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mechanisms by which sevoflurane exposure during 
development may induce long-lasting undesirable 
effects on the brain. We review neural cell death, 
neural cell damage, impaired assembly and plastic-
ity of neural circuits, tau phosphorylation, and neu-
roendocrine effects as important mechanisms for 
sevoflurane-induced developmental neurotoxicity. 
More advanced technologies and methods should be 
applied to determine the underlying mechanism(s) 
and guide prevention and treatment of sevoflurane-
induced neurotoxicity.

 Highlights 1. We discuss the mechanisms underly-
ing sevoflurane-induced developmental neurotoxicity 
from five perspectives: neural cell death, neural cell 
damage, assembly and plasticity of neural circuits, tau 
phosphorylation, and neuroendocrine effects.2. Tau 
phosphorylation, IL-6, and mitochondrial dysfunc-
tion could interact with each other to cause a nerve 
damage loop.3. miRNAs and lncRNAs are associated 
with sevoflurane-induced neurotoxicity.

Keywords Sevoflurane · Young brain · Neural 
cell damage · Neural circuit · Tau phosphorylation · 
Neuroendocrine

Abstract With the development of technology, 
more infants receive general anesthesia for surgery, 
other interventions, or clinical examination at an early 
stage after birth. However, whether general anesthet-
ics can affect the function and structure of the devel-
oping infant brain remains an important, complex, 
and controversial issue. Sevoflurane is the most-used 
anesthetic in infants, but this drug is potentially neu-
rotoxic. Short or single exposure to sevoflurane has 
a weak effect on cognitive function, while long or 
repeated exposure to general anesthetics may cause 
cognitive dysfunction. This review focuses on the 
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Introduction

With the progress of medical technology, greater 
numbers of infants receive surgery, interventions, or 
examination under general anesthesia at an early stage 
after birth. Consequently, the neurotoxicity of general 
anesthesia is receiving increasing attention. The US 
Food and Drug Administration released a warning of 
drug safety in December 2016, which stated that 11 
commonly used sedative and anesthetic medications 
had potential neurotoxic effects in pregnant women 
during the third trimester and children under the 
3 years of age (2016).This warning indicates the need 
for studies to delineate any potential adverse neurode-
velopmental consequences on children.

Sevoflurane is an agentia for inhalational induction 
due to its low blood-gas solubility and rapid onset, 
particularly in pediatric anesthesia. Yet, repeated or 
prolonged exposure to sevoflurane is neurotoxic in 
the developing brain in animal studies. For exam-
ple, in mice, maternal anesthesia with sevoflurane 
induces social interaction deficits in the offspring 
(Chen et al., 2021). Monkeys exposed to sevoflurane 
anesthesia in infancy have increased anxiety-related 
behaviors during adolescence, (Raper et  al., 2015), 
and early repeated sevoflurane anesthesia in monkey 
infancy results in an anxious phenotype which per-
sists over time (Raper et al., 2018). In mice, neonatal 
exposure to sevoflurane anesthesia may raise the risk 
of cognitive dysfunction in adults (Dai et al., 2020), 
and repeated neonatal sevoflurane exposure induces 
attention-deficit/hyperactivity-disorder-like impulsive 
behavior in later adulthood (Xie et al., 2020).

Findings in humans are less conclusive. Children 
under 3  years of age who underwent surgery were 

60% more likely to be subsequently diagnosed with 
developmental and behavioral disorders than chil-
dren accepted no surgery (DiMaggio et  al., 2011), 
and anesthesia was considered to be a potential 
independent risk factor. Most recently, both of the 
General Anesthesia vs. Spinal (GAS) Anesthesia 
and Pediatric Anesthesia and Neurodevelopment 
Assessment (PANDA)studies involved formal neu-
rodevelopmental testing, showed that there is no 
correlation between single and transient general 
anesthesia and poor neurodevelopmental outcome. 
(Davidson et al., 2016; Sun et al., 2016). However, 
in the Mayo Anesthesia Tolerability in Kids study, 
there were subtle declines in fine-motor coordina-
tion and processing speed that might impede learn-
ing after sevoflurane exposure, and children one or 
more times exposed to sevoflurane had difficulty 
with reading (Warner et  al., 2018). Furthermore, 
a comparison of 46 neurodevelopmental outcomes 
in 13,433 children showed that multiple exposures 
to sevoflurane are associated with an increased risk 
of poor motor function, lower hand dexterity, and 
lower social scores (Walkden et al., 2020).

Together, existing findings from both animal 
studies and clinical studies raise concern about the 
potential neurotoxic effect of sevoflurane in chil-
dren, particularly for any interference with critical 
processes in brain development. In this review, we 
discuss the mechanisms by which sevoflurane may 
alter neurodevelopment from five aspects: neural 
cell death, neural cell damage, assembly and plas-
ticity of the neural circuit, tau phosphorylation, and 
neuroendocrine effects (Fig. 1).

Fig. 1  The mechanisms 
of sevoflurane may alter 
neurodevelopment from 
five aspects: neural cell 
death, neural cell damage, 
assembly and plasticity of 
the neural circuit, tau phos-
phorylation, and neuroen-
docrine effects
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Neural cell death

Neuroapoptosis is the main pathway leading to neural 
cell death

Most pre-clinical studies of sevoflurane focus on 
apoptosis as the leading cause of neurotoxicity. Dur-
ing development, this type of programmed cell death 
is normal, but prolonged exposure to sevoflurane in 
young animals could lead to the rate of neuroapopto-
sis increasing 50-fold (McCann and de Graaff, 2017). 
Sevoflurane exposure causes millions of otherwise 
healthy and functional neurons to commit to apop-
totic-programmed cell death (Dikranian et al., 2001). 
Indeed, this exposure can cause neuroapoptosis 
through several different molecular mechanisms, and 
it is not yet clear which mechanism is preferred. Two 
major signaling pathways can promote apoptosis: the 
intrinsic and the extrinsic pathways (Yon et al., 2005).

