC85) were selected for metabolome 
experiments (Table  2). EC1 and EC5 were selected 
to evaluate mild metabolic effects, EC15 was selected 
to obtain a robust substance-related effect; however, 
within a low cytotoxicity range and EC50 and EC85 
were chosen to identify cytotoxic-related metabolite 
patterns. Calculated ECs values were rounded to the 
nearest integer number for dose selection.

Live‑cell imaging

To monitor cell proliferation, total well confluence 
was obtained by real-time cell imaging analysis using 

Table 1   Overview of test substances used for treatment of HepG2 cells for 48 h

Substance CAS-Nr. Chemical class Category MoA

Acifluorfen 50594-66-6 Diphenyl ether Herbicide Peroxisome proliferation
Bezafibrate 41859-67-0 Fibric acids Hypolipidemic agents Peroxisome proliferation
Wy-14643 50892-23-4 Pyrimidines Hypolipidemic agents Peroxisome proliferation
β-naphthoflavone 6051-87-2 Benzoflavone Industrial chemical Liver enzyme inducer
Aroclor 1254 11097-69-1 Polychlorinated biphenyl Industrial chemical Liver enzyme inducer
Pendimethalin 40487-42-1 Dinitroaniline Herbicide Liver enzyme inducer
Ketoconazole 65277-42-1 Imidazole derivative Fungicide Enzyme inhibitor

Table 2   Concentrations selected to perform the metabolomics experiments based on range finder experiments

a Bezafibrate 1000 μM was used as positive control in each experiment
b For Ketoconazole, the EC1 was excluded and a concentration between the EC15 and EC50 was selected instead. ECs were esti-
mated based on the ATP dose response curves generated in the range finder experiments

Substance EC1 (μM) EC5 (μM) EC15 (μM) EC50 (μM) EC85 (μM)

Bezafibratea 1000
Acifluorfen 50 100 200 500 800
Wy-14643 25 50 150 500 1000
β-naphthoflavone 0.1 1 10 100 700
Aroclor 1254 21 38 56 94 133
Pendimethalin 24 39 56 94 157
Ketoconazole 5b 0.2 1 10 50
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IncuCyte S3 device placed in a normal incubator at 
37 °C with 5% CO2. Whole-well scans were taken 
every 6 h during the duration of the assay and evalu-
ated using automated phase-contrast analysis (phase 
mask).

Metabolomics experiments

After 24 h of cell attachment, substances were admin-
istered in 0.5% DMSO to HepG2 cells in 5 concen-
trations (EC1(ATP), EC5(ATP), EC15(ATP), EC50(ATP), 
EC85(ATP)) and incubated for 48 h. For each sub-
stance, one 96-well plate was set up with 6 replicates 
per concentration, 12 replicates for vehicle controls 
(yielding a final concentration of 0.5% DMSO in the 
well), 6 replicates for positive controls (Bezafibrate 
1000 μM), and 6 replicates for blank controls (media 
without cells). To minimize potential evaporation, 
the outer rows and columns of the plate were omitted 
and filled with PBS instead. Reference samples pre-
pared from lyophilized HepG2 cells were measured 
in parallel throughout the entire analytical process 
(technical replicates). Data from each metabolite in 
each sample were normalized against the median of 
the same metabolite in all reference samples on same 
plate to give normalized ratios. Lyophilized HepG2 
cells reference samples were used to account for vari-
ability between plates and in concentration series for 
linearity checks. After 48 h, the assays were stopped 
by washing the wells once with 100 μL 0.9% NaCl 
followed by snap freezing the plates on liquid nitro-
gen for 5 s. Plates were placed immediately on dry 
ice and 50 μL ice-cooled isopropanol 80% (v/v) were 
added to quench metabolism and precipitate proteins. 
Plates were stored at − 80 °C until LC/ MS analysis.

LC‑MS/MS metabolomics

Metabolite profiling of cells was performed directly 
in the same 96-well plate according to a standard-
ized protocol described below. In order to prevent 
any interaction with the cell material, the automatic 
sampler was adjusted to pick up the sample from the 
supernatant at a specified depth avoiding the contact 
with the bottom of the plate.

After the initial quenching step (50 μL isopropanol 
80%), additional 70 μL of isopropanol 80%, contain-
ing internal standards (methionine-D3, tryptophan-
D5, arginine-13C6-15N4, Boc-Ala-Gly-Gly-Gly-OH, 

