Skip to main content
Log in

Development of Silicalite-1-Encapsulated Ni Catalyst from Ni Phyllosilicate for Dry Reforming of Methane

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

CO2 (dry) reforming of methane (DRM) is a significant and useful reaction from the standpoint of effective utilization and conversion of two main greenhouse gases to value-added synthesis gas. To achieve highly efficient and stable DRM reaction, a Silicalite-1-encapsulated ultrafine Ni nanoparticle catalyst (Ni@S-1)by using Ni phyllosilicate (Ni-PS) as precursor was newly developed. This Ni@S-1 catalyst exhibited negligible coke deposition (0.5 wt.%) evaluated at 600 °C for 5 h. Additionally, this Ni@S-1 catalyst presented high and stable catalytic performances and maintained the Ni nanoparticles with ultrafine size (< 7 nm) at 850 °C for 24 h. Therefore, this Ni@S-1 catalyst showed good suppression of coke formation and high resistance to nickel sintering and thus was promising for DRM reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim S, Lauterbach J, Sasmaz E (2021) ACS Catal 11:8247

    Article  CAS  Google Scholar 

  2. Liu Y, Chen Y, Gao Z, Zhang X, Zhang L, Wang M, Chen B, Diao Y, Li Y, Xiao D, Wang X, Ma D, Shi C (2022) Appl Catal B 307:121202

    Article  CAS  Google Scholar 

  3. Gao Y, Wei Y, Sun W, Zhao G, Liu Y, Lu Y (2022) Fuel 320:123892

    Article  CAS  Google Scholar 

  4. Yentekakis Iv, Panagiotopoulou P, Artemakis G (2021) Appl Catal B 296:120210

    Article  CAS  Google Scholar 

  5. Roh HS, Jun KW (2008) Catal Surv Asia 12:239

    Article  CAS  Google Scholar 

  6. Ginsburg JM, Piña J, el Solh T, de Lasa HI (2005) Ind Eng Chem Res 44:4846

    Article  CAS  Google Scholar 

  7. Kobayashi T, Furuya T, Fujitsuka H, Tago T (2019) Chem Eng J 377:120203

    Article  CAS  Google Scholar 

  8. Wang H, Kim S, Sasmaz E (2022) Chem Eng J 450:138111

    Article  CAS  Google Scholar 

  9. Xu S, Slater TJA, Huang H, Zhou Y, Jiao Y, Parlett CMA, Guan S, Chansai S, Xu S, Wang X, Hardacre C, Fan X (2022) Chem Eng J 446:137439

    Article  CAS  Google Scholar 

  10. Wang F, Xu L, Shi W (2016) J CO2 Util 16:318

    Article  CAS  Google Scholar 

  11. Zahedinezhad M, Rowshanzamir S, Eikani MH (2009) Int J Hydrog Energy 34:1292

    Article  CAS  Google Scholar 

  12. Kang JS, Kim DH, Lee SD, Hong SI, Moon DJ (2007) Appl Catal A Gen 332:153

    Article  CAS  Google Scholar 

  13. Bian Z, Das S, Wai MH, Hongmanorom P, Kawi S (2017) ChemPhysChem 18:3117

    Article  CAS  PubMed  Google Scholar 

  14. Akri M, Zhao S, Li X, Zang K, Lee AF, Isaacs MA, Xi W, Gangarajula Y, Luo J, Ren Y, Cui Y-T, Li L, Su Y, Pan X, Wen W, Pan Y, Wilson K, Li L, Qiao B, Ishii H, Liao Y-F, Wang A, Wang X, Zhang T (2019) Nat Commun 10:5181

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kweon S, Kim YW, Shin CH, Park MB, Min HK (2022) Chem Eng J 431:133364

    Article  CAS  Google Scholar 

  16. Lu Y, Guo D, Zhao Y, Moyo PS, Zhao Y, Wang S, Ma X (2021) Microporous Mesoporous Mater 313:110842

    Article  CAS  Google Scholar 

  17. Song Q, Ran R, Li D, Zhao B, Weng D (2021) Catal Surv Asia 25:312

    Article  CAS  Google Scholar 

  18. Fujitsuka H, Kobayashi T, Tago T (2021) J CO2 Util 53:101707

    Article  CAS  Google Scholar 

  19. Baudouin D, Rodemerck U, Krumeich F, de Mallmann A, Szeto KC, Ménard H, Veyre L, Candy JP, Webb PB, Thieuleux C, Copéret C (2013) J Catal 297:27