The intrinsic pathway is initiated in response to 
signals from within the cell, resulting in a decreas-
ing anti-apoptotic (such as BCL-2, MCL1, BCL-XL) 
and pro-apoptotic (BAX/BAK) ratio, which induces 
mitochondrial outer membrane permeabilization 
(MOMP). MOMP promoted cytochrome C release 
from the mitochondria and activated caspase-9 cleav-
age (Green and Llambi, 2015; Liu et  al., 2020; Yon 
et al., 2005). Phosphorylation of antiapoptotic MCL1 
can be activated by stress and mitotic kinases such as 
AMP-activated protein kinase (MAPK), p38 MAPK, 
casein kinase II, Jun amino-terminal kinase (JNK) 
(Wertz et al., 2011), and growth factor and phospho-
inositide 3-kinase (PI3K)-AKT-glycogen synthase 
kinase (GSK) 3 signaling (Maurer et al., 2006). BH3-
only proteins (sensitizers or derepressors) promote 
MOMP proteins, BCL-2. JNK, extracellular signal-
regulated kinase 1 and 2 (ERK1/2) by antagoniz-
ing antiapoptotic and p53 are involved in apoptosis, 
and their activation can promote MOMP and induce 
intrinsic apoptosis (Green and Llambi, 2015). Neo-
natal sevoflurane exposure in rodents profoundly 
decreases the histone acetyltransferase activity of 
cyclic adenosine monophosphate (cAMP) response 
element-binding (CREB) protein in the hippocampus 
(Dong et  al., 2020a). CREB-binding protein acety-
lation is implicated in learning (Barrett et  al., 2011; 
Maddox et al., 2013), and CREB pathway inactivation 
may downregulate the transcription of anti-apoptotic 

genes and increase the levels of pro-apoptotic factors 
(Lee et  al., 2013), in turn, decreasing the anti-apop-
totic (BCL-2, MCL1, BCL-XL)/pro-apoptotic (BAX/
BAK) ratio, promoting MOMP, and inducing intrin-
sic apoptosis.

Sevoflurane induces neuroapoptosis in the devel-
oping brains of young rats via the brain-derived neu-
rotrophic factor (BDNF)-modulated apoptotic cas-
cade (Hu et  al., 2019; Yu et  al., 2020b), which also 
results in a decreasing anti-apoptotic/pro-apoptotic 
ratio, promoting MOMP, and inducing intrinsic 
apoptosis. Sevoflurane exposure in the developing 
brain could induce neuroapoptosis by activating the 
JNK/c-JUN/AP-1 signaling pathway (Bi et al., 2018), 
activation/phosphorylation of ERK1/2 via β-arrestin 
1 and 2/metabotropic glutamate receptor 7 (Wang 
et  al., 2016a, b), activation/phosphorylation of the 
ERK1/2-NRF2/BACH1 signaling pathway (Yang 
et al., 2020a), activation/phosphorylation of ERK1/2-
MAPK signaling (Wang et  al., 2016a, 2013b), and 
activation/phosphorylation of the PI3K/AKT sign-
aling pathway (Li et  al., 2017a), which can also 
decrease the anti-apoptotic/pro-apoptotic ratio, pro-
mote MOMP, induce intrinsic apoptosis, and cause 
cognitive decline in adolescence.

Repeated sevoflurane anesthesia treatment in neo-
natal rats also increases the density of NeuN + /cas-
pase-3 + cells, which in the hippocampal dentate 
gyrus, induces caspase-3 activation, and increases 
BAX levels. It also reduces levels of BCL-2 in ado-
lescent rats, which decreases the ratio of BCL-2/
BAX, promotes MOMP, induces intrinsic apoptosis, 
and causes cognitive decline in adolescence. In clini-
cal studies, sevoflurane exposure increases the mRNA 
expression levels of caspase-3, superoxide dismutase 
1, and glutathione peroxidase gene 1 in neural stem 
cells (NSCs) in postoperative blood samples and 
reduces cell density and cell viability of NSCs in 
postoperative serum in children less than 3 years old 
(Zhou et al., 2018). Long noncoding RNAs (lncRNA) 
expression profiles in the developing mouse hip-
pocampus indicate that sevoflurane exposure upreg-
ulates lncRNAs, likely induces over-expression of 
BCL2L11 and BAX, but decreases BCL-2, which 
eventually promotes mitochondria-mediated apop-
tosis (Chen et  al., 2016). Sevoflurane induces neu-
ronal apoptosis in the immature brain mostly by 
initiating the intrinsic pathway. The endogenous 
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apoptosis pathway could be targeted to treat neuro-
toxicity caused by sevoflurane in the developing brain 
(Fig. 2).

The extrinsic pathway can be activated via tumor 
necrosis factor (TNF) receptors, which increase FAS 
(also known as CD95, which is a death receptor) pro-
tein and activate caspase-8. Cell death induced by 
death receptors is generally crucial to immune system 
function and homeostasis (Green and Llambi, 2015). 
Bid is activated by caspase-8-mediated cleavage, and 
Bid in turn promotes MOMP by activating BAX and 
BAK. Sevoflurane significantly increases the expres-
sion of FAS protein in young mice (Song et  al., 
2015), which activates caspase-8 and induces neuroa-
poptosis. However, sometimes sevoflurane-induced 
apoptosis may be independent of death receptor sign-
aling (Loop et  al., 2005). Furthermore, the extrinsic 
and intrinsic pathways may at times interact with each 
other to cause apoptosis.

