
ORIGINAL ARTICLE

The use of large animals to facilitate the process of MSC
going from laboratory to patient—‘bench to bedside’

W. E. Hotham & F. M. D. Henson

Received: 3 October 2019 /Accepted: 3 March 2020 /Published online: 23 March 2020

Abstract Large animal models have been widely used
to facilitate the translation of mesenchymal stem cells
(MSC) from the laboratory to patient. MSC, with their
multi-potent capacity, have been proposed to have ther-
apeutic benefits in a number of pathological conditions.
Laboratory studies allow the investigation of cellular
and molecular interactions, while small animal models
allow initial ‘proof of concept’ experiments. Large ani-
mals (dogs, pigs, sheep, goats and horses) are more
similar physiologically and structurally to man. These
models have allowed clinically relevant assessments of
safety, efficacy and dosing of different MSC sources
prior to clinical trials. In this review, we recapitulate
the use of large animal models to facilitate the use of
MSC to treat myocardial infarction—an example of one
large animal model being considered the ‘gold standard’
for research and osteoarthritis—an example of the com-
plexities of using different large animal models in a
multifactorial disease. These examples show how large
animals can provide a research platform that can be used
to evaluate the value of cell-based therapies and facili-
tate the process of ‘bench to bedside’.
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Introduction

Animals are used in research where there is a need to
study the effect of a treatment on a whole tissue or living
organism (Barré-Sinoussi and Montagutelli 2015).
Humans and animals share many similarities both mor-
phologically and pathologically and animas are regular-
ly used to study disease onset, progression and treatment
(Solinas et al. 2014). In the development of novel ther-
apeutics, animal models can also provide vital informa-
tion on safety and efficacy prior to human studies
(Bianco et al. 2013). All animal research is tightly
regulated by the country in which it is being undertaken
and research on animals within the EU is regulated
under Directive 2010/63/EU (Macrì et al. 2013). This
directive was established in all EU states in 2013 to
ensure a harmoniously high standard of animal research
(Macrì et al. 2013). The directive ensures a contentious
effort to implement strategies to reduce the number of
animals used in research while refining techniques to
reduce predicted pain, suffering, distress and/or lasting
pain whilst also improving animal husbandry. Animal
experiments are conducted on a wide variety of species
including invertebrates, fish, birds and mammals (with
mammalian species being divided into ‘small’ animal or
‘large’ animal models).

An animal is considered a ‘large animal’ when the
species in question is non rodent, rabbit or guinea pig
(Thomas et al. 2012). The more commonly used large
animal models in research include horses, cows, pigs,
sheep, goats, primates and dogs, and the choice of
animal model depends on multiple factors, including
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the type of experiment, its duration, husbandry costs,
handling logistics and measurement parameters
(Kuyinu et al. 2016).

Whilst small animals have been invaluable in further-
ing modern understanding of disease by providing an
opportunity to conduct research cheaply, rapidly and
with a degree of complexity not offered by in vitro
experiments or other species, in some situations the
information that can be provided by large animals is
required to answer specific research questions (Moran
et al. 2016; Ziegler et al. 2016). Large animal models
offer advantages over small animal models in many
areas. They are more similar physiologically and ana-
tomically toman (size, tissue structure and life span) and
large animals are an ‘out bred’ population that more
closely represents the heterogeneity of the human pop-
ulation than the ‘inbred’ small animal strains used in
research (Salvatore et al. 2008). Large animals are phy-
logenetically closer to humans than rodents and there-
fore, at a molecular level, they have greater sequence
homology with humans making interpretation of molec-
ular events in large animals more relevant to man
(Henze and Urban 2010). Practically, the consequence
of working with a large animal means that more body
fluids and cells can be collected with which to perform
experiments.

To illustrate how using large animals have facilitated
the process of moving MSC from ‘bench to bedside’,
two examples will be considered in this review—the
treatment of myocardial infarction (MI) and osteoarthri-
tis (OA). The former represents an example of one
single large animal model being considered the ‘gold
standard’ for research, while the latter is an example of
the complexities of using large animal models in a
multifactorial disease.

