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Abstract Transcriptomic analysis is a powerful 
method in the utilization of New Approach Meth-
ods (NAMs) for identifying mechanisms of toxicity 
and application to hazard characterization. With this 
regard, mapping toxicological events to time of expo-
sure would be helpful to characterize early events. 
Here, we investigated time-dependent changes in 
gene expression levels in iPSC-derived renal proxi-
mal tubular-like cells (PTL) treated with five diverse 
compounds using TempO-Seq transcriptomics with 
the aims to evaluate the application of PTL for tox-
icity prediction and to report on temporal effects for 

the activation of cellular stress response pathways. 
PTL were treated with either 50  μM amiodarone, 
10 μM sodium arsenate, 5 nM rotenone, or 300 nM 
tunicamycin over a temporal time course between 1 
and 24  h. The TGFβ-type I receptor kinase inhibi-
tor GW788388 (1  μM) was used as a negative con-
trol. Pathway analysis revealed the induction of key 
stress-response pathways, including Nrf2 oxidative 
stress response, unfolding protein response, and metal 
stress response. Early response genes per pathway 
were identified much earlier than 24 h and included 
HMOX1, ATF3, DDIT3, and several MT1 isotypes. 
GW788388 did not induce any genes within the stress 
response pathways above, but showed deregulation of 
genes involved in TGFβ inhibition, including down-
regulation of CYP24A1 and SERPINE1 and upregu-
lation of WT1. This study highlights the application 
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of iPSC-derived renal cells for prediction of cellular 
toxicity and sheds new light on the temporal and early 
effects of key genes that are involved in cellular stress 
response pathways.

Keywords Transcriptomics · Stress-response 
pathways · iPSC · Renal proximal tubular · Temporal 
gene expression · NAMs

Introduction

Toxicity evaluation of pharmaceutical compounds 
and environmental chemicals are to date still largely 
dependent on animal experiments. The goal to reduce 
and replace animal testing for toxicity studies is 
driven by multiple motivations, including scientific 
reasons (human relevance), the 7th amendment of the 
Cosmetics directive by the European parliament (EC 
No. 1223/2009), cost and time of performing these 
experiments, and ethical concerns. New Approach 
Methods (NAMs) (Escher et  al. 2019; Parish et  al. 
2020; Fischer et al. 2020) are in vitro and/or in silico 
test methods that are being developed, utilized, and 
optimized under many settings, including large EU-
wide consortia (e.g., EU-ToxRisk project (Moné et al. 
2020), Riskhunt3r project (Pallocca et  al. 2022) and 
the in3 consortium (https:// estiv. org/ in3/). NAMs are 
expected to better predict potential toxicity in humans 
and to accelerate the regulatory approval process. 
While there are still some limitations of NAMs, their 
potential role in safety assessment is promising and 
being recognized by regulators and scientists from 
academia and industry (Fischer et  al. 2020; Rovida 
et  al. 2021). In contrast to animal models for toxic-
ity screening, which often rely on high doses of tested 
compounds leading to adverse effects that are then 
extrapolated to much lower doses that are expected 
for human exposure, in  vitro toxicity studies are 
able to provide a more mechanistic approach (Bhat-
tacharya et  al. 2011). Transcriptomics and analysis 
of adaptive responses are becoming important tools 
in both understanding the mechanism of toxicity and 
determining the lowest observed effect concentra-
tions (LOEC) of a test compound. Transcriptomics, 
whether based on mRNA microarrays or RNASeq 
(Bushel et  al. 2018), is a highly sensitive endpoint, 
and changes in gene expression levels, including 
genes in cellular stress response pathways, are often 

observed at low concentrations before the occurrence 
of cell death. Cellular stress response pathways are 
well described and include among others pathways 
of oxidative stress, DNA damage, unfolded protein 
response, heavy metal stress response, hypoxia-
induced stress, and inflammation (Jennings 2013; 
Jennings et  al. 2013). Furthermore, several pathway 
analysis tools have been developed to cope with the 
analysis of such big datasets, including Consen-
susPathDB (Kamburov et  al. 2013; Kamburov and 
Herwig 2022), Ingenuity Pathway Analysis (Krämer 
et al. 2014), Reactome Pathway Knowledgebase (Jas-
sal et al. 2020), and PathViso (Kutmon et al. 2015). 
Numerous studies report the usefulness of the appli-
cation of (transcript)omics coupled to cellular stress 
response pathway analysis for the prediction of well-
characterized toxic compounds in various human 
cell-based in  vitro models, including renal proximal 
tubular cells (Wilmes et  al. 2011, 2013, 2015; Jen-
nings et  al. 2012; Aschauer et  al. 2015; Crean et  al. 
2015), hepatocytes (ter Braak et al. 2021; Ghosh et al. 
2021; Grinberg et  al. 2014; Limonciel et  al. 2018), 
and neurons (Pallocca et al. 2016; Dreser et al. 2020; 
Delp et al. 2021). The use of sophisticated human cell 
systems is a unique selling point (USP) of modern 
in vitro applications, especially when the cells do not 
display cancerous geno- and pheno-types. Neverthe-
less, human cell lines represent only a single genetic 
donor, and human primary cells are often limited in 
availability and donor information. Hence, human-
induced pluripotent stem cell (iPSC)-derived toxic-
ity models may hold an even greater potential than 
other human cell systems, as they are widely avail-
able from numerous healthy donors and patients car-
rying genetic diseases. Therefore, they may also be 
useful for detecting individual and disease-specific 
responses after drug exposure. Several studies have 
demonstrated this, including studies in iPSC-derived 
cardiomyocytes and hepatocytes (Takayama et  al. 
2014; Blau et  al. 2016; Grimm et  al. 2018; Nunes 
et al. 2022). iPSC models also allow the possibility to 
test several tissues from the same donors.

Transcriptomic studies, despite being significantly 
cheaper in recent years, are still relatively expensive 
and thus often require a careful consideration in the 
number of samples that can be tested. This choice is 
often restricting the time points that are tested, with 
most studies choosing a single or a maximum of two 
or three time points per experiment, and a widely 
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chosen initial time point, as observed in the litera-
ture, is 24 h of exposure. However, we would ideally 
like to know events that are proximal to the original 
molecular initiating event. Indeed, the temporal evo-
lution of early events would be helpful in understand-
ing mechanisms and could be used to develop (quan-
titative) adverse outcome pathways.

Here, we employed PTL cells and TempO-Seq 
transcriptomics (Limonciel et  al. 2018) to study the 
temporal effects of five compounds, four that are 
known to activate common cellular stress response 
pathways and one that was chosen as a negative con-
trol (GW788388). PTL were exposed to test com-
pounds for several time points between 1 and 24  h. 
Our aims were (1) to report on the temporal transcrip-
tomics profiles of test compounds known to activate 
commonly reported stress response pathways and (2) 
to report on the applicability of the recently devel-
oped PTL cells in predicting toxicity using transcrip-
tomics-based in vitro studies.