Sevoflurane also induces neuroapoptosis through 
modulation of reactive oxygen species (ROS) pro-
duction (Jin et  al., 2013), proopiomelanocortin (Wei 
et al., 2019b), and β-amyloid protein (Lu et al., 2010), 
shifting the pentose phosphate pathway to the glyco-
lytic pathway (Liu et al., 2019a). This also affects the 
receptor-interacting protein (RIPK)1/RIPK3 signal-
ing pathway (Xu et  al., 2021) and the PERK-eIF2a 
ATF4- CHOP axis of the endoplasmic reticulum 
(ER) stress signaling pathway (Liu et al., 2017a). The 
increasing intracellular ROS results in DNA dam-
age (Piao et al., 2020), and disruption of intracellular 

calcium homeostasis is also observed (Yang and Wei, 
2017). Neuroapoptosis is an important mechanism 
of developmental neurotoxicity induced by sevoflu-
rane. Inhibiting the neuroapoptosis pathway could 
be a potential targeted intervention for neurotoxicity 
induced by sevoflurane in the developing brain.

Neurodegeneration is the pathological basis of many 
cognitive disorders

Neurodegeneration underlies many cognitive dis-
orders. In some studies, sevoflurane exposure is 
reported to cause neurodegenerative changes. Dam-
age from these changes may be more widespread than 
initially assumed, and understanding the extent of this 
damage is crucial for identifying the mechanisms of 
and treatments for anesthesia-related neurotoxicity 
(Burks et al., 2020). In the pathogenesis of neurode-
generative disorders, ER stress plays a critical role 
(Hetz and Saxena, 2017). Sevoflurane exposure for 
the developing brain increases protein tyrosine phos-
phatase 1B, located in the ER, and triggers ER stress 
that leads to neurodegenerative changes (Liu et  al., 
2019b, 2017a; Zhu et  al., 2017). Sevoflurane also 
induces neurodegeneration through restoring cAMP 
and activating the cAMP/CREB signaling pathway 
in the developing hippocampus (Chen et  al., 2020; 
Huang et  al., 2021). Abnormal cAMP signal is an 
important factor in neurodegenerative changes. The 
methyl-cytosine-phosphate-guanine-binding protein 
2/CREB signaling pathway downregulates BDNF, 

Fig. 2  Sevoflurane exposure in the developing brain could 
induce neuroapoptosis via the JNK/c-JUN/AP-1 axis, ERK1/2 
MAPK axis, ERK1/2-NRF2/BACH1axis, PI3K/AKT axis, and 
CREB inactivation, which may downregulate the transcrip-
tion of anti-apoptotic genes (BCL-2, BCL-XL, MCL1) and 

increase the levels of pro-apoptotic factors (BAX/BAK). This 
induces mitochondrial outer membrane permeabilization, pro-
moting release of cytochrome C from the mitochondria, acti-
vating caspase-9 cleavage and informed apoptosome, resulting 
in caspase 3 activation and neuroapoptosis
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which inhibits the level of sirtuin 1(SIRT1) (Tang 
et  al., 2020). Abnormal reduction of SIRT1 is also 
associated with neurodegenerative diseases. Sevoflu-
rane significantly upregulates SIRT 2 in the neonatal 
rat hippocampus, which promotes pro-inflammatory/
M1-related markers in microglia and activated micro-
glia (Wu et  al., 2020c). Microglia activation also 
has been implicated in neurodegenerative disease 
(Yeh et al., 2017). Multiple exposures to sevoflurane 
enhance histone deacetylase 6 (HDAC6) expres-
sion and activity in the developing hippocampus (Li 
et  al., 2019a), and HDAC6 overexpression plays a 
very important role in neurodegenerative changes. A 
3% sevoflurane exposure in neonatal induces abnor-
mal lncRNA and microRNA (miRNA) expression 
profiles. The dysregulated lncRNAs/mRNAs were 
able to formulate wide molecular networks that might 
contribute to neurodegenerative signaling pathways, 
resulting in impaired long-term memory (Jiang et al., 
2021b). Iron is essential for normal neuronal func-
tion; however, excess iron is implicated in several 
neurodegenerative diseases. Sevoflurane exposure 
disturbs iron homeostasis and causes iron overload in 
the hippocampus, which contributes to neurodegen-
erative diseases (Wu et al., 2020a). Protein aggregates 
and mitochondria dysfunction represent key patho-
logical hallmarks shared by most neurodegenerative 
diseases. Autophagic flux, the difference between 
autophagosome formation and cargo clearance by lys-
osomes, is concerned of neurodegenerative diseases 
development (Budini et  al., 2017; Heras-Sandoval 
et al., 2014; Klionsky et al., 2016; Ravikumar et al., 
2005). LC3, the most widely monitored autophagy-
ER-related protein, is commonly used as a marker of 
autophagy. The degradation of p62 in autolysosomes 
suggested as an indicator of autophagy activation 
(Klionsky et  al., 2016). Sevoflurane increases the 
levels of microtubule-associated protein light chain 
3II protein (LC3-II), beclin-1, and the ratio of LC3-
II/LC3-I and decreases the levels of sequestosome 1 
and p62 (Wei et al., 2019a; Xu et al., 2018) via sup-
pression of phospho-protein kinase B/protein kinase 
B (p-AKT/AKT) and mammalian target of rapamycin 
(mTOR) (Li et  al., 2017b) in the developing brain, 
inducing mitochondrial dysfunction and neurodegen-
eration. Repeated exposure of neonatal mice to 3% 
sevoflurane induces tau protein phosphorylation (Yu 
et  al., 2020a), which leads to tau accumulation and 
the formation of neurofibrillary tangles, a hallmark 

pathology in neurodegenerative brains, suggesting 
that tau plays a critical role in neurodegeneration 
(Pirscoveanu et  al., 2017; Yang and Wang, 2018). 
Neurodegenerative changes caused by neonatal sevo-
flurane exposure may be involved in a variety of path-
ways, but the exact mechanism is not clear, and fur-
ther investigation is needed. (Fig. 3).

