Skip to main content
Log in

Efficient Transformation of Furfuryl Alcohol Into Ethyl Levulinates via Alcoholysis Reaction Catalyzed by SnO2/H-Mordenite Catalyst

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Catalytic production of ethyl levulinate by alcoholysis of furfuryl alcohol with ethanol was investigated over H-mordenite supported Sn catalyst under atmospheric N2 pressure. The catalysts with different Sn loadings (5, 10, 15 and 20 wt%) over H-mordenite were synthesized by adopting a simple and facile wet impregnation method. Detailed physical–chemical properties of synthesized catalysts were analyzed through X-ray diffraction, N2-physisorption, temperature-programmed desorption of ammonia (TPD-NH3), transmission electron microscopy (TEM), scanning electron microscopy (SEM–EDS) and pyridine-adsorbed FT-IR techniques, respectively. The XRD results and elemental mapping of Sn studies depicted the formation of well dispersed Sn particles over H-mordenite structure. The Sn impregnated H-mordenite exhibited high total acidity and thus, providing a large number of total acid sites which are accessible to the reactant molecules. Sn loadings had a significant effect on the reaction performance. The characterization results evidenced the total acidity of the H- mordenite support and the Sn dispersion is well correlated with the activity in furfural alcohol conversion and selectivity. Thus, an optimized catalytic system, i.e., with 10 wt% Sn/H-mordenite has shown superior activity in the alcoholysis of furfuryl alcohol with ethanol as a co-reactant.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hengfu S, Chun B, Xu C (2020) Hydrothermal liquefaction of biomass to fuels and value-added chemicals: products applications and challenges to develop large-scale operations. Biomass Bioenergy 135:105510. https://doi.org/10.1016/j.biombioe.2020.105510

    Article  CAS  Google Scholar 

  2. Guangzhi X, Chen L, Aiyun H, Shan W, Haijun W (2020) A novel synthesis of zirconium tannate with high stability: New insight into the structure of the catalyst for hydrogenation. Appl Catal A Gen 602:117666. https://doi.org/10.1016/j.apcata.2020

    Article  Google Scholar 

  3. Meng W, Raf D, Kyriakos M, John W, Tianwei T, Jan Baeyens FG, Yunming F (2019) Biomass-derived aviation fuels: challenges and perspective. Prog Energy Combust Sci 74:31–49. https://doi.org/10.1016/j.pecs.2019.04.004

    Article  Google Scholar 

  4. Putrakumar B, Seelam PK, Ginjupalli S, Karthikeyan R, Rajendiran R, Ramachandra RK, Tongxiang L (2020) High performance and sustainable copper-modifiedhydroxyapatite catalysts for catalytic transfer hydrogenation of furfural. Catalysts 10:1045. https://doi.org/10.3390/catal10091045

    Article  CAS  Google Scholar 

  5. Putrakumar B, Nagaraju N, Kumar VP, Chary KV (2015) Hydrogenation of levulinic acid to γ-valerolactone over copper catalysts supported on γ-Al2O3. Catal Today 250:209–217. https://doi.org/10.1016/j.cattod.2014.07.014

    Article  CAS  Google Scholar 

  6. Sunyol C, English OR, Gonzalez MD, Salagre P, Cesteros Y (2021) Catalytic hydrogenation of furfural to tetrahydrofurfuryl alcohol using competitive nickel catalysts supported on mesoporous clays. Appl Catal A Gen 611:117903. https://doi.org/10.1016/j.apcata.2020.117903

    Article  CAS  Google Scholar 

  7. Uangzhi GX, Chen L, Aiyun H, Shan W, Haijun W (2020) A novel synthesis of zirconium tannate with high stability: new insight into the structure of the catalyst for hydrogenation. Appl Catal A Gen 602:117666. https://doi.org/10.1016/j.apcata.2020