Material and methods

Cell culture and differentiation

iPSCs were maintained in mTeSR1 medium (Stem-
Cell Technologies  85850), with a daily medium 
replacement, on 6-well plates coated with Geltrex 
(ThermoFisher Scientific A1413302) in a humified 
incubator at 36.7  °C containing 5%  CO2 and sub-
cultured with EDTA (0.02% Versene, Lonza BE17-
711E) twice per week. In this study, we employed the 
iPSC-line SBAD2 clone 1 that had previously been 
tagged with a GFP-reporter for HMOX1 expression 
(SBAD2-HMOX1-eGFP) (Snijders et al. 2021). This 
cell line was generated by BioTalentum, Gödöllő, 
Hungary. SBAD2 HMOX1-eGFP were differentiated 
into PTL cells on 96-well plates coated with Gel-
trex as previously described (Chandrasekaran et  al. 
2021). Briefly, cells were detached after 2–4-min 
incubation with accutase and centrifuged at 300 g for 
5 min. After resuspension in differentiation medium 
(1:1 mixture of DMEM/F12 ThermoFisher Scientific 
11966025 and ThermoFisher Scientific 21765029), 
2 mM Glutamax and ITS (5 μg/mL, 5 μg/mL, 5 ng/
mL, Sigma-Aldrich I1884) supplemented with 3 μM 
CHIR99021 (Abcam 120890), 1 μM TTNPB (Sigma-
Aldrich T3757) and 10  μM rock inhibitor (Abcam 

ab120129) cells were seeded on Geltrex-coated 
96-well plates at 35,000 cells per  cm2. After 42 h, the 
medium was replaced with differentiation medium 
supplemented with 1 μM TTNPB. After an additional 
30 h, the medium was replaced with proximal tubu-
lar medium (1:1 mixture of DMEM/F12, 2 mM Glu-
tamax, ITS (5 μg/mL, 5 μg/mL, 5 ng/mL), 10 ng/mL 
EGF (Sigma-Aldrich E9644), and 36  ng/mL hydro-
cortisone (Sigma-Aldrich H0135) supplemented with 
10 ng/mL FGF9 (ThermoFisher Scientific PHG0194). 
FGF9 was removed after 60 h, and cells were fed with 
proximal tubular medium. Cells were then fed every 2 
to 3 days with proximal tubular medium until day 14.

Immunofluorescence

For immunofluorescence experiments, PTL were dif-
ferentiated in CellCarrier ultra-black 96-well plates. 
On day 14 of differentiation, PTL were fixed with 4% 
PFA (20 min), permeabilized with 0.1% Triton X-100 
(10 min), and blocked with 5% BSA (1 h). Primary 
antibodies were applied for 1.5  h at RT in a DPBS 
1% BSA solution and include megalin/LRP2 (1:100) 
(R&D systems MAB9578), ZO-3 (1:1600) (Cell 
Signaling Technology 3704), and occludin  Alexa 
Fluor 594 (1:250) (ThermoFisher Scientific 331594). 
Secondary antibodies were applied (when applicable) 
together with and Hoechst 33342 (1:10.000) (Ther-
moFisher H3570) for 1 h at RT in a DPBS 1% BSA 
solution and include α-rabbit Alexa FluorTM 546 
(1:1000) (ThermoFisher A10040) and α-mouse Alexa 
FluorTM 546 (1:1000) (ThermoFisher A10036). 
Cells were imaged using the Operetta CLS High-
Content Imager (Perkin Elmer) with 40 × water objec-
tive, and images were exported using the Harmony 
software 4.8.

Resazurin cell viability assay

Viability was measured as total cellular redox capac-
ity using the resazurin reduction assay, conducted as 
previously described (Limonciel et al. 2011). Briefly, 
a 20 × stock solution was prepared by dissolving 
resazurin powder (Merck, R7017) in 0.1  N NaOH, 
bringing to the desired final volume with phosphate 
buffer and adjusting the pH to 7.8. After 24-h com-
pound exposure, the medium was replaced with a 
44 μM resazurin solution in cell culture medium and 
incubated for 2 h at 36.7 °C in a 5%  CO2 humidified 
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atmosphere. The fluorescent product of resazurin 
reduction, resorufin, was measured in a Clariostar 
plate reader at excitation/emission of 540/590 nm.

Compound exposure, high-content imaging, and 
sample collection

On day 14 of differentiation, PTL were treated with 
either 0.1% DMSO (vehicle control) or with the 
following compounds: sodium arsenite (10  μM 
Sigma-Aldrich, S7400), amiodarone (50  μM Sigma-
Aldrich, A8423), GW788388 (1 μM Sigma-Aldrich, 
SML0116, negative control), rotenone (5 nM Sigma-
Aldrich, R8875), and tunicamycin (300  nM Sigma-
Aldrich, 3516) over a temporal time course (1, 2, 4, 
6, 8, 12, 16, 20, and 24 h). Three biological replicates 
were used. During compound exposure, cells were 
imaged for GFP expression (excitation at 488 nm and 
emission at 510 nm) in a High-Content Imager (HCI) 
Operetta (Perkin Elmer), and intensity of GFP sig-
nal was determined with the software Harmony 4.8 
(Perkin Elmer). In details, the total GFP fluorescence 
intensity was given in relative units for each time 
point of the experiment. The measured fluorescence 
intensity was normalized by subtracting the fluores-
cence intensity from the first time point, where no 
GFP expression was detected. The normalized GFP 
fluorescence intensities were then plotted against 
time. In addition, cells were lysed in TempO-Seq 
buffer and collected for TempO-analysis as described 
before (Limonciel et  al. 2018). Cadmium chloride 
treatment (5 μM Sigma-Aldrich, 202908) was used to 
induce GFP expression in the HCI experiment.

TempO-Seq assay, data accessibility, and probe 
selection

Cell lysates were sent to BioClavis Technologies Ltd., 
Glasgow, Scotland, to perform TempO-Seq experi-
ments using EU-ToxRisk v2.1 panel (3565 probes) 
(Mav et al. 2019; Limonciel et al. 2018). All samples 
were checked for and passed standard quality control. 
The raw data and meta data were accessed using the 
EdelweissData™ management system (SaferWorld-
byDesign2021) using the Python script as described 
in Singh et  al. (2021). The samples for both, treat-
ment and corresponding controls, were selected 
for each of these compounds with additional filters, 
including cell type (iPSC-derived PTL cells) and 

time points (1, 2, 4, 6, 8, 12, 16, 20, and 24 h). This 
resulted in 27 samples for each compound including 
three biological replicates per time point and 27 sam-
ples for untreated controls, including three biological 
replicates per time point. The low read count probes 
were removed separately using the row sum thresh-
old as 100 per probe across all samples per com-
pound (including both treatment and control) before 
performing differential expression analysis (Love 
et  al. 2014), resulting in 2789 probes for sodium 
arsenite, 2774 probes for amiodarone, 2794 probes 
for GW788388, 2787 probes for rotenone, and 2775 
probes for tunicamycin out of the 3656 probes avail-
able in the TempO-Seq panel.