Large animals models for treating myocardial
disease using MSC

There has been a recent increase in the incidence of MI
worldwide (Rumana et al. 2008). This is due to many
factors such as an ageing population, more sedentary
lifestyles and generally poorer diets (Mohseni et al.
2017). MI is diagnosed as a cessation of correct blood
flow to the heart, leading, in clinical practice, to sudden
death, or ischaemia and subsequent loss of
cardiomyocytes (Chiong et al. 2011; Reddy 2015).
The chances of surviving one MI are high, but post MI

complications are of clinical significance (Chiong et al.
2011). Localised myocardium loss leads to heart wall
thinning and ventricle dysfunction (Lu et al. 2015). In
order to maintain heart function, the left ventricle dilates
to maintain stroke volume and cardiac output (Mohseni
et al. 2017). However, left ventricular dilatation leads to
heart failure and eventual death and MI clearly repre-
sents a key pathology that requires therapy (Reddy
2015). Over the past 40 years, our understanding of
MI has increased and, with this, so have the number of
MI related publications (Saleh and Ambrose 2018).

The possibility of using MSC to regenerate
cardiomyocytes became possible when it was demon-
strated in vitro that, in addition to the well-recognised
differentiation products of MSC (into osteoblasts, adi-
pocytes and chondrocytes), MSC can be differentiated
into cardiac cell types (White et al. 2016; Szaraz et al.
2017; Guo et al. 2018). For example, Szaraz et al.
(2017) differentiated human umbilical MSC into ‘cardi-
ac like cells’ that expressed cardiac myocyte differenti-
ation markers such as myocyte enhanced factor 2C,
cardiac troponin T, heavy chain cardiac myosin, signal
regulatory protein α and connexion 43. Similarly,
Markmee et al. (2017) showed that after 21 days in
cardiogenic culture medium, MSC displayed the cardio-
myocyte markers GATA binding protein 4, cardiac mus-
cle troponin, connexin 43 and Nkx2.5. Cross-talk be-
tween MSC and cardiomyocytes was demonstrated by
Gao et al. (2016) who showed that co-culture of MSC
with neonatal rat ventricular myocytes lead to the de-
velopment of partial electrical properties similar to the
cardiomyocytes (Gao et al. 2016).

In addition to the ability of MSC to differentiate into
‘cardiac-like cells’, it has also been shown thatMSC can
support cardiac cell viability via secreted factors. Ismail
et al. (2014) created a model of hydrogen peroxide-
induced cardiomyocyte injury and showed that neonatal
cardiomyocytes and the cardiac myoblast cell line H9c2
both had significantly increased viability and reduced
apoptosis in the presence of MSC secreted SC1 (Ismail
et al. 2014). Xiang et al. (2009) also showed that the
application of MSC conditioned media to neonatal rat
cardiomyocytes and reduced cardiomyocyte apoptosis
via effects on the mitochondrial pathway (Xiang et al.
2009).

Following these encouraging in vitro results, subse-
quent small animal studies showed that MSC had ther-
apeutic efficacy in a MI model. Functionally, MSCwere
shown to have a number of positive effects including
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improving left ventricle function, increasing vascular
density, decreasing scar size (López et al. 2013; Wang
et al. 2018), left ventricle stroke volumes and ejection
fractions (Dai et al. 2005) and increasing remodelling of
gap junctions (Dai et al. 2005; López et al. 2013; Wang
et al. 2018). There is also some evidence that MSC
differentiate, in situ, into cardiac cells at sites of damage
(Nagaya et al. 2005).

However, whilst small animal studies have been use-
ful to show proof of concept for the use of MSC to treat
MI, it has been necessary to use large animal models,
specifically the porcine ischaemic MI model, to confirm
the suitability of this cell therapy in man. Small animal
cardiac parameters such as heart rate, coronary architec-
ture and capillary density (Harding et al. 2013) are
markedly different to man, whereas large animal hearts
are more similar (Harding et al. 2013). The porcine
model is the most used for MI research due to the
similarities in heart size and coronary anatomy between
pigs and humans (Swindle et al. 2012). Also, again on a
practical note, the relatively high sequence homology
between porcine and human proteins more readily facil-
itates research enabling commercially purchased re-
agents to be used (Dreher et al. 2011).