Neural cell damage

Calcium homeostasis deregulation can lead to neural 
cell damage

Calcium plays a vital role in human physiology, par-
ticularly in the central nervous system (CNS). Precise 
maintenance of  Ca2+ levels is vital for normal cell 
function, and calcium homeostasis deregulation can 
lead to neuronal cell damage. ER is the main source 
of intracellular calcium release in neurons; it plays a 
very important role in the maintenance of intracel-
lular calcium homeostasis (Wei and Xie, 2009). In 
the mitochondrial matrix, proper  Ca2+ levels tightly 
regulate oxidative phosphorylation activity, which 
maintains the rate of adenosine triphosphate (ATP) 
production. However, if excess  Ca2+ was taken up by 
mitochondria, derived from the increased cytosolic 
 Ca2+ or excessive  Ca2+ transfer from the ER, mito-
chondrial respiration can be impaired, which leads 
to enhanced production of ROS, impaired mitochon-
drial membrane permeabilization, and reduced ATP 
production, possibly with subsequent cell damage 
(Calvo-Rodriguez and Bacskai, 2021; Marchi et  al., 
2018; Mendes et  al., 2005). Sevoflurane exposure 
induces a significant decrease of calcium concentra-
tions in the ER via excessive IP3 receptors activation, 
the  Ca2+ in the cytosol, and mitochondrial accom-
panied by a subsequent significant increase (Yang 
et  al., 2008). Mitochondrial  Ca2+ overload leads to 
mitochondrial respiration impairment, ROS activa-
tion, ATP reduction, and MOMP, which induce neu-
ral cell damage and apoptosis (Danese et  al., 2017; 
Yang and Wei, 2017). Exposure to 2% sevoflurane at 
neonatal ages upregulates  Ca2+-activated potassium 
channel type 2 (SK2s) in the CA1 region, which has 
persistent detrimental effects on long-term depression 
(LTD) and long-term potentiation (LTP) (Yu et  al., 
2018), and sevoflurane disrupts astrocyte  Ca2+ home-
ostasis, which downregulates ezrin. The reduction of 
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ezrin leads to astrocytic and neuronal dysfunction, 
which induces deficits in social behaviors of develop-
ing mice (Zhou et  al., 2019). Imbalance of calcium 
homeostasis is an important mechanism of neuro-
toxicity induced by sevoflurane anesthesia, which is 
related to mitochondrial dysfunction and astrocytic 
and neuronal dysfunction. Maintaining intracellular 
calcium homeostasis may be an effective intervention 
for sevoflurane-induced developmental neurotoxicity.

Metabolic disorders contribute to 
sevoflurane-induced neural cell damage

Sevoflurane exposure in the developing brain 
decreases the intermediates in the glucose metabolic 
pathway, including lactate, succinic acid levels signif-
icantly decrease, and the total creatine pool, including 
high-energy phosphocreatine and creatine are signifi-
cantly reduced (Liu et al., 2015a). Total creatine pool 
depletion could increase the vulnerability of cellular 
to insufficiency of ATP synthesis, leading to cellular 
dysfunction (Liu et al., 2015a; Tsuji et al., 1995). In 
the neonatal brain, altered amino acid metabolism 
may also play a key role in sevoflurane-induced neu-
rotoxicity. Prolonged and high concentration exposure 
to sevoflurane reduces levels of glutamine, glutamic 
acid, aspartic acid, and proline significantly. These 

amino acids are involved in the peptides, fatty acids, 
and synthesis of proteins, and reduction of their lev-
els (Liu et al., 2015a) suggests neural cell damage and 
inhibition of neuronal growth in the developing brain. 
Additionally, prolonged sevoflurane anesthesia sig-
nificantly reduces the levels of cadherin 1 (CDH1) in 
postnatal day 7 mice, which results in glucose metab-
olism switched from the pentose phosphate pathway 
to neuronal glycolysis. This conversion leads to an 
imbalance between the production of reactive oxygen 
species and decreased glutathione levels in the devel-
oping brain. The brain is more susceptible to oxida-
tive stress, leading to cell damage. (Liu et al., 2019a). 
Sevoflurane-induced neuronal damage is also related 
to changes in lipid composition and content. Specific 
lipid changes can provide insight into the molecular 
mechanism of anesthesia-induced neurotoxicity, and 
may be a sensitive biomarker for anesthesia-induced 
neuronal damage, which can be used for early detec-
tion (Liu et al., 2015b).