Differential gene expression (DEG) analysis

The analysis was performed as previously described 
and is available in form of an R script (Singh et  al. 
2021). The data obtained after filtering the low read 
count probes was visualized, after R-log transforma-
tion  using PCA and hierarchical clustering to see the 
variance between and among the different treatment 
and control normalized data and differential expres-
sion analysis groups (Love et  al. 2014). The data 
was then normalized using the standard median-ratio 
method and on this was performed for treated group 
vs. corresponding control group for each compound 
(Love et al. 2014). The statistical values base mean, 
log2 fold change, adjusted p value (p-adj), p value, 
and log fold change error (lfcSE) were generated for 
each probe for each time point per compound. Addi-
tional filters were set to identify the most signifi-
cantly expressed genes: p-adj was set to 0.01 and fold 
change >|2| (log2 fold change >|1|).

Pathway enrichment analysis

Pathway analysis of the transcriptional response 
to test compound treatment was performed in the 
bioinformatic platform ConsensusPathDB V35 
(CPDB) (Kamburov et  al. 2013, 2022), for the time 
point inducing the highest number of significant 
DEGs. Enriched pathways were identified in CPDB 
through the over-representation analysis (ORA) of 
significantly expressed gene sets (fold change >|2|, 
p-adj < 0.01) compared to the predefined pathway-
based sets included in the CPDB pathway data-
base, which comprises several separated databases 
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(Wikipathways, Smpdb, Kegg, Reactome, Pharmgkb, 
Pid, Biocarta, Ehmn, Humancyc, Inoh, Netpath, Sign-
alink). ORA statistical analysis includes the calcu-
lation of a p value for each compound and pathway 
according to the hypergeometric test based on the 
number of matching genes between the input list (sig-
nificant DEGs in pathway) and the reference list (total 
genes in pathway), taking in account the background 
list (tested genes in TempO-Seq panel). Cuts-off of 
significance for pathway activation include a mini-
mum overlap of five entities between the input and 
reference list and a p value < 0.01. Significant p val-
ues were further corrected for multiple testing using 
the false discovery rate (FDR) method to generate q 
values used as a measure of ORA in this study. It is 
considered significant a q value < 0.05.

BMDExpress analysis

The software BMDExpress2 has been developed as 
a tool to perform a dose–response modeling of tran-
scriptomic data, to identify relationships between 
doses and changes in gene expression to support 
chemicals’ risk assessment studies (Phillips et  al. 
2019). In the present study, we have used the BMD-
Express2 approach to estimate the time at which a 
specific biological change occurs upon treatment with 
a defined concentration of test compounds. Although 
the BMDExpress software was developed to predict 
benchmark doses (BMDs), the end results are param-
eterized curve fits of dose responses for single genes 
with associated statistics (Phillips et  al. 2019). Fit-
ting the curves to time responses does not change 
the mathematical model used. On this base, temporal 
transcriptional data collection up to 24  h was used 
to derive benchmark times (BMTs) using the same 
logic applied for the derivation of BMDs from a dose 
response transcriptional dataset.

For the generation of accumulation plots from a 
concentration range dataset, the deregulation of most 
genes follows a dose response trend, implicating that 
once a certain concentration has triggered the upregu-
lation of a certain gene, a higher concentration will 
not shift the response back toward the baseline for the 
same gene, hence accumulating gene changes. For 
time responses, due to the characteristic of genes to 
be expressed in a specific time frame, not necessar-
ily all genes follow a time-dependent deregulation, 
failing to fit the model. Thus, although accumulation 

plots of genes over time provide a valuable overview 
of the potency of the treatment applied, genes that 
demonstrate a differential deregulation within the 
time frame are not included; we therefore recommend 
analyzing the time responses of genes of interest in a 
case-by-case manner.

Temporal expression responses were prefiltered 
using a William’s trend test with a p value < 0.05 
and fold change >|2| cut-off to select only signifi-
cantly differentially changed genes. The analysis for 
the derivation of the BMTs was performed by fitting 
time response curves to ten parametric models used 
(Power, Hill, Exp2, Exp3, Exp4, Exp5, Linear, Poly2, 
Poly3, and Poly4), and best fitted model correspond-
ing to the one giving the lowest Akaike information 
criterion (AIC) was selected. Best BMTs were further 
filtered for BMT < compound tested concentration, 
upper and lower bounds of confidence ratio (BMTU/
BMTL) < 40, and best fitPValue > 0.1. Predicted fold 
changes associated with best BMTs were estimates 
in R (nplr package) using a weighted 5 − P logistic 
regression/progression model. Gene accumulation 
plots include only predictions inside the tested time 
course.

Statistical analysis

Levels of statistical significance were calculated com-
paring treatment responses to control responses per 
time point using ordinary one-way ANOVA followed 
by a Dunnett post hoc test (n = 3). Significance codes 
indicate a p-adj: *** < 0.001, ** < 0.01, and * < 0.05 
(Table 1). Data analysis was performed using RStudio 
R 4.2.1.

Results

Differential gene expression analysis and pathway 
enrichment analysis

Kinetic profiles of key cellular stress response path-
ways that were upregulated in response to four well-
characterized compounds in iPSC-derived PTL were 
analyzed using TempO-Seq transcriptomics. These 
include the anti-arrhythmia drug amiodarone, the 
metalloid sodium arsenite, the insecticide rotenone, 
and the antibiotic tunicamycin. As a negative con-
trol compound, the selective TGFβ type I receptor 
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Table 1  Significance levels of genes per time point. Statisti-
cal analysis of significance for temporal responses of mRNA 
expression of selected relevant genes per pathway in Fig. 4. (a) 
Nrf2 oxidative stress response pathway, (b) unfolded protein 

response (UPR) pathway, and (c) metal stress response path-
way. The data represents the mean of three experiments ± SD. 
Analysis was performed by ordinary one-way ANOVA with 
Dunnett post hoc test

a Nrf2 pathway gene Compound 1 h 2 h 4 h 6 h 8 h 12 h 16 h 20 h 24 h
FTL Amiodarone 0.771 0.961 0.005 0.006 0.023 0.033 0.167  < 0.001  < 0.001

GW788388 0.690 0.856 0.850 0.566 0.991 0.014 0.823 0.210 0.182
Rotenone 0.289 0.685 0.317 0.042 0.063  < 0.001 0.278  < 0.001  < 0.001
Sodium arsenite 0.610 0.031  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Tunicamycin 0.870 0.967 0.720 0.899 0.804 0.348 0.955 0.003 0.004

GCLM Amiodarone 0.767 0.367 0.466 0.976 0.056 0.005 0.162 0.020 0.904
GW788388 0.638 0.608 0.601 0.713 1.000 0.573 0.981 1.000 0.036
Rotenone 0.072 0.069 0.259 0.861 0.508 0.034 0.765 0.224 0.919
Sodium arsenite 0.256  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Tunicamycin 0.983 0.133 0.999 0.049 0.145  < 0.001  < 0.001  < 0.001  < 0.001

HMOX1 Amiodarone 0.821 1.000 0.082 0.064 0.994 0.106 0.876 0.055 0.354
GW788388 1.000 0.995 0.407 0.602 0.362 1.000 0.238 0.917 0.668
Rotenone 0.908 1.000 0.979 0.065 0.924 0.284  < 0.001  < 0.001  < 0.001
Sodium arsenite  < 0.001 0.000  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Tunicamycin 0.993 1.000 0.625 0.994 0.706  < 0.001 0.011  < 0.001  < 0.001