coenzyme Q1, coenzyme Q2, coenzyme Q4) were 
added to each well. The internal standards were used 
for quality control by visual inspection (signal inten-
sity, peak shape, retention time); they were not used 
for normalization. Afterwards, plates were shaken 
for 5 min, 750 rpm at 20 °C, and placed for 30 s in 
the ultrasonic device. Then, the plates were centrifu-
gated for 10 min, at 5485 g, 15 °C. Further, 2.5 μL of 
the extract were injected each for reversed-phase and 
hydrophilic interaction liquid chromatography fol-
lowed by MS/MS detection (AB Sciex QTrap 6500+) 
using the positive and negative ionization mode. For 
reverse-phase high-performance liquid chromatogra-
phy (RP-HPLC, Ascentis Express C18, 5 cm × 2.1 
mm, 2.7 μm Supelco), gradient elution was performed 
with mobile phase A, water/methanol/0.1 M ammo-
nium formate (1:1:0.02, w/w), and B, methyl-tert-
butylether/2-propanol/methanol/0.1 M ammonium 
formate/formic acid (4:2:1:0.07:0.035, w/w) 5.9 min 
linear gradient: 0 min 100% A, 0.5 min 75% A, 5.9 
min 10% A; followed by 0% A until 6.7 min; re-equi-
libration at 100% A until 7.7 min; flow rate 600 μL/
min; column temperature 40 °C HILIC (ZIC-HILIC, 
2.1 × 100 mm, 3.5 μm, Supelco) gradient elution was 
performed with mobile phase C, acetonitrile/water 
(99:1, v/v) with 0.2% (v) acetic acid, and D, 7 mM 
ammonium acetate with 0.2% (v) acetic acid (5.0 min 
linear gradient: 0 min 100% C, 5 min 10% C; followed 
by a linear gradient back to 100%C until 6.5 min; re-
equilibration at 100% C until 7.5 min; flow rate 600 
μL/min; column temperature 40 °C.). Two LC-MS 
systems with identical configuration were used for the 
analysis. Normalization to lyophilized reference sam-
ples (see below) was used to compensate for variation 
from between analytical batches. The efficiency of 
this normalization procedure was checked by princi-
pal component analysis (PCA), confirming that Pool 
samples from different analytical batches clustered 
together.

During the quality control process, parameters 
such as coverage, linearity (R2), variability (RSD), 
and blank contributions were evaluated for each 
metabolite. An analyte would pass the quality control 
check if the following thresholds were met.

Coverage > 80%, blank contribution < 40%, slope 
> 0, and any of the following conditions (a, b, c, d) 
regarding the linearity (R2) and variability (RSD): 
(a) linearity > 0.8, variability < 0.3 or (b) linearity 
> 0.64, variability < 0.3 or (c) linearity (R2) > 0.8, 
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variability (RSD) < 0.6 or (d) linearity (R2) > 0.64, 
variability (RSD) < 0.6. When a metabolite failed to 
pass the quality control check, data for this metabolite 
were excluded.

In our targeted approach, a pre-defined set of 
metabolites are identified by their analytical param-
eters: polarity (lipid vs polar), MRM transition (m/z 
ratios), and retention time. To confirm the identity 
of a metabolite, samples were spiked with the pure 
metabolite during method development whenever 
possible. When metabolites were not commercially 
available, fragmentation patterns and library match-
ing were used to determine the most likely identity 
of those metabolites. The corresponding metabolites 
were then marked as “plausible.” Metabolites listed 
as “unknown” have well-defined analytical param-
eters but unknown chemical identity.

The corresponding chromatography techniques, 
ionization modes, Q1 mass [m/z], Q3 mass [m/z], 
ChEBI ID, ChEBI name, and MRM parameters for 
the measured metabolites is provided in Suppl. Fig. 1.

Metabolomics data analysis

Reference samples derived from lyophilized untreated 
HepG2 cells (technical control samples) were meas-
ured in parallel throughout the entire analytical pro-
cess. Data were normalized against the median of 
these lyophilized HepG2 cells reference samples, 
to give normalized ratios (performed for each sam-
ple per metabolite). This compensated for inter- and 
intra-instrumental variation. To correct for small dif-
ferences in cell numbers within and between differ-
ent treatment groups, data were also normalized to 
the within sample median, as described in detail by 
(Ramirez et al. 2018). For intracellular metabolomic 
analysis, the median of each sample was calculated 
across all the 221 measured metabolites.

To generate metabolic profiles for the different 
treatments, heteroscedastic t test (Welch test) was 
applied to log-transformed normalized metabolite 
data to compare treated groups with their respective 
controls.

To investigate the experimental variability, the 
variance of every log-transformed metabolite for both 
lyophilized HepG2 cells reference samples (technical 
replicates) and vehicle control samples was calculated 
(cells exposed to vehicle control during the assay 

time). These variances were back-transformed to lin-
ear scale, yielding a relative standard deviation (RSD) 
using the following formula:

Principal component analysis (PCA) and hierar-
chical clustering (HCA) analyses were performed 
using R software environment (https://​www.r-​proje​
ct.​org/). PCA was conducted using the ropls pack-
age (Thévenot et  al. 2015) with log10-transformed 
input data and standard scaling. HCA was performed 
using the pvclust package (Suzuki et  al. 2019), 
(https://​CRAN.R-​proje​ct.​org/​packa​ge=​pvclu​st). Input: 
log10(Ratio), clustering method: Ward D2, distance 
method: Manhattan, bootstrapping: 10000 times.

Results

Method development and optimization

To develop a metabolomics in  vitro assay compat-
ible for high throughput, different parameters such 
as cell seeding density, influence of passage number, 
cytotoxicity testing, sample preparation, metabolite 
extraction, analytical method, and data processing 
known to have a significant impact on the cell metab-
olome were optimized in a 96-well plate format.