    Article  Google Scholar 

  8. Jing G, Zhang J, Yazhuo W, Denian L, Hongyu H, Haoran Y, Yong C (2020) Efficient transfer hydrogenation of biomass derived furfural and levulinic acid via magnetic zirconium nanoparticles: experimental and kinetic study. Ind Crop Prod 145:112133. https://doi.org/10.1016/j.indcrop.2020.112133

    Article  CAS  Google Scholar 

  9. Nagaiah P, Gidyonu P, Ashokraju M, Venkata RM, Prathap C, David RB, Seetha RRK (2019) Magnesium aluminate supported cu catalyst for selective transfer hydrogenation of biomass derived furfural to furfuryl alcohol with formic acid as hydrogen donor. Chemistry 4:145–151. https://doi.org/10.1002/slct.201803645

    Article  CAS  Google Scholar 

  10. Ping X, Xu X, Shan W, Junjiang Z, Yujun Z (2020) One-pot synthesis of LaFeO3@C composites for catalytic transfer hydrogenation reactions: effects of carbon precursors. Appl Catal A Gen 603:117742. https://doi.org/10.1016/j.apcata.2020.117742

    Article  CAS  Google Scholar 

  11. Liu L, Lou H, Chen M (2018) Selective hydrogenation of furfural over Pt based and Pd based bimetallic catalysts supported on modified multiwalled carbon nanotubes (MWNT). Appl Catal A Gen 550:1–10. https://doi.org/10.1016/j.apcata.2017.10.003

    Article  CAS  Google Scholar 

  12. Rodiansono R, Astuti MD, Mujiyanti DR, Santoso UT, Shimazu S (2018) Novel preparation method of bimetallic Ni-In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Mol Catal 445:52–60. https://doi.org/10.1016/j.mcat.2017.11.004

    Article  CAS  Google Scholar 

  13. Yantao W, Deyang Z, Konstantinos ST, Weiyi O, Rafael L, Christophe L (2020) Microwave-assisted catalytic upgrading of bio-based furfuryl alcohol to alkyl levulinate over commercial non-metal activated carbon Microwave-assisted catalytic upgrading of bio-based furfuryl alcohol to alkyl levulinate over commercial non-metal activated carbon. Mol Catal 480:110630. https://doi.org/10.1016/j.mcat.2019.110630

    Article  CAS  Google Scholar 

  14. Putrakumar B, Vijayanand P, Pavan KV, Chary KVR (2015) Hydrogenation of biomass-derived levulinic acid to γ-valerolactone over copper catalysts supported on ZrO2. J Chem Technol Biotechnol 91:769–776. https://doi.org/10.1002/jctb.4643

    Article  CAS  Google Scholar 

  15. Cao Q, Guan J, Peng G, Hou T, Zhou J, Mu X (2015) Solid acid catalyzed conversion of furfuryl alcohol to alkyl tetrahydrofurfuryl ether. Catal Commun 58:76–79. https://doi.org/10.1016/j.catcom.2014.08.030

    Article  CAS  Google Scholar 

  16. Antunes MM, Lima S, Neves P, Magalhães AL, Fazio E, Fernandes A, Neri F, Silva CM, Rocha SM, Ribeiro MF, Pillinger M, Urakawa A, Valente AA (2015) One-pot conversion of furfural to useful bio-products in the presence of a Sn, Al-containing zeolite beta catalyst prepared via post-synthesis routes. J Catal 329:522–537. https://doi.org/10.1016/j.jcat.2015.05.022

    Article  CAS  Google Scholar 

  17. Antunes MM, Lima S, Neves P, Magalhães AL, Fazio E, Fernandes A, Neri F, Pereira MT, Silva AF, Silva CM, Rocha SM, Pillinger M, Urakawa A, Valente AA (2016) Integrated reduction and acid-catalysed conversion of furfural in alcohol medium using Zr, Al-containing ordered micro/mesoporous silicates. Appl Catal B: Environ 182:485–503. https://doi.org/10.1016/j.apcatb.2015.09.053