The ‘gold standard’model of porcine MI that is used
in all published papers is the artery occlusion model, in
which, a dilation catheter is inflated in the coronary
artery. This catheter blocks blood flow to part of the
heart causing infarction development. However, the re-
mainder of the heart will continue to receive normal
blood perfusion and thus provides a defined border zone
between normal and damaged tissue for comparative
evaluation (McCall et al. 2012). Schuleri et al. (2009)
showed a positive effect of using autologous BM-MSC,
administered 12 weeks post infarct to treat MI. Magnet
resonance imaging (MRI) was used to assess infarct
size, myocardial blood flow and left ventricle function.
In this study, an apparent dose-dependent effect of MSC
administration on infarct size was observed.

Whilst Schuleri et al. (2009) used autologousMSC in
their experimental work, there is much interest in allo-
geneic MSC therapy. Allogeneic MSC offer significant
advantages over autologousMSC including their ease of
use, reduced cost and absence of donor site complica-
tions (Schuleri et al. 2009). Quevedo et al. (2009)
showed that allogeneic MSC are able to regenerate an
experimentally created, chronically infarcted myocardi-
um via long-term engraftment (Quevedo et al. 2009).
Following MRI, cell fate was confirmed using Y

chromosome cell tracking. In comparison to the control
group, infarct size reduced by 5.4%, ejection fraction
increased by 6.3% and levels of MSC engraftment cor-
related with functional recovery levels (measured by
assessing contractility and myocardial blood flow). In
this study, the implanted MSC were only detected with-
in the infarct area or the infarct border with 14% show-
ing evidence of myocyte commitment (assessed by the
presence of cardiac transcription factors GATA-4 and
Nkx2.5 or structural cardiac proteins α-sarcomeric actin
and tropomyosin) (Quevedo et al. 2009). Similarly Wil-
liams et al. (2013) also investigated the use of allogeneic
MSCwith excellent results—a 19.62% reduction in scar
size after 12 weeks, progressing to 28.09% after
24 weeks and a functional improvement in heart func-
tion (Williams et al. 2013).

The studies reported above all showed positive effect
of administrating MSC as early as 12 weeks post infarct
creation. However, administration at earlier time points
has also been shown to be efficacious, for example,
administration at 3 days post infarct (Hatzistergos
et al., 2010), suggesting that the optimal time window
for therapeutic intervention is not fully established. Lee
et al. showed that administering EVs after 30 min post
infarct had no effect, thus work continues in the porcine
model to determine these important criteria. Examples
of these studies are summarised in Table 1.

Due to positive results in the porcineMImodel,MSC
are now being used in clinical trials to treat a variety of
cardiac diseases in man (Table 2). In these clinical trials
to date, all have reported that the use of MSC is safe and
a significant majority of studies have reported a positive
outcome despite a high number of variables in the
studies. However, it should be noted that many knowl-
edge gaps still exist and study designs should now
attempt to gain knowledge, such as the optimum dosage,
cell source and time of injection.

Large animal models for osteoarthritis

In contrast to the single porcine large animal model that
has been used to show the efficacy ofMSC in the treatment
of MI, a variety of large animal models have been used to
demonstrate the therapeutic benefits of MSC in the treat-
ment of Osteoarthritis (OA) prior to clinical trials.

OA is the gradual degeneration of articular cartilage
within synovial joints (Sharma et al. 2013). It is estimat-
ed that, worldwide, eight million people over the age of
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65 suffer with this disease (Neogi 2013). OA is the result
of structural and functional failures within the synovial
joint (Nuki 1999). This is due to the pathological loss of
articular cartilage coupled with sub-chondral bone
thickening, osteophyte development, ligament degener-
ation and varying levels of inflammation (Chen et al.
2017). These pathologies all contribute to pain-induced
joint morbidity (Chen et al. 2017). OA can be classified
into primary and secondary forms based on aetiology.
Primary forms of the disease are age-related, whilst
trauma is the most common form of secondary OA
(Samson et al. 2007).

There are currently no disease-modifying therapeutics
licensed for use in OA and there is a huge clinical need for
effective therapies. In recent years,MSC have been used to
treat OA in pre-clinical and clinical studies. The rationale
behind the use of MSC to treat OAwas initially proposed
to be harnessing the potential ofMSC to differentiated into
mesodermal tissues including cartilage. It was proposed
that MSC, injected into damaged joints, differentiate into
the tissues of the joints and healed the lesions. However,
more mature understanding of the mechanism of action of
MSC suggest that rather than acting as building blocks,
they are acting in a paracrine fashion to modulate cellular
responses (Kong et al. 2017).