Optimal cell seeding density determination

To determine the optimal cell seeding density for 
the assay, different initial cell numbers ranging from 
5000 to 25,000 cells/well were evaluated. Cells 
obtained from two different passage numbers (pas-
sage 5 and passage 7) were used for these experi-
ments. Cell proliferation throughout the duration of 
the assay was monitored by measuring well conflu-
ence using real-time imaging analysis. After 48 h of 
incubation with vehicle control, the metabolic signal 
of vehicle control-treated cells was evaluated together 
with the well confluence (Fig.  1). Principal compo-
nent analysis (PCA) of metabolic profiles showed 
that the initial cell seeding number was a strong 
driver for the separation along PC1, accounting for 
the 83.5% of the metabolic variation (see Fig. 1a). A 
separation of cells derived from passage 5 and pas-
sage 7 was evident in PC2, yet only accounting for a 

RSD = 1 − 10−SDlog

https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/package=pvclust
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very minor fraction of the overall variability (3.8%). 
A comparably low peak intensity was observed at 
the initial cell seeding density of 5000 cells/well. 
Metabolic profiles of 20,000 and 25,000 cells/well 
were found close to each other in the PCA plot, sug-
gesting a potential saturation for some metabolites 
around these cell numbers. Initial seeding densities 
of 10,000 cells/well and 15,000 cells/well exhibited 
a strong metabolic signal within the linearity range 
of the metabolic response and presented a relatively 
low within samples variability. However, seeding 
densities up to 10,000 cells/well showed decreased 
proliferation rates when compared with higher seed-
ing densities (Fig.  1b). Further, 15,000 cells/well 
exhibited a strong metabolic signal, low variability, 
and a regular HepG2 cell proliferation rate and there-
fore was selected as the optimal initial cell seeding 
density to perform metabolomics experiments. PCAs 
and their corresponding loading plots before and 
after applying a cell number normalization proce-
dure are shown in Suppl. Fig. 2. Considering the total 
duration of the assay (72 h) and the HepG2 doubling 
time (~ 30 h), the final cell numbers obtained with 
15,000 cells/well was ~ 84,000 cells per sample.

Influence of passage number on the metabolic 
response

To evaluate the impact of passage number on the 
metabolome, cells derived from three different 

passages numbers (5, 7, and 9) were treated for 
48 h with Bezafibrate, a substance that has served 
as a quality/positive control in metabolomics stud-
ies due to its pronounced and reproducible effect 
on the metabolome. Metabolic profiles of Bezafi-
brate-treated cells originating from different pas-
sage numbers were compared by PCA analysis 
(Fig.  2). Bezafibrate-treated samples were clearly 
separated from control samples. It was observed that 
the strongest effect was due to substance treatment, 
accounting for 39% of the variation in PC1. Results 
showed a high overlap among samples from differ-
ent passage groups, indicating that cellular passage 
was not a major source of variation. Based on these 
data, different cell passages (from 5 to 9) could be 
used in the metabolomics in vitro assay, increasing 
the flexibility of the method without a major impact 
on the results.

Proof of concept with test substances

Once the main parameters of the assay were estab-
lished, its performance as liver toxicity MoA 
screening test was evaluated. Seven substances 
known to cause liver toxicity through three dif-
ferent MoAs were tested (peroxisome prolifera-
tion: Acifluorfen, Wy-14643, and Bezafibrate; 
liver enzyme induction: Pendimethalin, Aroclor, 
and β-naphthoflavone; liver enzyme inhibition: 
Ketoconazole).

Fig. 1   15,000 cells per well was selected as the optimal seed-
ing number for the assay. a PCA analysis of the metabolic pro-
files of different cell seeding densities and passages (passage 5, 

passage 7). SAM normalization for cell number correction was 
not performed. b Cell confluence of different seeding densities 
during the time of the assay
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Cytotoxicity testing for dose selection

To select compound concentrations for the metabo-
lome experiments, range finder experiments for 
each substance were carried out. After administer-
ing increasing concentrations of test compounds, 
cytotoxicity and cell viability were assessed (Suppl. 
Fig.  3). CellToxGreen assay measures cell death 
and therefore it was used to identify concentra-
tions that were highly cytotoxic. ATP production, 
a more sensitive endpoint and likely to be a closer 
proxy to impairments in cellular metabolism, was 
used to generate dose response curves for each sub-
stance and estimate effective concentration (EC1, 
EC5, EC15, EC50, EC85) values. Based on ATP-
estimated EC values (Table  2), five concentrations 

(C1–5) covering the full dose response range were 
selected per substance for the metabolome experi-
ments (see Suppl. Fig. 4). To experimentally assess 
cytotoxic effects of selected doses, cell viability and 
cytotoxicity were measured in parallel with metabo-
lomics experiments in plates handled and treated 
exactly as the ones used for metabolomics (Table 3, 
Suppl. Fig. 5). Cells treated with C1 and C2 exhib-
ited a percentage of viability of ≥ 97% for all sub-
stances, except for Aroclor 1254 where the viability 
for C1 was 95.5% and for C2 was 80.5%. C3 had a 
stronger effect on the viability (≥ 80%) for all sub-
stances except for Aroclor 1254 (60.6%) and Bezafi-
brate (71–84%). As expected, C4 and C5 of all 
substances had a pronounced effect on the cellular 
viability ranging from 34 to 65% for C4 and from 3 
to 28% for C5.

Metabolomics

After treatment, intracellular metabolites were 
extracted for semiquantitative targeted metabolomics 
via LC-MS/MS. 221 unique analytes were meas-
ured of which 156 were annotated and 65 remained 
unknown. Annotation was done during method devel-
opment, using different approaches such as spik-
ing with reference compounds or LC-Q-Tof-HRMS 
analysis for matching the results with library data 
or with results from similar compounds of the same 
compound class. Measured metabolites were grouped 
into 12 ontology classes. An enrichment analysis 
was carried out to evaluate the number of signifi-
cantly changed metabolites per ontology class (Suppl. 
Fig.  6). The data revealed dose dependency in all 
cases, with increasing number of altered metabolites 
at higher concentrations.