    Article  CAS  Google Scholar 

  18. Ahmad E, Alam MI, Pant KK, Haider MA (2016) Catalytic and mechanistic insights into the production of ethyl levulinate from biorenewable feedstocks. Green Chem 18:4804–4823. https://doi.org/10.1039/c6gc01523a

    Article  CAS  Google Scholar 

  19. Peng L, Gao X, Chen K (2015) Catalytic upgrading of renewable furfuryl alcohol to alkyl levulinates using AlCl3 as a facile, efficient, and reusable catalyst. Fuel 160:123–131. https://doi.org/10.1016/j.fuel.2015.07.086

    Article  CAS  Google Scholar 

  20. Yu X, Peng L, Pu Q et al (2020) Efficient valorization of biomass-derived furfuryl alcohol to butyl levulinate using a facile lignin-based carbonaceous acid. Res Chem Intermed 46:1469–1485. https://doi.org/10.1007/s11164-019-04045-2

    Article  CAS  Google Scholar 

  21. Paniagua JA, Melero G, Morales B, Hernández C (2017) López-Aguad0, catalytic upgrading of furfuryl alcohol to bio-products: catalystsscreening and kinetic analysis. Appl Catal A 537:74–82. https://doi.org/10.1016/j.apcata.2017.03.004

    Article  CAS  Google Scholar 

  22. Mohammadbagheria Z, NajafiChermahini A (2018) KCC-1/Pr-SO3H as an efficient heterogeneous catalyst for production of n-butyl levulinate from furfuryl alcohol. J Ind Eng Chem 62:401–408. https://doi.org/10.1016/j.jiec.2018.01.020

    Article  CAS  Google Scholar 

  23. Siva SE, Kumara SK, Venkata RBG, David RB, Seetha RRK (2017) Conversion of furfuryl alcohol to alkyl levulinate fuel additives over Al2O3/SBA-15 catalyst. Sustain Energy Fuels 1:644–651. https://doi.org/10.1039/c6se00103c

    Article  CAS  Google Scholar 

  24. Neves P, Russo PA, Fernandes A, Antunes MM, Farinha J, Pillinger M (2014) Mesoporous zirconia-based mixed oxides as versatile acid catalysts for producing bio-additives from furfuryl alcohol and glycerol. Appl Catal A 487:148. https://doi.org/10.1016/j.apcata.2014.08.042

    Article  CAS  Google Scholar 

  25. Zhao G, Hu L, Sun Y, Zeng X, Lin L (2014) Conversion of biomass-derived furfuryl alcohol into ethyl levulinate catalyzed by solid acid in ethanol. BioResources 9:2634–2644. https://doi.org/10.15376/biores.9.2.2634-2644

    Article  Google Scholar 

  26. Srinivasa RB, Krishna KP, Dhana LD, Lingaiah N (2018) One pot selective transformation of biomass derived chemicals towards alkyl levulinates over titanium exchanged heteropoly tungstate catalysts. Catal Today 309:269–275. https://doi.org/10.1016/j.cattod.2017.05.040

    Article  CAS  Google Scholar 

  27. Yogita, Srinivasarao B, Subrahmanyam Ch, Lingaiah N (2021) The selective conversion of furfuryl alcohol to ethyl levulinate over Zr-modified tungstophosphoric acid supported on b-zeolites. New J Chem 45:3224. https://doi.org/10.1039/d0nj05296e

    Article  CAS  Google Scholar 

  28. Enumula SS, Saidulu RK, Yadagiri J, Burri DR, Rao SR (2017) Alcoholysis of furfuryl alcohol into n-butyl levulinate over sba-16 supported heteropoly acid. Catal Lett 147:2807–2816. https://doi.org/10.1007/s10562-017-2155-9