Iron metabolism, folic acid metabolism, and other 
imbalances also can lead to nerve damage. The bal-
ance of brain iron metabolism is vital to the develop-
ment of brain tissue. Especially in fetuses or infants, 
iron deficiency affects myelination and nerve tissue 
development, which plays a key role in cognitive 
function. Exposure to sevoflurane during pregnancy 

Fig. 3  Sevoflurane could 
induce neurodegenerative 
in the developing brain 
through multiple signaling 
pathways such as PTP-1B/
ER axis, CREB/BDNF/
SIRT1 axis, SIRT 2/micro-
glia activation, and HDAC6 
overexpression. Sevoflu-
rane exposure suppressed 
p-AKT/AKT and mTOR, 
increasing the level of 
Beclin-1 and LC3-II/LC3-I 
and decreasing the levels 
of sequestosome 1 and p62, 
which induce activation 
of autophagy. Autophagy 
could induce neurodegen-
erative, which involved in 
sevoflurane-induced neuro-
degenerative
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will reduce the expression of light chain ferritin, 
heavy chain ferritin, myelin basic protein tight junc-
tion protein ZO-1, claudin-5, occludin, and ferro-
portin-1 and increase the hippocampus and ferro-
portin-1 of offspring mice. Transferrin receptor 1 in 
the cortex, causing iron deficiency in the offspring’s 
brain and impaired myelin development (Zuo et  al., 
2021, 2020). Ferroptosis may also be involved in 
cognitive impairment caused by sevoflurane in the 
developing brain, which may be related to activa-
tion of N-methyl-D-aspartate receptor (NMDAR)-
RASD1(Ras-related dexamethasone-induced 1) 
signaling (Wu et  al., 2020a). Moreover, sevoflurane 
also leads to disrupted folate metabolism and subse-
quent defects in myelination in the developing brain 
(Zhang et  al., 2019a). Metabolism is involved in all 
phases of cell growth, and metabolism disorders may 
lead to cell damage, which contributes to sevoflurane-
induced neurotoxicity. However, there are only a few 
studies aimed at determining the role of metabolism 
in anesthesia developmental neurotoxicity.

Neuroinflammation plays an important role in 
cognitive impairment

The primary characteristic of neuroinflammation 
is overexpression of proinflammatory factors from 
glial activation or immune cell infiltration. Neuroin-
flammation conventionally refers to the ability of the 
central and peripheral nervous system to generate 
innate immune responses during pathological events 
(Mendiola and Cardona, 2018). Mounting inflam-
matory responses to injury, astroglia, and microglia 
are considered the hallmark effector cells. Activated 
microglia are a predominant source of cytokines in 
the central nervous system and release a series of 
proinflammatory cytokines and chemokines, such 
as monocyte chemoattractant protein-1, interleu-
kins, macrophage colony-stimulating factor, tumor 
necrosis factor (TNF)-α, and macrophage inflam-
matory protein-1α/β. Astrocytes express receptors 
for interleukin (IL)-1, IL-8, IL-6, and macrophage 
colony-stimulating factor (Kanthasamy et  al., 2019). 
Overexpression of these pro-inflammatory cytokines 
and chemokines can cause neuronal damage (Chen 
et  al., 2018; Takahashi et  al., 2008). Repeated sevo-
flurane exposure in neonatal mice promotes activation 
of microglia and release of pro-inflammatory fac-
tors and increases neuroinflammatory factor (TNF-α, 

IL-8, IL-6, and IL-1β) expression levels (Shen et al., 
2013; Xia et al., 2017; Yang et al., 2020b). The PI3K/
Akt/mTORpathway in the cortex and hippocampus 
of rats may be involved in sevoflurane-induced devel-
opmental neurotoxicity (Wang and Wang, 2019). 
Meanwhile, exposure of monkeys to sevoflurane dur-
ing rapid brain development also promotes microglia 
activation, which can be detected by upregulating 
translocator protein (TSPO) expression (Zhang et al., 
2016). Maternal exposure to sevoflurane directly 
influences fetal glial cells and enhances IL-6 via 
phospho-ERK signaling (Hirotsu et  al., 2019). Neu-
roinflammation is involved in sevoflurane-induced 
developmental neurotoxicity and could be an impor-
tant target for further studies of sevoflurane-induced 
developmental neurotoxicity.

Assembly and plasticity of neural circuits

Impaired synaptic plasticity directly leads to 
abnormal neural circuitry in early brain development

Impaired synaptic plasticity contributes to cognitive 
deficits, emotional disorders, and poor movement 
and flexibility. Brain plasticity refers to the ability 
of neural activity generated by experience, which 
can change the function of neural circuits, thereby 
changing the subsequent feelings, thoughts, and 
behaviors. Synaptic plasticity refers to the activity-
dependent modification of the synaptic transmis-
sion efficiency or strength of pre-existing synapses, 
and has been proposed to play a central role in the 
brain’s ability to incorporate short-lived experi-
ences into persistent memory traces. Synaptic plas-
ticity also plays a key role in the early development 
of neural circuits, and damage to synaptic plastic-
ity can lead to several significant neuropsychiatric 
disorders (Citri and Malenka, 2008). Two main 
types of ionotropic glutamate receptor NMDAR and 
α-amino-3-hydroxy-5-methyl-4-isoxazole propionic 
acid receptor (AMPAR) are involved in the post-
synaptic glutamatergic synapse reaction. Defective 
hippocampal synaptic plasticity is closely related to 
defective hippocampal-dependent memory. Inhibi-
tion of expression of NMDAR and NMDAR subu-
nit NR1 leads to defective LTP and spatial learning. 
Overexpression of NMDAR subunit NR2B in mice 
enhances LTP and enhances spatial learning (Citri 
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and Malenka, 2008). Thus, synaptic plasticity plays 
a key role in hippocampal-dependent learning.

During critical periods of early postnatal devel-
opment, brief sevoflurane exposure can induce sub-
tle changes in synaptic plasticity and spine density 
(Qiu et  al., 2016). Neonatal sevoflurane exposure 
leads to cyclin-dependent kinase 5 (CDK5) activa-
tion by increasing p25 expression (Liu et al., 2017b) 
and activates the CDK5/collapsin response mediator 
protein-2 (CRMP2) pathway and GSK-3β/CRMP2 
pathways (Liao et  al., 2021) in the hippocampus 
of neonatal rats. Exposure also suppresses cortical 
and hippocampal dendritic branching and reduces 
dendritic branch length as well as the density of 
dendritic spines in pyramidal neurons (Liao et  al., 
2021).