Fig. 2   Bezafibrate-treated cells of different passages do not 
show a bias by experiment or cell passage. PCA analysis of the 
metabolic profiles of Bezafibrate-treated cells (positive con-
trol). Bezafibrate treatment showed a clear metabolic change 
compared to vehicle-treated cells. The results were obtained in 
3 independent experiments using cell passages 5, 7, and 9

Table 3   Cell viability in metabolomics experiments. Percent-
age of viability (ATP) compared to the vehicle control (n = 6). 
*Bezafibrate 1000 μM was used as a positive control in each 

experiment. Actual concentrations corresponding to the C1–
C5 of each substance can be found in Table 2 of materials and 
methods

Substance C1 (%) C2 (%) C3 (%) C4 (%) C5 (%) Bezafibrate* (%)

Acifluorfen 104.7 ± 4.2 105.2 ± 4.8 99.9 ± 1.3 58.4 ± 1.5 27.8± 1.3 84.1 ± 2.3
Wy-14643 100.9 ± 3.8 97.1 ± 3.1 94.6 ±1.8 46.4 ± 2.0 23.2 ± 1.1 76.3 ± 3.2
β-naphthoflavone 103.4 ± 4.3 113.8 ± 3.7 104.1 ± 1.6 34.5 ± 3.4 15.0 ± 2.1 75.0 ± 1.5
Aroclor 1254 95.5 ± 4.1 80.5 ± 5.7 60.6 ± 7.5 8.7 ± 1.6 3.9 ± 3.2 71.8 ± 2.8
Pendimethalin 98.3 ± 3.9 100.3 ± 2.9 82.4 ± 4.9 36.1 ± 3.2 18.5 ± 3.2 78.0 ± 0.7
Ketoconazole 102.4 ± 3.1 102.0 ± 0.9 91.2 ± 1.5 64.7 ± 1.5 28.2 ± 1.9 79.3 ± 2.2
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Experimental variability and reproducibility

The experimental variability of the technical (lyo-
philized reference samples) and biological controls 
(vehicle treated cells) demonstrated the robustness 
and reproducibility of the method. Control samples 
revealed RSD values of 8% to 11%. The technical 
replicates had an RSD of 8% to 10% (Suppl. Fig. 7). 
Reproducibility was also evaluated under treatment 
conditions using the results of Bezafibrate, which 
was included as positive control in all the plates. The 
metabolome profile of different Bezafibrate experi-
ments clustered together in the PCA of all analy-
ses, indicating the homogeneity of the samples and 
experiments. Moreover, the univariate analysis of the 
Bezafibrate treatment effects demonstrated consistent 
pattern of metabolite changes across all plates.

PCA analysis reveals dose response effect by 
metabolomics

Metabolite profiles were further analyzed by PCA. Con-
centration-dependent responses were observed for each 
substance (Fig. 3). For pendimethalin, aroclor, acifluor-
fen, and ketoconazole, low (C1 and C2) and intermedi-
ate concentrations (C3) were separated from control 
samples with a similar dose response trajectory: the ini-
tial separation from controls at the lowest concentrations 
is visible in a PC2 response followed by increasing PC1 
separation at higher concentrations. For ß-Naphthofla-
vone, all concentrations were quantitatively different 
but separated from control samples in the same direc-
tion (PC1). For Wy-14643, C1 and C2 clustered together 
with controls, the intermediate level (C3) separated 
along the PC2, and high concentrations clearly separated 
along the PC1. In summary, low and intermediate con-
centrations drift away from controls in the same direc-
tion in a dose response manner while high concentra-
tions exert a strong effect on the metabolome (PC1) and 
separate in a different direction suggesting a different 
impact of middle and high concentrations levels on the 
metabolome. These results show that (1) a metabolome-
based dose response can be obtained and (2) metabolite 
profiles resulting from cytotoxic effects on the metabo-
lome are distinguishable from specific substance-related 
effects; (3) metabolomics is more sensitive than ATP 
measurement; and significant metabolite changes were 
already observed at concentrations that caused no reduc-
tions in ATP levels (e.g., C1, C2).

Differentiation of hepatotoxicity modes of action

A meaningful metabolomics-based assessment of MoA 
requires a concentration high enough to cause biochem-
ical alterations but not excessive to induce extensive 
cell damage and lethality. Intermediate concentration 
levels (C3 for pendimethalin, β-naphthoflavone, aci-
fluorfen, wy-14643, and ketoconazole and C2 for aro-
clor) were clearly distinguishable from controls in the 
PCA (Fig.  3), which showed a mild reduction of cell 
viability (less than 10%) and presented low cytotoxicity 
(Suppl. Fig. 5); therefore, were selected for further anal-
ysis. Applying a PCA, a separation by mode of action 
was observed (Fig. 4). Treated samples were separated 
from vehicle controls in PC1, accounting for 21% of 
the total variation. Three different clusters correspond-
ing to the evaluated MoAs were detected. The separa-
tion of the peroxisome proliferators cluster (acifluorfen, 
bezafibrate and wy-14643) and liver enzyme inducers 
cluster (aroclor, β-naphthoflavone, and pendimethalin) 
was visible in PC2, representing 17% of total variation. 
The separation of liver enzyme inhibitor (ketoconazole) 
was distinguishable in PC3 which accounted for 14% of 
the total variation. A 3D PCA plot can be found in the 
supplemental information (Suppl. Fig. 8).

