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Recent experiments have revealed the importance of
discerning temporal response behaviors in single cells.
Such “dynamic phenotypes” cannot be seen when aver-
aging measurements across many cells because different
behaviors blur together. Many such results focus on
changes in protein abundance, intracellular localization,
and cell shape in response to stimuli, processes that
require tracking living cells for minutes to hours. These
discoveries have been enabled by live cell microscopy
and analysis techniques that have become available only
recently. In a recent Editorial (Wang et al. 2017), Wang
et al. described many methods for assessing single-cell
phenotypes. Here, I focus on how the cross-disciplinary
nature of these techniques will be central to their
advancement.

The best characterized example of a dynamic pheno-
type is the abundance changes of p53 in response to
DNA damage. Based on Western blot studies, it was
known that strong DNA damage causes damped multi-
hour p53 oscillations, whose amplitude increases with
damage (Bar-or et al. 2000). By looking at the dynamics
of individual cells instead of populations using live cell
imaging, Lahav et al. (2004) found something unexpect-
ed: single cells themselves do not have damped oscilla-
tions. Instead, cells have undamped oscillations with
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varying numbers of cycles. A Western blot simply aver-
ages these varied responses into a damped oscillation.
The increased response amplitude with DNA damage is
also a population effect: higher DNA damage pushes
more cells to longer oscillations, which add up in phase
to a larger population amplitude. Thus taking the popu-
lation average behavior as true for single cells can be
misleading.

Dynamic phenotypes also relate to disease and ther-
apeutic response. In HCT-116 cells, those with fast
nuclear p53 accumulation after cisplatin exposure un-
dergo apoptosis, whereas those with slow accumulation
survive (Paek et al. 2016). In single lung cancer cells,
early intracellular spatio-temporal dynamics correlate
with TNF-« sensitivity (Loo et al. 2017). In type 2
diabetes, pulsatile release of insulin by beta islet cells
is impaired (O’Rahilly et al. 1988). Yang et al. (2017)
recently showed that altering pS3 dynamics changes cell
fate, demonstrating a causal link to response phenotype.
Thus it may be valuable to characterize such disease
states by how dynamical processes deviate from normal,
which we might call “dynopathy.” Such aberrant dy-
namics and signaling networks are in fact disease targets
in their own right: Stewart-Ornstein and Lahav (2017),
recently employed phenotypic profiling to discover
small molecules that modulate p53 dynamics.

Ofthe many technical advances that have led to these
discoveries, which are most important? High content
screening of live cells, the delivery of time varying
stimulation, and advanced microscopy image analysis
platforms for tracking cells have all been critical. See
(Gaudet and Miller-Jensen 2016; Handly et al. 2016;
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Bougen-Zhukov et al. 2016; Spiller et al. 2010) for
reviews. Because many of these techniques are imma-
ture, it is important to rigorously assess data quality,
preferably in an automated fashion (Patsch et al.
2016). Computational models have also provided key
insights. For example, Mdnke et al. (2017) used an
ordinary differential equation model to replicate the
heterogeneous dynamics of p53 across cells. They com-
putationally predicted and then experimentally verified
that Wip! level is a major determining factor of hetero-
geneous cellular phenotypes. Thus dynamic phenotype
research not only calls for advanced technology, but also
interaction between disciplines.

Despite these advances, one key aspect seems to be
missing from dynamic phenotyping. Because dynamic
phenotypes are often measured across hours to days, it
may be important to account for circadian rhythms,
which have not been well characterized within single
cells. It is known that cells have intrinsic circadian
clocks which modulate their transcriptomes and dynam-
ically impact phenotype (Bass and Lazar 2016). Extrin-
sic disruption of circadian rhythm in people (e.g., altered
meal times, photic stimulation) contributes to metabolic
disease and is linked to cardiovascular disease and can-
cer (Roenneberg and Merrow 2016). Although circulat-
ing hormones, core body temperature, glucose, and
immune function all undergo cyclic variation, most
in vitro research is carried out in static culture condi-
tions. These conditions lack both synchronized cell
clocks and the dynamic microenvironment. How could
this be remedied? Multiple factors can synchronize cell
clocks, including temperature, glucocorticoids, and se-
rum shock. Experiments could be carried out under
varying temperature and dynamic media composition
(e.g., using microfluidic platforms). Recent experimen-
tal advances have enabled the measurement of single-
cell dynamics in complex microenvironments, such as
co-culture (Garvey et al. 2016) and tissue explants
(Lande-Diner et al. 2015) and can advance our under-
standing of circadian phenotypes under more realistic
conditions.

Other outstanding areas for advancing dynamic phe-
notype research include:

*  Determining whether computational models can
predict the phenotypes of cells at a quantitative
level. Many models predict the existence of different
classes of phenomena, but cannot necessarily match
a given cell’s behavior. Applications such as Virtual
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Cell (Resasco et al. 2011) merge intracellular spa-
tiotemporal data with partial differential equations to
quantitatively model dynamical behavior. Simula-
tion results can be numerically compared with live
cell imaging data to test hypotheses (Neves et al.
2009). Random influences can also be included to
quantify the impact of noise and model parameter
changes on dynamic phenotypes (Eldar and Elowitz
2010). These modeling approaches allow us to de-
scribe how well we understand dynamic phenotypes
in a quantitative manner.

e Developing new theories to identify key response
variables for investigating dynamic phenotypes.
Current theories of dynamic signaling networks fo-
cus on notions of efficiency (Behar et al. 2007) and
reliability (Tostevin et al. 2012). However, there is
little consensus on how cell populations’ phenotypic
heterogeneity should be interpreted. Is the average
phenotype, the variability in phenotype, or the ex-
treme phenotype most important? Rare cells with
extreme phenotypes are often resistant, survive ther-
apy, and cause disease recurrence in both cancer
(Shaffer et al. 2017) and infectious disease
(Metcalfe et al. 2016). Might their presence be in-
ferred from the tail shapes of dynamic phenotype
distributions? Approaches that derive the entire phe-
notype distributions from data (Cheng et al. 2015)
may ferret out such extreme and outlier behaviors.

*  Building multidisciplinary dynamic phenotype re-
search teams. While the research questions come
from the biological sciences, much of the execution
relies on other highly technical disciplines. These
include quantitative live cell imaging, time series
analysis, computational modeling, and statistical
testing on multi-dimensional data sets. Finding con-
tributors who bridge multiple such skills and com-
prehend the biological questions remains a key chal-
lenge for research groups. It is best met by ensuring
that our educational systems can develop these tal-
ented researchers and instill within them a sense of
meaning from translational research.

It is increasingly clear that the final state of a cell’s
stimulus response is not the whole story. How it gets
there also matters. Tools with more accurate data col-
lection, more spatio-temporal detail, and more physio-
logical dynamic microenvironments are becoming rap-
idly available, making dynamic phenotyping an exciting
multidisciplinary field. We must equip ourselves with
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the right biological systems, clever questions, and capa-
ble quantitative researchers to make efficient use of
these new technologies. In turn, we should impel tech-
nology advancement to keep pace with our expanding
needs as driven by the science.
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