Additionally, exposure to sevoflurane reduces the 
expression of postsynaptic density 95 protein (PSD-
95), synaptophysin, and drebrin in the hippocampus, 
which induces impaired memory in rats and inhib-
its LTP in hippocampal slices (Liao et  al., 2021). 
The interaction of nectin-1 and L-afadin participates 
in the remodeling and formation of rat brain den-
dritic spines. Neonatal sevoflurane inhalation could 
activate corticotropin-releasing hormone (CRH)/
corticotropin-releasing hormone receptor (CRHR)1 
signaling to decrease nectin-1 expression levels in 
the hippocampus, which leads to synaptic spine loss 
as well as learning and memory deficits in adult mice 
(Li et  al., 2019b). Meanwhile, sevoflurane short-
ens the branch length of neurons and decreases the 
number of branches and branch nodes (Zhang et al., 
2021). Multiple sevoflurane exposures reduce syn-
aptic function in the developing cortex (Zhou et  al., 
2019) and enhance HDAC6 expression and activity 
in the hippocampus of the developing brain, which 
can decrease synaptophysin and PSD-95 expression 
and cause synaptic ultrastructural damage and cogni-
tive deficits in adulthood (Li et al., 2019a; Tao et al., 
2016). Sevoflurane also promotes the degradation of 
PSD-95 protein by acting on the ubiquitinated protea-
some pathway, thereby reducing PSD-95 levels (Lu 
et al., 2017; Wang et al., 2013a), and the expression 
levels of PSD-95 and synaptophysin decreased in 
fetus and offspring mice after pregnant mice received 
sevoflurane anesthesia (Zheng et  al., 2013). Loss of 
PSD-95 releases AMPA receptors from the postsyn-
aptic membrane, allowing subsequent removal of 
PSD-95 from synaptic sites by endocytosis, which 

leads to young mice cognitive impairment (Beique 
et al., 2006).

Prolonged exposure to sevoflurane reduces syn-
aptogenesis and dendritic spine formation (Yu et al., 
2020b), and results in increased expression of syn-
aptic vesicle-related proteins, decreased apical den-
dritic spine density, and damage to the ultrastructure 
of hippocampal synapses (Xiao et al., 2015), leading 
to cognitive functional impairments in juvenile rats. 
Neonatal sevoflurane exposure inhibits SIRT1 protein 
levels through downregulating BDNF via methylcy-
tosine guanine phosphate-binding protein 2 (MeCP2) 
and CREB (Tang et al., 2020); abnormal reduction of 
SIRT 1 protein is associated with impaired synaptic 
plasticity. Sevoflurane exposure regulates the trans-
port of NMDAR subunit NR2B and the morphol-
ogy of dendritic spines (Tang et al., 2018), decreases 
NOVA2 expression in the developing mice cerebral 
cortex, inhibits Netrin-1/DCC activity in the fetal 
brain, interferes with the axon growth and the guid-
ance of commissural interneurons, and reduces the 
migration of interneuron progenitor cells in the spi-
nal cord (Chai et al., 2020). Multiple exposures of the 
developing brain to sevoflurane inhibit activation of 
the tyrosine kinase receptor (TrkB) signaling pathway 
through the imbalance of the tPA/PAI-1 fibrinolytic 
system and the reduction of synaptic plasticity and 
inhibit the cleavage of proBDNF to mBDNF (Dong 
et  al., 2020b). Synaptic plasticity plays an impor-
tant role in sevoflurane-induced neurotoxicity during 
development, which directly induces abnormal neural 
circuitry. Therefore, it is important to prevent or treat 
sevoflurane-associated impairment of synaptic plas-
ticity (Fig. 4).

Abnormal myelin development results in impaired 
nerve conduction

Abnormal development of myelin structures in the 
white matter of the brain can result in impaired 
nerve conduction, mainly manifested as dyskinesia 
and postural abnormalities, but also accompanied 
by sensory, cognitive, and behavioral disorders. 
Myelination is the process by which oligodendro-
cytes of the CNS or Schwann cells of the periph-
eral nervous system wrap axons (Choi et al., 2019; 
Nave and Werner, 2014), which helps provide the 
foundation for brain connectivity and plays an 
important role in cognitive development and brain 
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plasticity (Deoni et al., 2018). In the CNS, myelina-
tion is stimulated by axonal activity and astrocytes, 
whereas microglia/macrophages involved in myelin 
clearance. Myelin sheath accelerates axon signal 
conduction and serves an important role in preserv-
ing the healthy connectivity and functions of nerv-
ous system (Nave and Werner, 2014). Oligodendro-
cytes/oligodendrocyte progenitor cells are crucial 
for effective myelination in the CNS (Thomason 
et al., 2020). Oligodendrocytes (OLs) are the mye-
linating cells during development and throughout 
adulthood in the CNS. In the process of myelina-
tion, decreased expression of OL-related genes and 
myelin-related genes can lead to myelin dysplasia, 
neuronal degeneration, and nerve injury (Ogawa 
et al., 2018); and OL apoptosis also leads to demy-
elination and neurodegeneration (Dulamea, 2017).