A hierarchical clustering analysis (HCA) fur-
ther confirmed the compounds clustering by MoA 
(Fig.  5). These results indicate that 96-well plate 
in  vitro metabolic profiling can distinguish between 
different liver toxicity MoAs.

Characteristic metabolite changes for each MoA

The metabolites set of significantly altered metabo-
lites can give a better mechanistic understanding of 
liver toxicity MoAs. Therefore, intracellular metabo-
lomes of cells treated with the intermediate concen-
tration (C3 for pendimethalin, β-naphthoflavone, acif-
luorfen, wy-14643, ketoconazole, and C2 for aroclor) 
were then evaluated at a single metabolite level and 
used to identify unique sets of altered metabolites for 
each MoA. Metabolite sets that were potentially rel-
evant for a specific MoA were generated by compar-
ing metabolite profiles of substances belonging to the 
same MoA and selecting all commonly changed sig-
nificantly increased or decreased metabolites.

Peroxisome proliferators (bezafibrate, acifluor-
fen, wy-14643) showed a decrease in concentra-
tions of short (propionylcarnitine) and medium 
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(hexanoylcarnitine, acylcarnitines) carnitines, ketole-
ucine, taurine, creatine, 5-hydroxytryptophan, s-aden-
osylhomocysteine, deoxycytidine, glycerol-3-phos-
phate, and higher concentrations of N-acetlyaspartate 
and some triacylglycerols. Additionally, concentra-
tions of phospholipids, ceramides, and sphingomy-
elins were decreased after treatment (Suppl. Fig. 9).

Cells treated with the enzyme inducers aro-
clor, pendimethalin, and β-naphthoflavone showed 
increases of tyrosine, the redox carriers flavin adenine 
dinucleotide (NAD) and glutathione (GSH) and the 
glutathione precursor cysteinylglycine. In addition, 
enzyme inducers were characterized by reductions of 
proline, myo-inositol, N-acetylglucosamine, deoxycyt-
idine, the carnitine derivative O-acetyl carnitine, short 
and medium chain carnitine derivatives, and several 
triacylglycerols (Suppl. Fig. 10).

The metabolite profile of ketoconazole, repre-
sentative of the liver enzyme inhibitor MoA, exhib-
ited lower concentrations of amino acids and related 
metabolites, the redox carriers GSH, pyroxidal and 
coenzyme Q10, ceramides and cholesteryl esters, and 
increases in levels of long chain carnitine derivatives, 
taurine, choline, and sphingomyelin (Suppl. Fig. 11).

In summary, our results show that different MoA 
were characterized by specific metabolites as common 
denominators for the respective MoA. Additionally, 
reduced levels of creatine, carnitine, and pantothenic 
acid and increased levels of lysophosphatidylcholine 
and lysophosphatidylethanolamine were found to be 
metabolite alterations shared by the 3 MoAs; conse-
quently, these metabolites cannot be regarded as MoA 
specific but rather general for hepatotoxicity.

Discussion

Method development and optimization

Several potentially influencing factors for the devel-
opment of a high-throughput in  vitro metabolomics 
technique have been evaluated and optimized.

Cell seeding density determination

Miniaturizing an essay to a 96-well format implicates 
reductions in cell numbers thus limiting the available 
biomass for analysis. Therefore, an important issue 
was to select an appropriate initial cell density. Based 
on the assessment of cell growth and metabolomics 
signal strength of different cell seeding densities, 
15,000 cell/well provided best results.

Our results demonstrate that seeding density has 
a major effect on the cellular growth rate and conse-
quently on cell numbers at the end of the experiment. 
It has been shown that dose response metrics such 
as IC50 are influenced by growth rates (Hafner et al. 
2016). Therefore, optimizing seeding densities and 
reporting final cell numbers is critical in assay devel-
opment to reduce interexperimental variability and 
improve the replicability and reproducibility of dose 
response curves (Larsson et al. 2020).

Influence of passage number on the metabolic 
response

Flexibility is a crucial parameter for implement-
ing an in  vitro assay. In industrial settings, studies 
are designed for serial running of large numbers of 
samples in wide ranges of experimental conditions, 
making the use of a single, cell passage impractical. 
Yet, using different passage numbers can represent 
a source of variability that could reduce the statisti-
cal significance of the analysis (Moreno-Torres et  al. 
2021). We evaluated passage number (passage 5–9) as 
a possible confounding factor and showed that it has 
no significant impact on the metabolome, increasing 
the flexibility of the assay without impacting the bio-
logical interpretation. A similar observation was made 
by (Moreno-Torres et al. 2021) who showed that cell 
passage has a minor contribution (6%) to the data vari-
ance in the PCA.

Sample extraction

To avoid complex sample manipulation, we have 
implemented a one-phase liquid extraction using 
isopropanol. Monophasic extractions using alcohols 
(mostly methanol) are usually sufficient to remove 
most macromolecules such as proteins and nucleic 
acids, avoid selection bias, cover a wide range of 
polar to non-polar metabolites and in contrast to 

Fig. 3   PCAs of metabolomics dose-response effect. PCA anal-
ysis of the metabolic profiles of a Acifluorfen, b Wy-14643, c 
β-naphthoflavone, d Aroclor, e Pendimethalin, and f Ketocon-
azole-treated cells at five different concentrations. Actual con-
centrations corresponding to the C1–C5 of each substance can 
be found in Table 2 of materials and methods. Bezafibrate was 
used as a positive control in all plates (data not shown)

◂
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other organic solvents, are compatible with polysty-
rene (96 well-plate material) (Andresen et al. 2022). 
In comparison with methanol, isopropanol allows 
better protein precipitation, has a higher boiling 
point, which reduces sample evaporation and offers 
a broad polarity range (Andresen et al. 2022). Metab-
olite extraction was done directly in 96 well-plates, 
avoiding cell scrapping, trypsinization or additional 
steps which cause cellular-perturbations or biomass 
loss (Bordag et al. 2016; Dubuis et al. 2018; Zamp-
ieri et al. 2018).

