Skip to main content
Log in

First-Principles Studies of the Adsorption and Catalytic Properties for Gas Molecules on h-BN Monolayer Doped with Various Transition Metal Atoms

  • Review Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The adsorption properties for some gas molecules (H2, N2, CO, NO and CO2) on pristine and transition metal-doped h-BN monolayer are investigated by using density functional theory (DFT) calculations. In contrast with N vacancy (VN) substrates, those with B vacancy (VB) are more easily doped with metal atoms, among which Ti atom doping shows the lowest binding energy. For the adsorption of these gas molecules, NO is most easily adsorbed on h-BN monolayer with metal dopants, especially Pt doped system yields the lowest adsorption energy of NO. Since a NO molecule on Pt doped h-BN monolayer could not be directly decomposed into Oads and Nads due to the high reaction energy barrier (≈ 2.00 eV), the (NO)2 dimmer can interact with Pt to form a five-membered ring or a four-membered ring through two different Langmuir–Hinshelwood (LH) mechanisms for NO reduction catalytic reaction, respectively. The LH1 reaction process needs to overcome relatively lower energy barriers, while the product of the LH2 mechanism has a more stable structure. For the catalytic process of CO oxidation, the remained Oads can bind with CO and form CO2, by overcoming a much lower energy barrier of only 0.14 eV. It seems that Pt doping can enhance the adsorb capacity of h-BN monolayer for the gas molecules and the potential catalytic activity for electrochemical reduction of NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mermint ND (1968) Crystalline order in two dimensions. Phys Rev 176:250

    Article  Google Scholar 

  2. Zhang L, Duan Z, Zhu H, Yin K (2017) Advances in synthesizing copper/graphene composite material. Mater Manuf Process 32:475–479

    Article  CAS  Google Scholar 

  3. Wu C, Li F, Zhang Y, Guo T (2013) Field emission from vertical graphene sheets formed by screen-printing technique. Vacuum 94:48–52

    Article  CAS  Google Scholar 

  4. Peng L, Zhu Y, Li H, Yu G (2016) chemically integrated inorganic-graphene two-dimensional hybrid materials for flexible energy storage devices. Small 12:6183–6199

    Article  CAS  PubMed  Google Scholar 

  5. Zhao J, He C, Yang R, Shi Z, Cheng M, Yang W, Xie G, Wang D, Shi D, Zhang G (2012) Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl Phys Lett 101:063112

    Article  CAS  Google Scholar 

  6. Gupta A, Sakthivel T, Seal S (2015) Recent development in 2d materials beyond graphene. Prog Mater Sci 73:44–126

    Article  CAS  Google Scholar 

  7. Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3:404–409

    Article  CAS  PubMed  Google Scholar 

  8. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993

    Article  CAS  PubMed  Google Scholar 

  9. Chen Y, Zou J, Campbell SJ, Caer GL (2004) Boron nitride nanotubes: pronounced resistance to oxidation. Appl Phys Lett 84:2430–2432

    Article  CAS  Google Scholar 

  10. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. PNAS 102:10451–10453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goriachko A, He Y, Knapp M, Over H (2007) Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001). Langmuir 23:2928–2931

    Article  CAS  PubMed  Google Scholar 

  12. Jin C, Lin F, Suenaga K, Iijima S (2009) Fabrication of a freestanding boron nitride single layer and its defect assignments. PRL 102:195505

    Article  CAS  Google Scholar 

  13. Azevedo S, Kaschny JR, Castilho CMC, Mota FB (2009) Electronic structure of defects in a boron nitride monolayer. Eur Phys J B 67:507–512

    Article  CAS  Google Scholar 

  14. Yang J, Kim D, Hong J, Qian X (2010) Magnetism in boron nitride monolayer: Adatom and vacancy defect. Surf Sci 604:1603–1607

    Article  CAS  Google Scholar 

  15. Wei X, Wang M-S, Bando Y, Golberg D (2011) Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5:2916–2922

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y-J, Gao B, Xu D, Wang H-M, Zhao J-X (2014) Theoretical study on Si-Doped Hexagonal Boron Nitride (H-Bn) sheet: electronic, magnetic properties, and reactivity. Phys Lett A 378:2989–2994

    Article  CAS  Google Scholar 

  17. Huang B, Xiang H, Yu J, Wei S-H (2012) Effective control of the charge and magnetic states of transition-metal atoms on single-layer boron nitride. PRL. https://doi.org/10.1103/PhysRevLett.108.206802

    Article  Google Scholar 

  18. Ma D, Lu Z, Ju W, Tang Y (2012) First-principles studies of Bn sheets with absorbed transition metal single atoms or dimers: stabilities, electronic structures, and magnetic properties. J Phys Condens Matter 24:145501

    Article  CAS  PubMed  Google Scholar 

  19. Zhang H, Du A, Gandhi N, Jiao Y, Zhang Y, Lin X, Lu X, Tang Y (2018) Metal-doped graphitic carbon nitride (G-C3n4) as selective No2 sensors: A first-principles study. Appl Surf Sci 455:1116–1122

    Article  CAS  Google Scholar 

  20. Gao Y et al (2019) Functionalization Ti3c2 Mxene by the adsorption or substitution of single metal atom. Appl Surf Sci 465:911–918

    Article  CAS  Google Scholar 

  21. Zhang H-P, Du A, Shi Q-B, Zhou Y, Zhang Y, Tang Y (2018) Adsorption behavior of Co2 on pristine and doped phosphorenes: A dispersion corrected Dft study. J CO2 Util 24:463–470