Sevoflurane-exposed developing nonhuman pri-
mate brains display significant apoptosis in gray and 
white matter, with OL apoptosis heavily concen-
trated in white matter zones (Ikonomidou et al., 2019; 
Rosado-Mendez et al., 2019), which leads to myelin 
dysplasia in the CNS and affects cognitive function. 
Exposure to high concentrations (4.9%) of sevoflu-
rane in the early postnatal period for 2  h may have 
a harmful effect on the OL maturation and myelina-
tion of white matter in the brain development of rats 
(Wu et  al., 2020b). Repeated sevoflurane anesthesia 
in rhesus macaques and mice leads to disrupted folate 
metabolism and subsequent defects in myelination 
in the developing brain via decreased expression of 
myelination-development-related genes (Zhang et al., 
2019a). In the CNS, iron deficiency affects myelino-
genesis, especially in the fetus or infant (Ward et al., 

Fig. 4  Sevoflurane regulated signaling pathways through 
AMPAR and NMDAR, which result in abnormal synaptic 
plasticity. HDAC6, P25/CDK5/GSK-3β axis, P25/CDK5/
CRMP2 axis, and ubiquitination-proteasome involved in these 
signaling pathways, which activation could decrease PSD-95, 
drebrin, and synaptophysin levels, resulting in synaptic plas-

ticity decreased and cognitive impairment. Sevoflurane could 
decrease synaptic plasticity through CRH/CRHR1/Nectin-
1axis, MeCP2/CREB/BNDF/SIRT1 axis, NR2B/Nova2/
Netrin-1/DCC axis, and tPA/PAI-1/BNDF/TrkB axis, which 
induce synaptic plasticity decreased and cognitive impairment 
also. The dotted line bids for missing synapses
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2014). During pregnancy, sevoflurane anesthesia 
in mice may inhibit myelinization in offspring via 
iron deficiency, leading to decreased growth of OLs, 
destroyed myelin integrity, reduced g-ratio of mye-
lin sheath, and suppressed myelinization (Zuo et al., 
2020). OL apoptosis, iron deficiency, and folate defi-
ciency may be possible mechanisms of the abnormal 
myelin development in the developing brain caused 
by sevoflurane, and inhibition of OL apoptosis and 
supplementation of iron and folic acid may be preven-
tive measures. More studies are needed.

miRNAs and lncRNAs are associated with 
sevoflurane-induced neurotoxicity

Non-coding RNAs (ncRNAs) and their related regu-
latory networks are increasingly involved in medi-
ating complex neurobiological functions. miRNAs 
and lncRNAs have been reported to play significant 
roles in neural development (Rodrigues et  al., 2020; 
Shu et  al., 2019). In the mouse hippocampus, sevo-
flurane induces abnormal expression of 148 mRNAs 
and 301 lncRNAs on PD7 (Jiang et al., 2021a). These 
dysregulated lncRNAs/mRNAs can form a wide 
range of molecular networks and may participate in 
various functional neurological pathways in the hip-
pocampus, leading to acute apoptosis and impaired 
long-term memory. Neonatal sevoflurane anesthesia 
can upregulate caspase 3 and Bax, decrease the lev-
els of Bcl‐2, BDNF, and NGF, and reduce the den-
sity of the hippocampal nerve through upregulation 
of lncRNA, resulting in ultrastructural changes of 
neuron cells and neuronal apoptosis (Hu et al., 2019). 
LncRNA Rik-203 (Zhang et al., 2019b), the PEG13/
miR-128-3p/SOX13 axis (Jiang et al., 2020), the miR-
410-3p/atrophin-1 pathway (Zhang et  al., 2020b), 
the Gm15621/Mir-133A/SOX4 axis (Zhao and Ai, 
2020), and the hsa-miR-302e/OXR1 axis (Yang et al., 
2018) are all involved in the neurotoxicity caused 
by repeated sevoflurane exposure in the develop-
ing brain. Sevoflurane induces increased methyla-
tion of the presynaptic marker synaptophysin at the 
mRNA level and enrichment by m6A (Zhang et  al., 
2021), which decreases the expression of synapto-
physin and leads to fine motor and cognitive impair-
ment in young mice (Zhang et al., 2021). The damage 
of miRNA and lncRNA circuits causes potentially 
reversible and irreversible changes in brain function 
and structure. The role of miRNAs and lncRNAs in 

the anesthetic neurotoxicity of the developing brain 
deserves more attention.

Tau phosphorylation is an important and new 
mechanism of sevoflurane‑induced developmental 
neurotoxicity