Optimization of the metabolome coverage by using 
LC‑MS

In this study, we focused on using LC-MS as a sin-
gle analytical technique and combined HILIC (for 
polar metabolites) and RP (optimized for lipid spe-
cies) chromatography to expand the metabolome 
coverage. The results revealed that a wide range 
of metabolites from highly polar (amino acids, 
nucleobases, cofactors) to lipidic (lysoPLs, PLs, 
TGs) was covered. Lipid metabolites accounted for 

Fig. 4   PCA of metabolic 
profiles shows a MoA-
specific clustering of liver 
toxicants. PCA of metabo-
lite profiles of HepG2 cells 
treated for 48 h with three 
liver enzyme inducers 
(pendimethalin, aroclor, 
β-naphthoflavone), three 
peroxisome proliferators 
(bezafibrate, acifluor-
fen, wy-14643) and one 
liver enzyme inhibitor 
(ketoconazole) allows to 
discriminate between the 
different mode of actions 
of these substances. 
Intermediate concentra-
tions (C3 for pendimetha-
lin, β-naphthoflavone, 
acifluorfen, wy-14643, and 
ketoconazole and C2 for 
aroclor) were selected for 
the analysis. Upper panel 
PC1 vs. PC2; lower panel 
PC1 vs. PC3
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75% of the 221 annotated features. Therefore, even 
though we increased the LC spectrum significantly, 
the detection of polar metabolites was limited. 
Our current method could potentially be improved 
by optimizing the HILIC protocol as shown by 
(Gerdemann et  al. 2022), by adding pre-column 
derivatization steps (Walvekar et  al. 2018) or by 
implementing an additional method for energy 
metabolism metabolites (Balcke et  al. 2011). 
However, these additional sample preparations 
and the need of different aliquots would increase 
the experimental time and cost. Therefore, from a 
practical point of view, our experiments showed 
that performing the analysis using a single sample 
preparation and analytical condition represents a 
good tradeoff between simplifying the system and 
still getting sufficient information to discriminate 
between different MoAs.

Proof of concept: MoA differentiation

HepG2 cells have been instrumental for investigat-
ing the molecular and cellular processes involved 
in hepatotoxicity. Although their limited drug 
metabolizing and transport capabilities are well 
acknowledged, their low cost, high reproducibility, 
and human origin make them a suitable option for 
initial screenings and compound prioritization.

The applicability of our system to differenti-
ate between MoAs was tested with seven substances 
known to be representative of three different liver tox-
icity MoAs (Peroxisome proliferation, liver enzyme 
induction, and liver enzyme inhibition). Five doses 
covering a wide range of concentrations from EC1 to 
EC85 (intracellular ATP) were used. A clear metabo-
lomics-based dose response was observed by both mul-
tivariate and univariate analysis (Fig. 3, Suppl. Fig. 6).

Fig. 5   Hierarchical clustering analysis of metabolic pro-
files shows a MoA-specific clustering of liver toxicants. 
HCA of metabolite profiles of HepG2 cells treated for 48 h 
with three liver enzyme inducers (Pendimethalin, Aroclor, 
β-Naphthoflavone), three peroxisome proliferators (Bezafi-
brate, Acifluorfen, Wy-14643), and one liver enzyme inhibi-
tor (Ketoconazole) allows to discriminate between the dif-

ferent mode of actions of these substances. Intermediate 
concentrations (C3 for Pendimethalin, B-naphthoflavone, aci-
fluorfen, Wy-14643, and Ketoconazole and C2 for Aroclor) 
were selected for the analysis. Input: log10(Ratio), clustering 
method: Ward D2, distance method: Manhattan, bootstrapping: 
10,000 times
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Noteworthy, the dose selection was based on esti-
mated EC values obtained from ATP-based dose 
response curves in the range finder experiments. The 
estimated EC values did not correlate exactly with the 
experimental ATP measured values (Table  3). This 
was highly dependent on the compound and might be 
related to the specific dose-response nature of each 
substance. Expanding the number of tested concen-
trations in the range finder experiments would enable 
to build improved dose-response curves that allow 
for more accurate EC estimations. Yet, ATP meas-
urement represents a highly sensitive and metabolic-
related endpoint and therefore represents a suitable 
approach for metabolomics dose setting.

Then to evaluate the specific MoA-related metabo-
lomics response and exclude confounding cytotoxic 
effects, we selected a concentration that (1) did not 
cause any significant cell death (assessed by Cell-
ToxGreen assay) and (2) induced a slight to moderate 
loss of ATP (ATP level decreased by less than 20% as 
compared to controls). In most cases, this turned out 
to be the C3 concentration. The results of the PCA 
analysis at this concentration demonstrated a good 
separation between peroxisome proliferators, enzyme 
inducers, and the enzyme-inhibiting compound.