MAFG Amiodarone 0.726 0.998 0.948 0.162 0.007 0.042 0.053 0.021  < 0.001
GW788388 0.765 0.076 0.226 0.679 0.335 0.259 0.371 0.987 1.000
Rotenone 0.139 0.192 0.237 0.024 0.007 0.100  < 0.001  < 0.001  < 0.001
Sodium arsenite 0.242  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Tunicamycin 0.891 0.306 0.910 0.249 0.035 0.055 0.052 0.059 0.200

NQO1 Amiodarone 1.000 1.000 0.998 1.000 1.000 1.000 0.964 1.000 0.989
GW788388 0.999 0.991 0.960 1.000 1.000 0.983 0.997 0.987 1.000
Rotenone 0.961 0.993 0.888 0.987 0.823 0.901 0.926 0.909 0.992
Sodium arsenite 0.998 0.997 0.235 0.122 0.029 0.012 0.004 0.005 0.004
Tunicamycin 0.998 1.000 0.998 1.000 0.999 0.978 0.993 0.839 1.000

SLC7A11 Amiodarone 0.980 0.028 0.965 0.114 0.796 0.396 0.019 0.504 0.463
GW788388 0.183 0.574 1.000 1.000 1.000 1.000 1.000 0.996 0.984
Rotenone 0.904 0.850 0.791 0.079 0.838 0.957 0.088 0.547 0.065
Sodium arsenite 0.071 0.077  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Tunicamycin 0.496 0.647 0.521 0.002 0.046  < 0.001  < 0.001  < 0.001  < 0.001

SQSTM1 Amiodarone 0.062 0.891 0.378  < 0.001  < 0.001  < 0.001 0.005  < 0.001  < 0.001
GW788388 0.056 1.000 0.984 0.839 0.892 0.921 0.936 0.987 0.935
Rotenone 0.084 0.999 0.955 0.064 0.998 0.718 0.037 0.008  < 0.001
Sodium arsenite 0.171 0.039  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Tunicamycin 0.199 1.000 0.755 0.533 0.879 0.943 0.990 0.615 0.455

TXNRD1 Amiodarone 0.653 1.000 0.994 0.752 0.180 0.330 1.000 0.878 1.000
GW788388 0.999 0.447 1.000 1.000 0.491 0.520 0.999 1.000 0.313
Rotenone 0.195 0.952 0.876 0.022 1.000 0.994 0.950 0.084 0.903
Sodium arsenite 0.982 0.253  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Tunicamycin 0.325 0.430 0.799 0.792 1.000 0.283 1.000 0.577 0.992

b UPR pathway gene Compound 1 h 2 h 4 h 6 h 8 h 12 h 16 h 20 h 24 h
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Table 1  (continued)

ASNS Amiodarone 0.339 0.573 1.000 0.003  < 0.001 0.000  < 0.001  < 0.001  < 0.001

GW788388 1.000 0.249 0.843 0.591 1.000 1.000 0.998 0.129 1.000

Rotenone 1.000 0.709 1.000 0.868 0.262 0.925  < 0.001  < 0.001 0.263

Sodium arsenite 0.833  < 0.001  < 0.001  < 0.001  < 0.001 0.000  < 0.001  < 0.001  < 0.001

Tunicamycin 0.838 0.020 0.003  < 0.001  < 0.001 0.000  < 0.001  < 0.001  < 0.001

ATF4 Amiodarone 0.951 0.321 0.056 0.133  < 0.001  < 0.001  < 0.001 0.012  < 0.001

GW788388 0.171 0.066 0.048 0.938 0.423 1.000 0.362 0.883 1.000

Rotenone 0.471 1.000 0.085 1.000 0.168 0.121 0.003 0.004 0.007

Sodium arsenite 0.340  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

Tunicamycin 0.895 0.248 0.209  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

DDIT3 Amiodarone 0.986 0.600  < 0.001  < 0.001  < 0.001  < 0.001 0.000  < 0.001 0.000

GW788388 0.999 0.927 0.994 1.000 0.258 0.990 0.995 0.509 0.990

Rotenone 1.000 0.381 0.106 0.004 0.011 0.194 0.000  < 0.001 0.000

Sodium arsenite 0.008  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001 0.000  < 0.001 0.000

Tunicamycin 0.868 0.032  < 0.001  < 0.001  < 0.001  < 0.001 0.000  < 0.001 0.000

DNAJB9 Amiodarone 0.999 1.000 0.500 0.002 0.611 0.745 0.535 0.039 0.087

GW788388 0.997 0.991 0.751 0.406 1.000 0.896 0.971 0.982 0.891

Rotenone 0.026 0.814 1.000 0.020 0.988 0.900 0.089  < 0.001  < 0.001

Sodium arsenite 0.854 0.216 0.340 0.072 0.116 0.101 0.999 1.000 1.000

Tunicamycin 0.813 0.998 0.266  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

HSPA5 Amiodarone 1.000 0.128 0.881 0.079 0.005 0.003  < 0.001  < 0.001  < 0.001

GW788388 0.965 0.021 0.132 0.780 0.170 0.692 1.000 0.297 0.936

Rotenone 0.870 0.304 0.738 0.097 0.772 1.000  < 0.001  < 0.001  < 0.001

Sodium arsenite 1.000 0.936 0.995 1.000 0.937 0.857 0.787 0.005 0.271

Tunicamycin 1.000 0.119 0.016  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

PPP1R15A Amiodarone 1.000 0.992 0.378 0.015  < 0.001 0.033 0.005  < 0.001  < 0.001

GW788388 0.656 0.098 0.076 0.324 0.995 0.822 0.894 0.062 0.774

Rotenone 1.000 0.738 0.976 0.140 0.021 0.850  < 0.001  < 0.001  < 0.001

Sodium arsenite 0.437  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

Tunicamycin 0.999 0.808 0.998 0.011  < 0.001 0.075 0.002  < 0.001 0.019

TRIB3 Amiodarone 0.718 0.988 0.999 0.000 0.000  < 0.001  < 0.001  < 0.001  < 0.001

GW788388 0.782 0.598 0.944 1.000 1.000 1.000 1.000 0.282 0.894

Rotenone 0.175 0.171 0.413 0.992 0.970 0.239 0.003  < 0.001  < 0.001

Sodium arsenite 1.000  < 0.001  < 0.001 0.000 0.000  < 0.001  < 0.001  < 0.001  < 0.001

Tunicamycin 0.943 0.831  < 0.001 0.000 0.000  < 0.001  < 0.001  < 0.001  < 0.001

XBP1 Amiodarone 0.477 0.994 0.009  < 0.001  < 0.001  < 0.001 0.026  < 0.001 0.004

GW788388 0.478 1.000 0.641 1.000 0.752 0.994 1.000 1.000 0.999

Rotenone  < 0.001 0.901 0.275 0.247 0.993 0.697 0.051  < 0.001  < 0.001

Sodium arsenite 0.008  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001 0.029  < 0.001 0.007