Tau phosphorylation gives us a new perspective on 
sevoflurane-induced cognitive dysfunction in neonatal 
mice. Tau protein, as a microtubule-associated pro-
tein, first reported in 1975 (Weingarten et al., 1975). 
Tau predominantly functions to promote assembly 
and stability of microtubules, which are depressed by 
excessive phosphorylation of tau (Pirscoveanu et al., 
2017). Excessive tau phosphorylation promotes for-
mation of insoluble tau aggregates. Once the aggre-
gate is formed, it can escape the original cell, contact 
the connected cell, enter the cell, and induce further 
aggregation through the template conformational 
change (Holmes and Diamond, 2014). These con-
formational changes are thought to mediate neuronal 
dysfunction and cognitive impairment in Alzheimer’s 
disease and other tauopathies. Tauopathy, including 
tau phosphorylation, is a hallmark of Alzheimer’s 
disease neuropathogenesis (Bejanin et  al., 2017). 
Tau phosphorylation can lead to cognitive dysfunc-
tion in mice (Faraco et  al., 2019). Multiple, but not 
single, postnatal 6-day mice exposure to 3% sevo-
flurane 2 h daily induced phosphorylation of tau via 
GSK-3β activation, which increased the level of IL-6 
and decreased the level of PSD-95 in the hippocam-
pus, leading to cognitive impairment (Tao et  al., 
2014). These effects of sevoflurane did not occur in 
tau KO mice, suggesting the contribution of tau in 
sevoflurane-induced neuroinflammation and synaptic 
deficits in mice. Sevoflurane-induced tau phospho-
rylation may also explain the age-dependent changes 
in anesthesia neurotoxicity in mice. Neonatal mice 
have lower levels of mitochondrial function, which 
causes lower ATP and higher NUAK1 amounts in 
the brain. Increased NUAK1 could induce tau phos-
phorylation at serine 356, blocking tau degradation  
(Lasagna-Reeves et  al., 2016) and resulting in 
increased accumulation of tau (Yu et  al., 2020a) in 
the brain tissues of neonatal mice compared to adult 
mice. Thus, neonatal mice are more vulnerable to the 
development of tau phosphorylation following sevo-
flurane anesthesia compared to adult mice.
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α-2 adrenergic receptor agonists dexmedetomi-
dine can attenuate isoflurane-induced neurocognitive 
impairment in neonatal rats (Sanders et  al., 2009). 
Recently, we found that α-2 adrenergic receptor ago-
nists, dexmedetomidine and clonidine, can allevi-
ate tau phosphorylation and cognitive dysfunction 
in neonatal mice induced by sevoflurane (Sun et  al., 
2021). Importantly, these effects can be inhibited by 
α-2 adrenergic receptor antagonist yohimbine (Sun 
et  al., 2021). These data suggest that α-2 adrenergic 
receptor is involved in sevoflurane-induced tau phos-
phorylation. However, the underlying mechanism by 
which the α-2 adrenergic receptor contributes to tau 
phosphorylation remains unknown at present and 
deserves further study. Another recent study demon-
strated that sevoflurane can induce tau phosphoryla-
tion and extracellular vesicle-associated tau traffick-
ing from neurons to microglia, leading to generation 
of IL-6 and cognitive dysfunction (Dong et al., 2021). 
These findings suggest that we may use sevoflurane 
as a research tool to investigate tau trafficking and 
other tauopathies in vitro and in mice. Tau phospho-
rylation has long been shown to occur in the brain 

tissues of Alzheimer’s disease patients, Alzheimer’s 
disease transgenic mice, and aged mice. However, 
these new findings show that tau phosphorylation 
may also contribute to neurotoxicity in young brains. 
Future studies to further reveal the role of tau in anes-
thesia developmental neurotoxicity are certainly war-
ranted (Fig. 5).

Neuroendocrine contribution to neurotoxicity 
induced by sevoflurane

The neuroendocrine system may be involved in sevo-
flurane-induced neurotoxicity through γ-aminobutyric 
acid (GABA) receptors. As an important part of the 
neuroendocrine system, the limbic-hypothalamo-pitu-
itary-adrenal (LHPA) axis plays an important role in 
the development of the nervous system and also has 
an important impact on learning, memory, and cog-
nition (Hankin et  al., 2015).  Cl− is the main charge 
carrier through  GABAAR channels (Salmon et  al., 
2020), which is mainly regulated by  Cl− transport-
ers Na + -K + -2Cl- (NKCC1) and K + -2Cl-(KCC2). 

Fig. 5  Sevoflurane increased Tau phosphorylation in the 
young mice through GSK-3β and/or α-2 adrenergic recep-
tor. Tau phosphorylation could promote extracellular vesicle-
associated tau trafficking from neurons to microglia, which led 

to microglia activation and promoted generation of IL-6.The 
elevation of IL-6 amounts led to mitochondria dysfunction and 
synaptic loss, which induced cognitive impairment
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Interfering with the balance of NKCC1/KCC2 may 
cause excessive excitement of the circuit and lead to 
neurodevelopmental disorders. NKCC1 and KCC2 
are sensitive to neuronal damage, and the imbal-
ance of their expression is thought to cause a vari-
ety of neuropathic diseases (Cabrera et  al., 2019). 
Sevoflurane exposure enhances  GABAAR activ-
ity in immature neurons, which induces increasing 
 GABAAR-mediated depolarization and corticoster-
oid levels and electroencephalography-detectable 
seizures (Xu et  al., 2015). 17b-estradiol contributes 
to the activity of  GABAAR (Li et  al., 2020), which 
can reduce the expression of KCC2, increase the 
ratio of NKCC1/KCC2 (Chastain-Potts et  al., 2020;  
Martynyuk et  al., 2020), and induce neurodevelop-
mental impairments. Sevoflurane induces cognitive 
impairment through increasing the ratio of NKCC1/
KCC2 by activating  GABAR and increasing the 
level of corticosteroid, especially 17b-estradiol. 
These results may illustrate another mechanism by 
which sevoflurane causes developmental anesthesia 
neurotoxicity.

Our perspective

Although there are many mechanisms by which sevo-
flurane induces developmental neurotoxicity, we 
believe that tau phosphorylation deserves more atten-
tion in the future. There are many new techniques 
and methods in other fields, such as single-cell omics 
(Wu et al., 2021), proteomics (Qiao and Wang, 2019), 
metabolomics (Zhang et al., 2020a), nanotechnology 
(Liang et  al., 2016), and ultrasound/photoacoustic 
imaging (Li et  al., 2021). These advanced technolo-
gies should be applied in future studies to paint a 
dynamic, multi-level, multi-dimensional picture of 
the molecular mechanisms of sevoflurane-induced 
developmental neurotoxicity. The outcomes of these 
studies could lead to better outcomes in caring for 
children.

Conclusion

The developing brain may be uniquely vulnerable to 
anesthesia, pending further investigation. The mecha-
nisms of sevoflurane-induced developmental neuro-
toxicity could include neural cell death, neural cell 

damage, impaired assembly and plasticity of neural 
circuits, tau phosphorylation, and neuroendocrine 
system abnormalities, among others. More research 
is needed to further reveal the underlying mecha-
nisms by which sevoflurane and other anesthetics can 
induce developmental neurotoxicity.
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