    Article  CAS  Google Scholar 

  29. Priya Samudrala S, Ponnala B, Vanama PK, Deepa KD, Selvakannan RP, Suresh KB, Mannepalli LK, Komandur VRC (2016) Platinum supported on h-mordenite: a highly efficient catalyst for selective hydrogenolysis of glycerol to 1,3-propanediol. ACS Sustain Chem Eng. 4:1212–1222. https://doi.org/10.1021/acssuschemeng.5b01272

    Article  CAS  Google Scholar 

  30. Alaya MN, Rabah MA (2017) Some physico-chemical properties and catalytic activity of sulfate ion supported on WO3/SnO2 catalyst. Arab J Chem 1:S439–S449. https://doi.org/10.1016/j.arabjc.2012.10.004

    Article  CAS  Google Scholar 

  31. Shaodan X, Deqing Y, Tao Y, Panpan T (2017) Catalytic transfer hydrogenation of levulinic acid to g-valerolactone over a bifunctional tin catalyst. RSC Adv 7:1026–1031. https://doi.org/10.1039/c6ra25594a

    Article  CAS  Google Scholar 

  32. Enumula SS, Ramesh Babu GV, Kondeboina M, Burri DR, Kamaraju SRR (2016) ZrO2/SBA-15 as an efficient catalyst for the production of γ-valerolactone from biomass-derived levulinic acid in the vapour phase at atmospheric pressure. RSC Adv 6:20230–20239. https://doi.org/10.1039/C5RA27513J

    Article  CAS  Google Scholar 

  33. Boreave A, Auroux A, Guimon C (1997) Nature and strength of acid sites in HY zeolites: a multitechnical approach. Microporous Mater 11:275. https://doi.org/10.1016/S0927-6513(97)00047-3

    Article  CAS  Google Scholar 

  34. Zhao D, Prinsen P, Wang Y et al (2018) Continuous flow alcoholysis of furfuryl alcohol to alkyl levulinates using zeolites. ACS Sustain Chem Eng 6:6901–6909. https://doi.org/10.1021/acssuschemeng.8b00726

    Article  CAS  Google Scholar 

  35. Wang G, Zhang Z, Song L (2014) Efficient and selective alcoholysis of furfuryl alcohol to alkyl levulinates catalyzed by double SO3H-functionalized ionic liquids. Green Chem 16:1436–1443. https://doi.org/10.1039/c3gc41693c

    Article  CAS  Google Scholar 

  36. Mija A, Navard P, Peiti C, Babor D, Guigo N (2010) Shear induced structuration of liquid crystalline epoxy thermosets. Eur Polym J 46:1380–1387. https://doi.org/10.1016/j.eurpolymj.2010.04.001

    Article  CAS  Google Scholar 

  37. Enumula SS, Saidulu RK, Yadagiri J, Burri DR, Kamaraju SRR (2017) Alcoholysis of furfuryl alcohol into n-butyl levulinate over SBA-16 supported heteropoly acid catalyst. Catal Lett 147:2807–2816. https://doi.org/10.1007/s10562-017-2155-9

    Article  CAS  Google Scholar 

  38. Amol MH, Sumit BK, Chandrashekhar VR (2013) Single pot conversion of furfuryl alcohol to levulinic esters and γ-valerolactone in the presence of sulfonic acid functionalized ILs and metal catalysts. Green Chem 15:2540–2547. https://doi.org/10.1039/C3GC41098F

    Article  Google Scholar 

Download references

Acknowledgements

SH & BPK acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Putrakumar Balla or V R Chary Komandur.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SK, H., Balla, P., Ponnala, B. et al. Efficient Transformation of Furfuryl Alcohol Into Ethyl Levulinates via Alcoholysis Reaction Catalyzed by SnO2/H-Mordenite Catalyst. Catal Surv Asia 26, 104–114 (2022). https://doi.org/10.1007/s10563-022-09354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-022-09354-y

Keywords

Navigation