Tunicamycin 0.025 0.998  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
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kinase (aka ALK5) inhibitor GW788388 was used. 
PTL were previously characterized for expression of 
proximal tubular markers and functional transport of 
P-glycoprotein (PGP) and megalin-facilitated endocy-
tosis (Chandrasekaran et  al. 2021) and a representa-
tive staining of megalin, occludin, and ZO3 in PTL 
derived from the SBAD2-HMOX1-eGFP cell line is 
shown in Supplementary Figure  S1. Dose response 
curves of tested compounds were generated with the 
resazurin cell viability assay at 24  h after exposure. 
For TempO-Seq, all compounds were used at con-
centrations below IC10 values (Fig. 1a). TempO-Seq 
data was first analyzed using the filtered raw read 
counts of probes and PCA plots (Supplementary Fig-
ure  S2) that showed good separation of individual 
groups for all compounds except for the negative 
control compound GW788388 that clustered with 

untreated control samples. Treated and untreated 
cells separated well in most cases, with early time 
points clustering closer to the control samples and 
later time points showing temporal progression of 
the changes. The four test compounds showed a 
significant increase of DEGs over time, with early 
responses as soon as 2–4  h and increasing numbers 
of DEGs by 24 h, whereas the negative control com-
pound had a very mild effect with relatively few sig-
nificantly DEGs (Fig.  1b). Amiodarone and sodium 
arsenite showed the highest number of DEGs (rep-
resented by 337 and 595 probes, respectively) at the 
24  h time point. Tunicamycin and rotenone showed 
the highest DEGs (178 and 418 probes, respec-
tively) at 20  h. GW788388 only showed a sum of 
14 probes differentially expressed at any time point. 
Pathway enrichment analysis was performed using 

Table 1  (continued)

c Metal pathway gene Compound 1 h 2 h 4 h 6 h 8 h 12 h 16 h 20 h 24 h
MT1E Amiodarone 0.949 0.596 0.125 0.002 0.022 0.113 1.000 0.600 0.999

GW788388 0.987 0.252 1.000 0.810 1.000 1.000 1.000 0.489 1.000
Rotenone 0.008 0.161 0.277  < 0.001 0.051 0.836  < 0.001  < 0.001 0.551
Sodium arsenite 1.000  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Tunicamycin 0.241 0.012 0.905 0.785 0.440 0.801 0.100 0.145 1.000

MT1F Amiodarone 0.999 0.999 0.182 0.127 0.032 0.071 0.559 0.248 0.236
GW788388 0.207 0.905 0.989 0.996 1.000 0.996 1.000 0.883 0.888
Rotenone 0.856 0.969 0.219 1.000 0.402 0.940 0.861 0.870 0.991
Sodium arsenite 0.668  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Tunicamycin 0.623 0.948 1.000 1.000 0.170 1.000 0.511 0.998 0.410

MT1G Amiodarone 1.000 1.000  < 0.001  < 0.001  < 0.001 0.028 0.041 0.026 0.003
GW788388 0.646 0.290 0.317 0.980 0.852 0.293 0.983 0.909 0.978
Rotenone 0.123 0.040 0.003 0.017 0.031 0.102 0.055 0.016 0.111
Sodium arsenite 1.000  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Tunicamycin 0.402 0.107 0.985 0.996 0.083 0.670 0.681 0.618 1.000

MT1M Amiodarone 1.000 0.506  < 0.001  < 0.001  < 0.001 0.099 0.008 0.630 0.004
GW788388 0.822 0.804 0.999 0.383 1.000 0.995 0.988 0.914 0.473
Rotenone 0.107 0.053  < 0.001 0.019 0.006 0.072  < 0.001 0.024 0.194
Sodium arsenite 0.551  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Tunicamycin 0.694 0.350 1.000 0.961 0.147 0.420 0.522 0.263 0.999

MT1X Amiodarone 0.996 1.000 0.002  < 0.001 0.024 0.533 0.354 0.015 0.131
GW788388 0.539 0.189 0.866 0.147 1.000 0.915 0.887 1.000 0.999
Rotenone 0.361 1.000 0.995 0.938 0.032 0.228 1.000 0.088 0.007
Sodium arsenite 0.790  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Tunicamycin 0.999 0.658 0.711 0.203 0.633 0.378 0.981 0.997 0.995

MT2A Amiodarone 0.996 1.000  < 0.001  < 0.001  < 0.001 0.029 0.115 0.002  < 0.001
GW788388 1.000 0.952 0.263 0.929 0.988 0.683 0.997 0.681 0.708
Rotenone 0.209 0.207 0.003 0.060 0.125 0.335 0.263 0.011 0.333
Sodium arsenite 0.998  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001
Tunicamycin 0.384 0.358 0.845 0.741 0.101 0.851 0.364 0.769 0.825
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ConsensusPathDB to avoid bias from the pathway 
coverage of a specific pathway. To identify signifi-
cantly overrepresented pathways, thresholds for the 
p value < 0.01 and q value < 0.05 were applied. The 
main over-represented pathways included metal stress 
response pathways (e.g., “metallothioneins bind met-
als” and “metal ion response”) in response to sodium 
arsenite (q value 1.98e − 02 for both pathways); Nrf2-
mediated oxidative stress response pathways (e.g., 
“Nrf2 pathway”) in response to sodium arsenite (q 
value 1.43e − 03), and unfolded protein response 
(e.g., “UPR pathway”) and protein processing in ER 
(q value 1.95e − 08 for both pathways) in response to 
tunicamycin (Fig.  2a). Over-representation analysis 
in response to rotenone treatment included the UPR 
pathway, IL-18 signaling, and gluconeogenesis as 
the top pathways; however, non-significant q values 
(q values: 0.055) were obtained. Genes within these 
stress response pathways that significantly changed 
by at least one compound were selected and pre-
sented in the form of a heat map for all compounds 

(Fig. 2b). The fold-changes of DEGs (represented by 
color intensities in the heat map, with dark red show-
ing the highest fold change increased genes and dark 
blue showing the highest fold changed decreased 
genes) appeared to be overall in line with the path-
way q value and number of DEGs per pathway. Genes 
within the metal stress response pathway showed the 
highest upregulation in response to sodium arsenite 
(MT1F isotypes lfc 6.81 at 24 h). Interestingly, ami-
odarone also induced most genes within this path-
way even though comparably lower fold changes 
were observed compared to sodium arsenite (MTF1 
isotypes lfc 1.81 at 24 h). The Nrf2-mediated oxida-
tive stress response showed the highest fold changes 
in response to sodium arsenite, with HMOX1 being 
the highest upregulated gene (lfc 9.98 at 24 h). Other 
compounds that did not meet q value settings for acti-
vation of the Nrf2 pathways due to lower number of 
DEGs, induced much lower lfc alterations, including 
for HMOX1. Nevertheless, tunicamycin and rotenone 
induced HMOX1 at the late time points, but much 
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Fig. 1  Effects of compounds on iPSC-derived proximal tubu-
lar cells (PTL). PTL were differentiated in 96-well plates for 
14 days followed by compound exposure for up to 24 h. a Via-
bility as measured by resazurin reduction in PTL treated with 
a dose-range of test compounds for 24 h. Data is expressed as 
percentage of 0.1% DMSO-treated control cells. The data rep-
resents the mean of 6 experiments ± SD. Statistical significance 
was analyzed by applying an ordinary one-way ANOVA fol-

lowed by a Dunnett post hoc test. Significance codes indicate a 
p-adj: *** < 0.001, ** < 0.01, and * < 0.05. b Cells were lysed 
at different time points and mRNA changes were analyzed by 
TempO-Seq transcriptomics. Total number of deregulated 
expressed genes (DEGs) were calculated by comparing with 
0.1% DMSO-treated control cells. Total number of significant 
DEGs (cut-off: fold change  > |2|, p-adj < 0.01) are displayed 
per time point
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lower lfc of other Nrf2 associated genes compared to 
sodium arsenite. The unfolded protein response path-
way was significantly induced by three of the above 
compounds and showed the highest lfc in response 
to tunicamycin and sodium arsenite with TRIB3 and 
DDIT3 being the highest upregulated genes observed. 