Early identification of MoA is a powerful biologi-
cally driven classification tool essential in compound 
development. The next step would be to build a large 
database which would broaden the spectrum of cov-
ered MoAs, similar to our in vivo metabolomics data-
base (MetaMap®Tox) (Van Ravenzwaay et al. 2015). 
Thus, following the metabolome analysis of a new 
compound, a PCA comparison with that of a reference 
compound (i.e., compounds with a known MoA) may 
help to quickly identify the probable MoA and offer 
the possibility of biological-based read across analysis.

Non‑specific markers of hepatotoxicity

Following the PCA comparison, metabolic profiles of 
subtoxic doses were subjected to univariate statistics 
to identify individual metabolite changes. Concen-
trations of carnitine and pantothenic acid were sig-
nificantly decreased and levels of lysophosphatidyl-
cholines (LPC) and lysophosphatidylethanolamines 
(LPE) significantly increased in all treatments. These 
metabolic changes were observed irrespective of the 
substance MoA and therefore can be considered as 
nonspecific, general markers of hepatoxicity.

Pantothenic acid is an essential nutrient required to 
synthesize coenzyme A (CoA) (Leonardi et al. 2007). 
During fatty acid degradation, CoA and carnitine are 
required to activate and mobilize long chain fatty 
acids into the mitochondria via the carnitine shuttle. 
Lower intracellular concentrations of carnitine and 
pantothenic acid suggest a higher mobilization of 
lipids into the mitochondria for β-oxidation. Reduced 
concentrations of these two metabolites have been 
reported consistently in in vitro studies after exposure 
to hepatotoxicants such as 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) (Ruiz-Aracama et  al. 2011), per-
oxisome proliferators (Ramirez et  al. 2018), sodium 
valproate  (Cuykx et  al, 2018a), and dichloroacetate 
(Dubuis et al. 2018). These metabolite changes point 
toward a general imbalance of the cellular energy 
status and could be indicative of mitochondrion mal-
function, a pathway which is frequently target of 
hepatotoxic compounds (Mihajlovic et al. 2022).

Elevated concentrations of both LPC and LPE rep-
resent an increased turnover of phospholipids species 
and are as well a common finding in investigations 
of liver pathologies and in the nephrotoxic-related 
MoA—mitochondrial DNA interaction—in kidney 
cells (García-Canaveras et  al. 2011; Beyoglu et  al. 
2013; Birk et al. 2021).

MoA‑specific metabolite profiles

For each of the MoAs, panels of specific combinations 
of intracellular metabolite changes were identified 
which are unique for the adverse outcome pathway.

Peroxisome proliferators (PP) are pharmaceutical 
and chemicals that increase the number and size of 
peroxisomes in vivo via the activation of the nuclear 
receptor PPARα which acts as a central regulator of 
hepatic lipid metabolism (Aoyama et al. 1998).

The metabolic profile of PP exhibited lower lev-
els of short and medium acylcarnitines, ketoleucine, 
taurine, and creatine and higher concentrations of 
N-acetylaspartate and some triacylglycerols. Long-
chain acylcarnitines are oxidized in the mitochon-
dria and peroxisomes via β-oxidation to short- and 
medium-chain carnitines that can be subsequently 
utilized together with ketogenic amino acids for the 
formation of ketone bodies via the branched-chain 
amino acid (BCCA) metabolism. Lower levels of 
propionylcarnitine and hexanoylcarnitine together 
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with decreased levels of the ketogenic amino acid 
ketoleucine support the increased synthesis of ketone 
bodies characteristic of an energy metabolism switch 
from glycolysis to fatty acid β-oxidation. Taurine 
plays an important role in lipoprotein metabolism 
(Yanagita et al. 2008) and has been shown to attenu-
ate the effects of drug induced hepatic injury by act-
ing as an antioxidant during lipid peroxidation (Mas 
et al. 2004; Murakami et al. 2018). A higher utiliza-
tion of taurine due to increased β-oxidation could 
have resulted in the lower levels of the amino acid 
observed in PP-treated cells.

Lower levels of creatine and S-adenosylhomo-
cysteine were also observed after PP treatment. It 
has been shown that some PP competes for the same 
binding site on PPAR-α as homocysteine (Hunt et al. 
2002). In addition, creatine administration is known 
to decrease the homocysteine production in liver, pre-
venting fat accumulation and resulting in beneficial 
effects in fatty liver and non-alcoholic liver disease 
(Barcelos et al. 2016).

Increased levels of the acetyl-CoA precursor 
N-acetyl-aspartate (NAA) could have resulted as a 
consequence of the excess of acetyl-CoA produced by 
high rates of fatty acid oxidation in PP-treated cells 
(Prokesch et al. 2016).

Metabolic profiles of enzyme inducers showed 
decreased levels of proline. Proline can be used by 
cancer cells as energy source and/or as precursor of 
protein synthesis. Recent studies have demonstrated 
that proline participates in the regulation of redox 
balance and energy status (Zheng et  al. 2021). Con-
centrations of the glucose derivates myo-inositol and 
N-acetylglucosamine were as well reduced after treat-
ment. Myo-inositol is implicated in the modulation of 
glucose metabolism through its role in insulin signal 
transduction (Bevilacqua et al. 2018). These changes 
together with lower concentrations of the carnitine 
precursor o-acetylcarnitine, short and medium carni-
tine derivates, and several triacylglycerols suggest an 
alteration of the cellular energy balance.