As outlined for MI research above, the pathway to
human clinical trials for using MSC as an OA therapeu-
tic is based on in vitro, small animal and then large
animal models.

Evidence that MSC have a beneficial effect on the
native cells within the joint has been shown in numerous
studies (reviewed by (Li et al. 2019). For example, the
co-culture of chondrocytes and MSC has been shown to
increase glycosaminoglycan synthetic activity as well as
increased expression of chondrogenesis-related genes
(type II collagen and SOX-9) whilst simultaneously
downregulating the expression of osteogenic markers
and chondrocyte hypertrophic markers (Bian et al.
2011; Huang et al. 2018; Kim et al. 2018). Similarly, it
has been shown that MSC can promote both macro-
scopic and microscopic healing of meniscal defects,
usually in the presence of biocompatible scaffolds
(Pabbruwe et al. 2010; Zellner et al. 2010; Mandal
et al. 2011; Nerurkar et al. 2011).

In small animals, MSC have been shown to have
disease-modifying properties in a number of experimen-
tal small OA models, such as in mouse and rabbit
anterior cruciate ligament transection models (Chiang
et al. 2016). Similarly, Tang et al. (2017) also showed
that MSC decreased osteophyte and fibrous tissue for-
mation and increased type II collagen and aggrecan in a
rat medial menisectomy model after the administration
ofMSC (Tang et al. 2017). Improved cartilage repair has
also been shown in chemically induced murine arthritis
models and in focal cartilage defect models (Kehoe et al.
2014; Mak et al. 2016).

Whilst MSC have been used in small animal OA
models as described above, large animals offer significant

Table 1 Examples of the different cell types used and when they were administered in large animal models using MSC as a therapeutic for
myocardial infarction

Cell type Cell source Cell number × 106 Administration date
post infarct

Outcome Author and date

BM-MSC Autologous 20 14 days Decreased infarct size, improved left
ventricle function and myocardial
blood flow

Schuleri et al. 2009

Allogeneic 200 12 weeks Decreased infarct size, increased ejection
fraction, MSC engraftment and
differentiation into cardiac like cells

Quevedo et al. 2009

A-MSC Autologous 2 30 min No effect on left ventricle ejection fraction,
improved blood perfusion in the defect

Lee et al. 2015

Allogeneic 214 9 days Angiogenesis, vasculogenesis, decreased
fibrosis and cardiac hypertrophy

Mazo et al. 2012

UC-MSC Autologous No examples were
found in the literature

Allogeneic 1.5 × 106/kg of body
weight

8 weeks Improved left ventricle infarct area but no
effect on perfusion, reduced fibrosis and
inflammation

Lim et al. 2018

BM-MSC bonemarrowmesenchymal stem cells,A-MSC adiposemesenchymal stem cells,UC-MSC umbilical cord mesenchymal stem cells
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advantages over small animals for the assessment of the
therapeutic benefits of MSC prior to clinical trials. Large
animals have similar bone development to man compared
to small animals, i.e. they have closed growth plates at
skeletal maturity and large animal models of OA occur
more slowly than in small animal models, mimicking the
natural disease inman (McGovern et al. 2018). However, it
must be noted that whilst all large animals will developOA
naturally as they age, there are no models of spontaneous
early onset OA as there are in small animals (Bendele et al.
1989; Jimenez et al. 1997; Poole et al. 2010).

Unlike the use of a single ‘gold standard’ large animal
model for evaluating the effects of MSC in MI, many
models exist for the generation of OA in large animals.
Experimental models of large animal OA are primarily
surgically induced damage, although there are two reports
of the use of MSC to treat chemically induced arthritis.
Mokbel et al. (2011) used amphotericin-B in a donkey OA

induction model and demonstrated that the injected cells
had integrated within the existing cartilage and the repar-
ative effects of theMSCwere observed both clinically and
radiographically (Mokbel et al. 2011). Barrachina et al.
(2018) described the use of bone marrow MSC to treat
amphotericin-B induced arthritis in an equine radio-carpal
joint. In this study, the application of MSC decreased
synovial inflammation, enhanced the gross appearance of
the cartilage and delayed proteoglycan loss in comparison
to the control. This study also reported differences in
outcome between naïve MSC and MSC primed with
tumour necrosis factor—alpha (TNFα) and interferon-
gamma (IFN-γ). This data is particularly useful in consid-
ering the clinical translation of MSC as there is ongoing
discussion as to the need for MSC priming/conditioning
prior to use (Succar et al. 2016; Barrachina et al. 2018)