Rotenone induced slightly lower fold changes, while 
the total number of DEGs was relatively high. Ami-
odarone induced a lower number of genes and there-
fore did not meet significant criteria for activation 
of the UPR pathway. Nevertheless, some genes, 
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Fig. 2  Pathway analysis in ConsensusPathDB. a Top five 
altered pathways upon treatment of PTL with 50  μM ami-
odarone, 10 μM sodium arsenite, 5 nM rotenone, and 300 nM 
tunicamycin at the highest DEG response time point. Pathway 
analysis of significant genes (fold change  > |2|, p-adj < 0.01) 
was performed in the ConsensusPathBD bioinformatic plat-
form by ORA analysis. Dotted vertical horizontal lines corre-

spond to the threshold of significance for pathway alteration, 
q value < 0.05. b Heat map of genes associated with stress 
response pathways after treatment with compounds. Time 
responses of genes per pathway identified in the pathway 
analysis. Gene lists include all genes in the pathway signifi-
cantly changed by at least one compound (fold change  > |2|, 
p-adj < 0.01)
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including TRIB3 and DDIT3 showed upregulation at 
several time points.

HMOX1 reporter activation

In addition to transcriptomics, the HMOX1-GFP 
reporter function of the employed cell line (Sni-
jders et al. 2021) was employed using high-content 
imaging (HCI) to analyze the temporal activation 
of the HMOX1 gene (as representative gene of the 
Nrf2-oxidative stress response pathway) in response 
to all test compounds. Furthermore, we used cad-
mium chloride as a positive control as this induced 
HMOX1 upregulation and Nrf2 oxidative stress 
response pathway activation in the PTL and the two 
human renal proximal tubular cell lines HK2 and 
RPTEC/TERT1 as previously described (Wilmes 
et al. 2011; Aschauer et al. 2015; Singh et al. 2021). 
Both sodium arsenite and cadmium induced GFP 
intensities in a time-dependent way, starting at 5  h 
after treatment and increasing over time (Fig. 3a, b). 
GFP intensity levels increased in a linear way with 
sodium arsenite treatment reaching the highest lev-
els at 24  h, whereas intensity levels were lower in 
response to cadmium reaching a maximum at 13  h 
with levels remaining high until 24  h (Fig.  3a, b). 
Gene expression levels of HMOX1 matched mostly 
the GFP signals, but could already be detected ear-
lier (1  h of exposure) for both cadmium chloride 
and sodium arsenite. Interestingly, the maximum 
upregulation of HMOX1 mRNA was seen at 5  h 
after exposure for both compounds, with expres-
sion levels decreasing slightly at later time points for 
cadmium chloride, while expression levels remained 
high in response to sodium arsenite treatment. All 
other compounds did not induce the HMOX1-GFP 
reporter within 24  h of the experiment (Fig.  3a). 
A much lower mRNA expression of HMOX1 was 
observed for tunicamycin and rotenone at later time 
points that were not captured by measuring GFP 
expression suggesting that the transcriptomics pro-
vide a more sensitive endpoint or that there is delay 
in GFP expression.

Temporal gene expression alterations

Temporal transcriptomics changes of selected rep-
resentative genes, based on literature searches, for 
each of the three identified stress response pathways 

were also displayed in graphs showing read counts 
(Fig. 4) and significance values (Table 1). In addition, 
BMDExpress (Yang et  al. 2007) was used to predict 
a benchmark time point (BMT) of the activation of 
the genes in the three pathways that were significantly 
changed in response to compound treatment. It should 
be noted that BMDExpress was developed to predict 
benchmark doses (BMDs) rather than BMTs and that 
the tool is generally employed to study the effect at one 
single time point and several different doses (or con-
centrations) of compounds. Here, rather having mul-
tiple concentrations, we entered multiple time points 
at a single concentration per compound. The pre-
dicted accumulation plot of all DEGs per compound 
is shown in Fig. 5a. Sodium arsenite had the earliest 
impact on PTL (approximately 400 genes within 5 h), 
followed by rotenone, amiodarone and tunicamycin. It 
should be noted though that accumulation over time is 
more complicated than an accumulation per concen-
tration, as genes can be deregulated at an early time 
point and then come back to a basal expression level. 
Nevertheless, looking at the time course curves, one 
can observe a time-dependent increase in read counts 
of all representative genes within all the pathways. 
The responses either reach a plateau or decrease after 
the peak but maintaining a significant up/dowregula-
tion; therefore, it is possible to assume a gene accu-
mulation over time. BMDExpress predicted the earli-
est expression to be under 1 h for rotenone and sodium 
arsenite. By 5 h after treatment, a major accumulation 
of DEGs was already predicted for sodium arsenite, 
whereas for amiodarone and tunicamycin treatment, 
the 5 h time point seemed to be the earliest departure 
point with relatively few DEG accumulation. The 
earliest response gene per compound are shown  in 
Fig. 5b. These included upregulation of genes within 
the metal stress pathway (MT1X, MT1G) and UPR 
pathway (DDIT3) in response to amiodarone, upregu-
lation of genes within the Nrf2 pathway (HMOX1) and 
metal stress pathway (MT1E) in response to sodium 
arsenite that was similar to cadmium chloride reported 
earlier (Singh et  al. 2021) and upregulation of genes 
within the UPR pathway (DDIT3, TRIB3 and ATF3) 
in response to tunicamycin. Early responses to rote-
none also included downregulation of several genes, 
including ATF3 (UPR pathway) which was then 
upregulated at later time points. Table 2 shows the pre-
dicted BMT per stress response pathway in response 
to all tested compounds. Sodium arsenite treatment 
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in PTL resulted in early BMT for activation of all 
three pathways and certain genes within each path-
way were predicted to be activated > 1.5 h so that no 
clear pathways could be identified as being activated 
first. On the other hand, amiodarone treatment seemed 
to have an earlier BMT for the metal stress response 

(2–3 h) compared to the UPR stress response pathway 
(2–14 h). Interestingly, even though tunicamycin had 
an overall (all DEGs) late predicted BMT compared to 
rotenone, the specific impact on UPR stress response 
was predicted at a much earlier BMT (3–7 h) for tuni-
camycin compared to rotenone (12–17 h).
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Fig. 3  HMOX1 expression in response to treatment with 
compounds. PTL were differentiated in 96-well plate for 
14  days and treated for up to 24  h with 50  μM amiodarone, 
10 μM sodium arsenite, 5 μM cadmium chloride, 5 nM rote-
none, and 300 nM tunicamycin. GW788388 (1 μM) was used 
as a negative control. a, b GFP signal of reporter cell line was 
measured over time course of 24  h by high-content imaging. 