Increased concentrations of the glutathione precur-
sor cysteinylglycine as well as the redox carriers flavin 
adenine dinucleotide (FAD) and glutathione (GSH) 
indicate the activation of the antioxidant response. 
CYPs enzymes induction plays an important role in 
increased hepatic clearance but also contributes to 
the formation of chemically reactive metabolites that 
can lead to toxicity. However, enzyme induction by 

itself is generally viewed as a compensatory and not 
an adverse response (Mattes et al. 2014). In line with 
our observations, the elevation of glutathione and its 
precursor cysteinylglycine suggest a stimulation of de 
novo synthesis of glutathione indicative of an early 
cellular response to counteract the ROS production 
generated by higher activities of CYPS enzymes.

Ketoconazole is an imidazole fungicide that acts 
as potent inhibitor of the human CYP 3A4 enzyme 
and was used in this study to assess the metabolic 
profile of liver enzyme inhibition. Cells exposed to 
Ketoconazole showed lower concentrations of amino 
acids (threonine, proline, and glutamate), amino acid-
related metabolites, antioxidants (coenzyme Q10, 
pyroxidal, GSH), and ceramides, together with an 
increase in the levels of long-chain acylcarnitines (tet-
radecanoylcarnitine, hexadecenoylcarnitine, hexade-
canoylcarnitine, octadecenoylcarnitine), taurine, and 
sphingomyelins.

The accumulation of taurine and long-chain acyl-
carnitines indicates an inhibition of mitochondrial 
fatty acid β-oxidation accompanied by an increased 
protein catabolism as an alternative for energy produc-
tion. Reduced levels of antioxidant molecules such as 
GSH and its precursor glutamate indicate oxidative 
stress. In line with our findings, HepG2 and HepaRG 
cells exposed to Ketoconazole and other antimycotic 
azoles showed a reduction in the mitochondrial mem-
brane potential and impaired activity of the electron 
transport chain. As a consequence, increased produc-
tion of reactive oxygen species (ROS) was gener-
ated leading to mitochondrial oxidative stress (Hae-
gler et  al. 2017). Similar metabolic alterations were 
reported after exposing HepG2 cells to the hepatotoxic 
carcinogen TCDD. TCDD and dioxin-like chemicals 
have been shown to inhibit human CYP1A2 activ-
ity in vitro which could explain the similarity in their 
metabolic profiles (Staskal et al. 2005).

The observed reduction in ceramides and increased 
concentrations of sphingomyelins suggest a higher 
turnover of ceramides. The sphingolipid metabolism 
is closely linked to inflammation and the downregula-
tion of ceramides is associated with the development 
and progression of different liver pathologies (Tanase 
et al. 2021).

As we have used only one compound representa-
tive for the MoA of CYP 3A4 enzyme inhibition, 
additional compounds need to be tested to verify the 
specific nature of the metabolome profile.
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Taken together, our results are in agreement with 
previously described biochemical changes of the 
compounds tested and, although not all intracellu-
lar metabolites were measured, the combination of 
altered metabolites was found to be sufficient to dif-
ferentiate between hepatotoxicity MoAs and shed 
light into the mechanisms of toxicity.

Importantly, one of the key aspects of toxicity of 
twenty-first century relies in dose response modeling 
(Andersen et  al. 2009). However, current screens are 
usually done only in few concentrations, hampering the 
calculation of meaningful dose response metrics such 
as IC50 and consequently limiting the applicability of 
in vitro systems in risk assessment (Olesti et al. 2021). 
By escalating the throughput, our system allowed to 
cover key points of the dose response curve from very 
mild effects (EC1) to overt toxicity (IC85). The potential 
of omics technologies for determining point of depar-
ture (PoD) has been highlighted (Thomas et al. 2007; 
Kang et al. 2020). Recently, a concentration-response 
analysis derived from in vitro metabolomics was used 
for benchmark concentration (BMC) modeling, show-
ing to be a sensitive and quantitative indicator of liver 
injury potential (Crizer et  al. 2021). High-throughput 
metabolomics methods that allow for multiple dose 
testing can contribute to fast screening that directs 
additional studies based on PoD estimations.

Finally, strategies to induce and manipulate the 
gene expression of multiple CYPs enzymes in HT 
systems have been described (Kwon et al. 2014) and 
could be applied to our HepG2 platform to expand 
its applicability. Additionally, improved standardiza-
tion and cost reduction of metabolically more compe-
tent cells (e.g., HepaRG or hiPSCs) would allow to 
expand their implementation in HT systems (Mirah-
mad et al. 2022).

Conclusion

We have designed a highly reproducible 96-well-
plate targeted in  vitro metabolomics platform and 
optimized critical experimental parameters for rapid 
and cost-efficient hepatotoxicity screening. The sys-
tem was tested with seven model compounds repre-
sentative of three different liver toxicity MoAs dem-
onstrating the applicability of the assay to reproduce 
metabolomics dose response effects, distinguish 

between different liver toxicity MoAs, and identify 
key metabolites and patterns indicative of general and 
MoA specific hepatotoxicity.

Identifying the MoA of a compound in the early 
stage of compound development can guide the selec-
tion of the most prominent leads, help to identify 
unwanted effects, and provide a valuable founda-
tion for a more targeted hazard assessment. Due to 
resources reduction and throughput increase, this 
assay allows to assess a broader range of concentra-
tions that would enable a more accurate metabolome-
based PoD, in vitro to in vivo extrapolations (IVIVE), 
and substance kinetic analysis.

This method can be extended to further cell lines 
and iPSCs for the investigation of different organ tox-
icities and is suitable for a wide range of screening 
applications that demand rapid, cost effective, and 
high throughput analysis.
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