Whilst there are only currently two reported studies
on the use of MSC to treat chemically induced arthritis

Table 2 Published clinical trials that use defined numbers of mesenchymal stem cells (MSC) for treating heart disease

Author and date Type of heart
disease

MSC type/source Number of cells
administered ×106

Study type Outcome

Ascheim et al. 2014 ICM or NICM BM, allogeneic 25 Phase 2 Safe and positive

Bartolucci et al. 2017 ICM or NICM US, allogeneic 1/kg of body weight Phase 1/2 Safe and positive

Bartunek et al. 2013 ICM BM, autologous 6–12 after treatment with
cardiac cocktail

Phase 2/3 Safe and positive

Bartunek et al. 2017 ICM BM, autologous 24 Phase 3 Safe and positive

Butler et al. 2017 NICM BM, allogeneic 1.5/kg body weight Phase 2 Safe and positive

Chen et al. 2004 AMI BM, autologous 50 to 60 Phase 2 Safe and positive

Chen et al. 2006 ICM BM, autologous > 5 Phase 1/2 Safe and positive

Florea et al. 2017 ICM BM, allogeneic 20 or 100 Phase 2 Safe and positive

Gao et al. 2015 AMI UC, allogeneic 6 Phase 2 Safe and positive

Guijarro et al. 2016 ICM BM, autologous 61 Phase 1 Safe

Hare et al. 2009 AMI BM, allogeneic 0.5, 1.6 and 5/kg Phase 1 Safe

Hare et al. 2012 ICM BM, allogeneic and autologous 20, 100 or 200 Phase 1/2 Safe and positive

Hare et al. 2017 DCM BM, autologous 20, 100 or 200 Phase 1/2 Safe and positive

Henry et al. 2017 ICM ABM, autologous 40 and 80 Phase 2 Safe and positive

Houtgraaf et al. 2012 AMI ABM, autologous 20 Phase 1/2 Safe and positive

Karantalis et al. 2014 ICM BM, autologous 8–20 Phase 2/3 Safe and positive

Kastrup et al. 2017 ICM ABM, allogeneic 110 Phase 1 Safe

Mathiasen et al. 2015 ICM BM, autologous 77.5 Phase 1/2 Safe and positive

Mohamadnejad et al. 2007 ICM BM, autologous 32 Phase 1 Safe

Musialek et al. 2015 AMI UC, allogeneic 30 Phase 1 Safe

Qayyum et al. 2017 ICM ABM, autologous 70 Phase 2 Safe and positive

Rodrigo et al. 2013 AMI BM, autologous 10 Phase 1 Safe

This table shows the type of heart disease treated, the source of the MSC, the cell number and the study outcomes. ICM ischemic
cardiomyopathy, NICM non-ischemic cardiomyopathy, AMI acute myocardial infarction, DCM dilated cardiomyopathy, BM bone marrow
derived MSC, UC umbilical cord derived MSC, ABM adipose derived MSC
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in large animal models, many studies have reported the
use of different MSC to treat surgically induced arthritis
as a proxy for the human disease. (Table 3). In these
studies a wide range of large animal species and differ-
ent surgical techniques have been used to model OA.
These techniques include anterior cruciate ligament
transection (ACLT), meniscectomy andmedial meniscal
transection and osteochondral fragment defect models.
These are all well-standardised procedures, with each
model posing its own advantages and disadvantages
(reviewed in (Kuyinu et al. 2016).

Whilst many studies use autologous cells, as
discussed previously in the treatment of MI, the use of
allogeneic MSC to treat OA is of considerable interest.
For example, human BM-MSCwere used to treat ACLT
induced OA in a porcine model 16 weeks post-surgery
(Tseng et al. 2018). At 5 months post implantation, there
was a significant difference between the regeneration of
new tissue, with the treated group showing evidence of
cartilage-like tissue. Similarly, Hatsushika et al.(2014)
investigated the effect of allogeneic synovial MSC fol-
lowing partial meniscectomy in a porcine model and
showed increased meniscus regeneration and prevention
of OA progression byweek 16 post-surgery (Hatsushika
et al. 2014). Murphy et al. (2003) has also shown that
the administration of allogeneic bone marrow MSC
following ACTL in goats led to significantly increased
tissue regeneration including the meniscus and de-
creased articular cartilage degeneration, osteophyte

remodelling and subchondral sclerosis in comparison
to the hyaluronan control(Murphy et al. 2003). These
studies are important for the potential clinical applica-
tions of MSC as they may suggest there is no require-
ment for donor matching when using MSC
therapeutically.