The data represents the mean of three experiments ± SD. Sta-
tistical significance was analyzed by applying an ordinary one-
way ANOVA followed by a Dunnett post hoc test. Significance 
codes indicate a p-adj: *** < 0.001, ** < 0.01, and * < 0.05. 
HMOX1 mRNA expression upon treatment is included for 
direct comparison of induction patterns. FI, fluorescence inten-
sity; FC, fold change

1784



Cell Biol Toxicol (2023) 39:1773–1793

1 3
Vol.: (0123456789)

Alterations of gene expression levels in response to 
GW788388

The TGFβ type I receptor kinase inhibitor GW788388 
was used as a non-cytotoxic negative control com-
pound in this study. It was used at 1  μM as this 
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Fig. 4  Temporal responses of mRNA expression of selected 
relevant genes. Time course representation of normalized 
mRNA read counts for representative genes per pathway. a 
Nrf2 oxidative stress response pathway, b unfolded protein 
response (UPR) pathway, and c metal stress response path-

way. The data represents the mean of three experiments ± SD. 
Statistical significance was analyzed by applying an ordinary 
one-way ANOVA followed by a Dunnett post hoc test and are 
summarized in Table 1
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concentration is routinely used to extend stability 
and maintain differentiation status after sub-culture 
of PTL (passage 1) by maintaining tight junction 
proteins, including ZO3. Without GW788388, sub-
cultured PTL rapidly lose their polarization, and ZO3 
expression can be found in the nuclei rather than the 
tight junctions of the cells (Chandrasekaran et  al. 
2021). This compound is, however, not required for 
differentiated PTL that are not sub-cultured and hence 
also not applied to the PTL used in this study as these 
were used directly after differentiation (at passage 0). 
GW788388 did not induce any of the stress response 
pathways above and in fact had an overall low amount 
of DEGs (14 in total over all time points). Interest-
ingly, out of these few DEGs, three DEGs could be 
connected to its mechanism of TGFβ inhibition: 
CYP24A1 and SERPINE1 showed decreased expres-
sion levels between 4 and 24  h and between 8 and 
20  h after treatment, respectively, whereas WT1 
showed increased expression levels after 20  h treat-
ment (Fig. 6).

Discussion

Transcriptomic studies in human cell systems have 
become an important tool to support the predic-
tion of toxicity and the identification of potentially 
harmful substances. The possibility to screen for 
expression changes of thousands of genes simulta-
neously makes them attractive, and stress response 
pathways analysis tools help to decipher mecha-
nisms of toxicity of test compounds. While the 
mainstay of toxicology is on concentration-depend-
ent effects, temporal effects might also be useful to 
understand which responses are closer to the initial 
perturbation.

Applicability of PTL in toxicity studies using 
transcriptomics

One of the aims of this study was to further evalu-
ate the application of PTL cells for predicting toxicity 
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Fig.5  Determination of benchmark time (BMT) and early 
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using transcriptomics. Other iPSC-derived systems 
for different cell types had been successfully used in 
TempO-Seq transcriptomic studies, including iPSC-
derived hepatocytes (ter Braak et  al. 2021; Ghosh 
et  al. 2021) and neurons (Dreser et  al. 2020), and 
recently, we have reported a study employing iPSC-
derived systems that were differentiated into kidney 
(podocyte-like and PTL cells), liver (hepatocyte-like 
cells), vasculature (endothelial-like cells), and brain 
(blood–brain-barrier-like cells, neuronal-like cells, 
and brain spheres) using TempO-Seq transcriptomics 
to predict mechanisms of toxicity in response to para-
quat (Nunes et al., 2022). Paraquat is a well-described 
herbicide toxin that induces oxidative stress in the 
neurons, liver, and kidney (McCarthy et  al. 2004; 
Onur et  al. 2022) that was also picked up by iPSC-
derived models in that study (Nunes et al. 2022). In 
addition to paraquat exposure, PTL cells had been 
previously reported to activate the Nrf2 oxidative 
stress response and metal stress response after treat-
ment with the heavy metal cadmium chloride (Singh 
et al. 2021) at concentrations that had been previously 
reported to activate these pathways in the human 
proximal tubular cell lines HK2 (Wilmes et al. 2011) 
and RPTEC/TERT1 (Aschauer et  al. 2015). In renal 
proximal tubular cells, the Nrf2-induced oxidative 
stress response is an important pathway that is often 
induced in response to many nephrotoxins, with 
HMXO1 being one of the most upregulated genes 

(Wilmes et  al. 2011, 2013; Aschauer et  al. 2015). 
Other commonly induced stress response pathways 
were previously reported in RPTEC/TERT1 cells 
(Aschauer et  al. 2015). Here, we treated PTL with 
additional compounds to study their effects on the 
activation of stress response pathways. The natural 
occurring metalloid sodium arsenite is often found in 
contaminated drinking water and has been linked to 
toxicity to every organ of the body; however, accumu-
lation of sodium arsenite is often observed in the liver, 
kidney, and muscle (Chen and Costa 2021). Epidemi-
ologic studies of sodium arsenite-contaminated drink-
ing water showed a link for increased risk of devel-
oping chronic kidney disease (CKD) and end-stage 
renal disease (ESRD) and decreased estimated glo-
merular filtration rates (eGFR) and increased kidney 
injury marker 1 (KIM1) were observed (Farkhondeh 
et al. 2021). At the molecular level, sodium arsenite 
has been described to induce oxidative stress, altera-
tion in DNA damage repair, and stimulation of p53 
activation, mitochondria toxicity as well as changes 
to cytoskeleton and cell cycle (Medda et  al. 2021). 
In this study, the response of sodium arsenite-treated 
PTL included the activation of metal stress response, 
oxidative stress response, and UPR response that 
was in line with previously reported mechanisms 
of sodium arsenite toxicity. Amiodarone is a widely 
used antiarrhythmic drug with toxicity observed in 
multiple organs, including the kidney (Morales et al. 
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Fig. 6  DEGs in response to GW788388 treatment (negative 
control) linked to TGFβ inhibition. PTL were differentiated 
in 96-well plate for 14  days and treated for up to 24  h with 
GW788388 (1 μM). Cells were lysed at different time points, 
and mRNA changes were analyzed by TempO-Seq transcrip-
tomics. Total number of deregulated expressed genes (DEGs) 
were calculated by comparing with 0.1% DMSO-treated con-