    Article  CAS  Google Scholar 

  20. Kim JH, Suh DJ, Park TJ, Kim KL (2000) Appl Catal A Gen 197:191–200

    Article  CAS  Google Scholar 

  21. Bengaard HS, Nørskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) J Catal 209:365

    Article  CAS  Google Scholar 

  22. Kosari M, Askari S, Seayad AM, Xi S, Kawi S, Borgna A, Zeng HC (2022) Appl Catal B 310:121360

    Article  CAS  Google Scholar 

  23. Gray B, Kuhn JN, Joseph B (2022) Chem Eng J 437:135353

    Article  CAS  Google Scholar 

  24. Binti Rosdin RD, Yusuf M, Abdullah B (2021) Mater Lett: X 12:100095

    Google Scholar 

  25. Shang Z, Li S, Li L, Liu G, Liang X (2017) Appl Catal B 201:302

    Article  CAS  Google Scholar 

  26. Kang D, Lim HS, Lee JW (2017) Int J Hydrog Energy 42:11270

    Article  CAS  Google Scholar 

  27. Park KS, Cho JM, Park YM, Kwon JH, Yu JS, Jeong HE, Choung JW, Bae JW (2022) Catal Today 388–389:224

    Article  Google Scholar 

  28. Tian J, Ma B, Bu S, Yuan Q, Zhao C (2018) Chem Comm 54:13993

    Article  CAS  PubMed  Google Scholar 

  29. Li Z, Das S, Hongmanorom P, Dewangan N, Wai MH, Kawi S (2018) Catal Sci Technol 8:2763

    Article  CAS  Google Scholar 

  30. Das S, Ashok J, Bian Z, Dewangan N, Wai MH, Du Y, Borgna A, Hidajat K, Kawi S (2018) Appl Catal B 230:220

    Article  CAS  Google Scholar 

  31. Bian Z, Kawi S (2018) ChemCatChem 10:320

    Article  CAS  Google Scholar 

  32. Han JW, Park JS, Choi MS, Lee H (2017) Appl Catal B 203:625

    Article  CAS  Google Scholar 

  33. Zhang M, Zhang J, Wu Y, Pan J, Zhang Q, Tan Y, Han Y (2019) Appl Catal B 244:427

    Article  CAS  Google Scholar 

  34. Meiliefiana M, Nakayashiki T, Yamamoto E, Hayashi K, Ohtani M, Kobiro K (2022) Nanoscale Res Lett 17:1

    Article  Google Scholar 

  35. Min HK, Kweon S, Kim YW, An H, Jo D, Park ED, Shin CH, Park MB (2021) Appl Catal B 298:120627

    Article  CAS  Google Scholar 

  36. Wang J, Fu Y, Kong W, Jin F, Bai J, Zhang J, Sun Y (2021) Appl Catal B 282:119546

    Article  CAS  Google Scholar 

  37. Ma B, Cui H, Zhao C (2017) Chem Comm 53:10358–10361

    Article  CAS  PubMed  Google Scholar 

  38. Yang M, Jin P, Fan Y, Huang C, Zhang N, Weng W, Chen M, Wan H (2015) Catal Sci Technol 5:5095–5099

    Article  CAS  Google Scholar 

  39. Chen YY, Chang YC, Hung WY, Lin HP, Shih HY, Xie WA, Li SN, Hsu CH (2020) Int J Energy Res 44:9748

    Article  CAS  Google Scholar 

  40. Sivaiah MV, Petit S, Beaufort MF, Eyidi D, Barrault J, Batiot-Dupeyrat C, Valange S (2011) Microporous Mesoporous Mater 140:69

    Article  CAS  Google Scholar 

  41. Sivaiah MV, Petit S, Barrault J, Batiot-Dupeyrat C, Valange S (2010) Catal Today 157:397

    Article  CAS  Google Scholar 

  42. Franz R, Tichelaar FD, Uslamin EA, Pidko EA (2021) Appl Catal A Gen 612:117987

    Article  CAS  Google Scholar 

  43. Er-rbib H, Bouallou C, Werkoff F (2012) Chem Eng Trans 29:163

    Google Scholar 

  44. Bian Z, Li Z, Ashok J, Kawi S (2015) Chem Comm 51:16324

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grants in Aid for Scientific Research (B) (21H01700) and JST under STCORP program (JPMJSC2101). Mr. Zhang also appreciates the financial support of China Scholarship Council (No. 202108050037). The authors would also like to acknowledge Materials Analysis Division, Open Facility Center of Tokyo Institute of Technology for the TEM equipment and analysis.

Author information

Authors and Affiliations

Authors

Contributions

YZ, Conceptualization, Methodology, Formal analysis and investigation, Writing—original draft preparation RT, Conceptualization, Methodology, Formal analysis and investigation KK, Conceptualization, Methodology, Writing—review and editing, Supervision HF Conceptualization, Methodology, Supervision TT, Conceptualization, Methodology, Writing—review and editing, Funding acquisition, Supervision.

Corresponding author

Correspondence to Teruoki Tago.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 559 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Takahashi, R., Kimura, K. et al. Development of Silicalite-1-Encapsulated Ni Catalyst from Ni Phyllosilicate for Dry Reforming of Methane. Catal Surv Asia 27, 56–66 (2023). https://doi.org/10.1007/s10563-022-09379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-022-09379-3

Keywords

Navigation