Whilst the studies above and those reported and
summarised in Table 3 shows that MSC had a positive
effect in a number of different models of OA, large
animal studies have shown that MSC therapies are not
always successful. Evaluation of the effects of alloge-
neic MSC on the development of OA following com-
plete meniscectomy in a sheep model has been reported
(Song et al. 2014; Delling et al. 2015). After 12 weeks,
MRI, radiography and post-mortem evaluation showed
no significant difference in the degree of OA between
the treatment group and the control. Similarly, the use of
MSC in the osteochondral fragment model of OA in-
duction in horses showed no significant effects (Frisbie
et al. 2009). This reporting of negative results from a
large animal model is important data, inducing caution
in the use of these cells. MSC therapy has widely been
touted as a miraculous ‘cure all’, particularly in the
popular press and amongst less scrupulous clinicians,
and stringent efforts must continue to be made to ensure
tight but feasible regulation of these therapies to ensure
patient safety, as the use of MSC to treat patients is well
underway (Table 4) (Bianco et al. 2013). A number of
controlled clinical trials have been reported, with good

Table 4 Lists of the published clinical trials that use mesenchymal stem cells (MSC) for treating osteoarthritis (OA), the method of
administration, the source of the MSC and the study outcomes

Author and date Mode of delivery MSC type and source Phase Outcome

Shapiro et al. 2017 Single intra-articular Autologous bone marrow 1 Safe and positive

Chahal et al. 2019 Single intra-articular Autologous bone marrow 1/2 Safe and positive

Emadedin et al. 2015 Single intra-articular Autologous bone marrow 1 Safe

De Girolamo et al. 2010 Single intra-articular Autologous haematopoietic stem cells from bone marrow 1 Safe

Gupta et al. 2016 Single intra-articular Allogeneic bone marrow 2 Safe and positive

Lamo-Espinosa et al. 2018 Single intra-articular Autologous bone marrow 1/2 Safe and positive

Matas et al. 2019 Single intra-articular Allogeneic umbilical cord 1/2 Safe and positive

Al-Najar et al. 2017 Double intra-articular Bone Marrow 2 Safe and positive

Orozco et al. 2013 Single intra-articular Bone Marrow 1/2 Safe and positive

Ruane, 2019 Single intra-articular Bone Marrow 2 Safe and positive

Shadmanfar et al., 2018 Single intra-articular Bone Marrow 2/3 Safe and positive

Song et al. 2018 Single intra-articular Adipose derived 1/2 Safe and positive

Soler et al. 2016 Single intra-articular Bone marrow 1/2 Safe and positive

Taghiyar et al., 2010 Single intra-articular Bone marrow 1 Safe
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outcomes in both visual analogue scale for chronic pain
and western Ontario andMcMaster Universities arthritis
index scores (measures of joint morbidity), as well as
range of movement, improved pain and joint motility
scores following treatment (Lamo-Espinosa et al. 2016;
Pers et al. 2016). These studies demonstrate the transla-
tion of MSC therapy into man whilst large animal ther-
apeutic trials remain ongoing.

Conclusions

Large animal models have been widely used to facilitate
the translation of MSC from the laboratory to patient.
The aim of this review is to illustrate how MSC have
been translated to man through large animal models. For
this, two very different examples have been used—MI
(where one gold standard large animal model has been
used in one species to show efficacy) and OA (where
multiple species and models have been used). It is clear
that using multiple models and different experimental
approaches makes interpretation of results difficult and
the use of a single large animal model is preferable. It is
also clear that the majority of publications only report
positive outcomes of MSC therapy and that encourage-
ment of the publication of negative outcomes should be
made as this will allow a more accurate assessment of
therapeutic efficiency. However, used appropriately,
large animal models allow clinically relevant assess-
ments of safety, efficacy and dosing prior to clinical
trials and continue to provide a research platform that
can be used to evaluate the value of cell-based therapies.
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