trol cells. DEGs linked to TGFbeta inhibition are displayed 
over time course of 24 h. The data represents the mean of three 
experiments ± SD. Analysis of significance was performed by 
ordinary one-way ANOVA with Dunnett post hoc test. Sig-
nificance codes indicate a p-adj: *** < 0.001, ** < 0.01, and 
* < 0.05
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2003), even though pulmonary toxicity has been 
described as its most severe adverse effect (Papiris 
et  al. 2010), likely due to accumulation in alveolar 
type II lamellar bodies (Haller et  al. 2018). In addi-
tion, animal and in vitro studies in the liver, kidney, 
and endothelial cells reported the involvement of oxi-
dative stress (Sarma et al. 1997; Golli-Bennour et al. 
2012). Furthermore, in iPSC-derived hepatocytes, 
the UPR pathway was one of the major impacted 
stress response pathways (Ghosh et  al. 2021). PTL 
treated with amiodarone induced mainly pathways 
involved in inflammation, including interleukin 18- 
and NF-ΚB signaling and cytokine-cytokine receptor 
interaction (Fig. 2a). Several studies have reported a 
role of amiodarone in inflammation before, includ-
ing a study using peripheral blood mononuclear cells 
(PBMCs) that showed downregulation of TNFα, IL-
6, and IL-1β (Matsumori et al. 1997). In addition to 
an inflammatory response, several genes within the 
Nrf2 oxidative stress response and the unfolded pro-
tein response were upregulated significantly in PTL 
in response to amiodarone. Furthermore, we observed 
an activation of several genes within the metal stress 
response that had not been previously reported. This 
was an unexpected result, and we currently are work-
ing on building a hypothesis. The pesticide rotenone 
is a potent mitochondria complex I inhibitor that has 
been linked to the development of Parkinson’s dis-
ease, and it has been reported that rotenone may con-
tribute to neurotoxicity by inducing oxidative stress as 
well as protein aggregation and degradation (Xiong 
et  al. 2012). Recently, a study of one of our groups 
investigated the transcriptomics effects of rotenone in 
RPTEC/TERT1 cells and could show that the activa-
tion of the ATF4 branch of the UPR pathway was the 
major response observed after 24 h of exposure (Carta 
et  al. under review). In the present study, UPR was 
also a main activated pathway in PTL after rotenone 
exposure, with DDIT3 (aka CHOP) being the high-
est upregulated protein with the UPR pathway. Tuni-
camycin is a nucleoside antibiotic, originally isolated 
from Streptomyces species, that is well described for 
its inhibitory effect on UDP-GlcNAc and therefore 
often used as a model compound to induce ER stress 
and activation of the unfolded protein response path-
ways (UPR) (McMillan et al. 1994; Yan et al. 2018; 
Yamamoto and Ichikawa 2019). In PTL, tunicamycin 
also strongly induced all three branches of the UPR 
pathway and upregulations of ATF6, ATF4, and XBP1 

were observed. Finally, as expected, the negative con-
trol GW788388 did not induce any stress response 
pathway at 1 μM and had an overall very low impact 
on DEGs. GW788388 is a potent inhibitor of TGFβ 
type I receptor that had been discovered with the aim 
to development treatment for fibrosis (Gellibert et al. 
2006) and has been shown to decrease EMT (epi-
thelial-mesenchymal transition) and to reduce renal 
fibroses in mice (Petersen et al. 2008). While no tran-
scriptomic studies have been reported for GW788388, 
interestingly, three of the DEGs changed in PTL after 
GW788388 treatment could be linked to its effect on 
EMT. Downregulation of SERPINE1 has been shown 
to have an inhibitory effect on EMT, whereas high 
levels have been identified as a potential biomarker 
for EMT in gastric cancer (Yang et al. 2019; Xu et al. 
2019). Wilms tumor 1 (WT1) has been discussed as a 
regulator of EMT during development and in disease 
(Miller-Hodges and Hohenstein 2012). More recently, 
knock down of CYP24A1 has been described to have 
an inhibitory effect on EMT (Wang et al. 2020).

Temporal effects and early response genes of 
common stress response pathways

Even though transcriptomics studies in the field of 
toxicology have increased significantly in recent 
years, no standardized methods, e.g., on time points 
for chemical exposure, exist. Studies that analyzed 
time points before 24  h of compound have been 
reported for human hepatocyte studies, including 
HepG2 cells treated with compounds that induce 
oxidative stress (0.5 to 24  h time points) (Deferme 
et  al. 2013) as well for iPSC-derived PTL treated 
with cadmium chloride (1 h to 7 days) (Singh et al. 
2021). In the study presented here, it was observed 
that temporal effects on activating stress response 
pathways were mainly compound-specific rather 
than pathway-specific. This was apparent for the 
activation of the UPR pathway that was impacted on 
early in response to tunicamycin (starting 3 h after 
treatment) and much later in response to rotenone 
(starting 12  h after treatment) (Table  2). Neverthe-
less, it was interesting that a sequential activation of 
genes and stress-response pathways was observed 
for some compounds, including amiodarone that 
increased genes within the metal stress response 
pathways first (majority of genes predicted to be 
deregulated below 4 h) and only later had an impact 
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on the UPR pathway (only 2 genes deregulated early 
and majority predicted to be deregulated after 4  h) 
(Table  2). Hence, temporal expression profiles may 
help to identify the primary mechanism of toxic-
ity and distinguish that from overlapping effects to 
other pathways. It has been previously reported that 
signatures between pathways, including Nrf2, UPR 
(ATF4 branch), and AhR, may overlap (Zgheib et al. 
2018). This sequential activation was not observed 
in response to sodium arsenite that showed an early 
impact on all of the four stress-response pathways 
(Table  2). Activation of the Nrf2 oxidative stress 
response and metal stress response pathways by 
sodium arsenite, even though induced quite early, 
remained high throughout the time course of the 
experiment (Fig.  4a–c), whereas activation of the 
UPR pathway by tunicamycin and sodium arsenite 
(Fig. 4b) was the highest before the 24 h time point 
and decreased again during the time course of the 
experiment. It was noted that these effects differed 
between individual genes within one pathway and 
therefore highlight the need to judge this on a gene by 
gene basis. While transcriptomic study usually covers 
numerous genes per pathway, this may not be the case 
for biomarker panels based on fewer genes and should 
be taken into consideration. Furthermore, 24  h of 
exposure may not always be needed to detect activa-
tion of stress response pathways or genes within these 
pathways that may function as biomarkers. This was 
also in line with the results from the HMOX1 reporter 
assay that was activated much earlier than 24 h after 
treatment of sodium arsenite and cadmium chloride 
(Fig.  3). We reported the early response genes in 
Fig. 5b. These may represent good candidates for the 
further investigation on development of fluorescent 
reporters or biomarker panels, even though other cri-
teria for biomarkers or reporters have to be checked. 
Additionally, these early response genes may help 
decipher mechanistic information on initial events 
and distinguish these from overlapping downstream 
effects. Early response genes, include among others 
several MT1 isotypes, HMOX1, XBP1, and DDIT3, 
and a compound specific list is given in Table 1.

Conclusions

This study showed that iPSC-derived PTL could be 
successfully employed in TempO-Seq transcriptomic 

assays to capture the activation of commonly induced 
stress-response pathways, including Nrf2-oxidative 
stress, UPR, and metal stress pathway. Temporal anal-
ysis of gene expression levels and pathway enrich-
ment showed that the effect of time was compound 
specific with strong responses often observed as 
early as 6–8 h after treatment. Additionally, for some 
compounds a sequential activation of different stress-
response pathways could be detected, which will be 
helpful to build on the mechanistic unraveling of  cell 
stress and adaptation.
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