    Article  CAS  Google Scholar 

  22. Zhang Q, Guan J (2020) Single-atom catalysts for electrocatalytic applications. Adv Funct Mater 30:2000768

    Article  CAS  Google Scholar 

  23. Luo Y, Wang S, Li S, Sun Z, Yu J, Tang W, Sun M (2019) Transition metal doped puckered arsenene: Magnetic properties and potential as a catalyst. Physica E 108:153–159

    Article  CAS  Google Scholar 

  24. He T, Zhang C, Du A (2019) Single-atom supported on graphene grain boundary as an efficient electrocatalyst for hydrogen evolution reaction. Chem Eng Sci 194:58–63

    Article  CAS  Google Scholar 

  25. Ramírez-Caballero GE, Ma Y, Callejas-Tovar R, Balbuena PB (2010) Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium. Phys Chem Chem Phys 12:2209–2218

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Yang L-M, Ganz E (2019) First-principles investigations of single metal atoms (Sc, Ti, V, Cr, Mn, and Ni) embedded in hexagonal boron nitride nanosheets for the catalysis of Co oxidation. Condens Matter 4:65

    Article  CAS  Google Scholar 

  27. Wang T, Qiu S, Dai Z, Hocking R, Sun C (2020) Exploration of Tio2 as substrates for single metal catalysts: A Dft study. Applied Surface Science 533:147362

    Article  CAS  Google Scholar 

  28. Lin S, Ye X, Johnson RS, Guo H (2013) First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe Co, and Ir) doped hexagonal boron nitride nanosheets: Stability and catalysis of Co oxidation. J Phys Chem C 117:17319–17326

    Article  CAS  Google Scholar 

  29. Venkataramanan NS, Khazaei M, Sahara R, Mizuseki H, Kawazoe Y (2009) First-principles study of hydrogen storage over Ni and Rh doped Bn sheets. Chem Phys 359:173–178

    Article  CAS  Google Scholar 

  30. Zhou X, Chu W, Zhou Y, Sun W, Xue Y (2018) Dft simulation on H2 adsorption over Ni-decorated defective H-Bn nanosheets. Appl Surf Sci 439:246–253

    Article  CAS  Google Scholar 

  31. Lu Z, Lv P, Yang Z, Li S, Ma D, Wu R (2017) A promising single atom catalyst for Co oxidation: Ag on boron vacancies of H-Bn sheets. Phys Chem Chem Phys 19:16795–16805

    Article  CAS  PubMed  Google Scholar 

  32. Lu Z, Lv P, Liang Y, Ma D, Zhang Y, Zhang W, Yang X, Yang Z (2016) Co oxidation catalyzed by the single Co atom embedded hexagonal boron nitride nanosheet: A Dft-D study. Phys Chem Chem Phys 18:21865–21870

    Article  CAS  PubMed  Google Scholar 

  33. Feng L-Y, Liu Y-J, Zhao J-X (2015) Iron-embedded boron nitride nanosheet as a promising electrocatalyst for the oxygen reduction reaction (Orr): A density functional theory (Dft) study. J Power Sources 287:431–438

    Article  CAS  Google Scholar 

  34. Ganji MD, Agheb R, Ganji HD, Ashrafian S (2016) First principles computational investigation on the possibility of Pt-decorated SIC hexagonal sheet as a suitable material for oxygen reduction reaction. J Phys Chem Solids 88:47–53

    Article  CAS  Google Scholar 

  35. Muhammad R, Uqaili MA, Shuai Y, Mahar MA, Ahmed I (2018) Ab-initio investigations on the physical properties of 3d and 5d transition metal atom substituted divacancy monolayer H-Bn. Appl Surf Sci 458:145–156

    Article  CAS  Google Scholar 

  36. Liu B, Zhou K (2019) Recent progress on graphene-analogous 2d nanomaterials: properties, modeling and applications. Prog Mater Sci 100:99–169

    Article  CAS  Google Scholar 

  37. Zhang M, Dua J, Chen Y (2021) Single Cu atom supported on modified H-Bn monolayer as N-P codoped catalyst for Co oxidation: A computational study. Catal Today 368:148–160

    Article  CAS  Google Scholar 

  38. Esrafili MD, Vatanzadeh M (2019) Si-coordinated nitrogen doped graphene: A robust and highly active catalyst for No + Co reaction. Appl Surf Sci 494:659–665

    Article  CAS  Google Scholar 

  39. Liu Z-P, Hu P (2004) Co oxidation and No reduction on metal surfaces: Density functional theory investigations. Top Catal 28:71–78

    Article  Google Scholar 

  40. Liu Z-P, Jenkins SJ, King DA (2004) Why is silver catalytically active for no reduction? A unique pathway via an inverted (No)2 dimer. J Am Chem Soc 126:7336–7340

    Article  CAS  PubMed  Google Scholar 

  41. Patel A, Shukla P, Rufford T, Rudolph V, Zhu Z (2014) Selective catalytic reduction of No with Co using different metal-oxides incorporated in Mcm-41. Chem Eng J 255:437–444

    Article  CAS  Google Scholar 

  42. Liu B, Liu J, Ma S, Zhao Z, Chen Y, Gong X-Q, Song W, Duan A, Jiang G (2016) Mechanistic study of selective catalytic reduction of No with Nh3 on W-Doped Ceo2 catalysts: Unraveling the catalytic cycle and the role of oxygen vacancy. J Phys Chem C 120:2271–2283

    Article  CAS  Google Scholar 

  43. Liu Z-P, Jenkins SJ, King DA (2003) Step-enhanced selectivity of No reduction on platinum-group metals. J Am Chem Soc 48:14660–14661

    Article  CAS  Google Scholar 

  44. Elizundia U, Duraiswami D, Pereda-Ayo B, López-Fonseca R, González-Velasco JR (2011) Controlling the selectivity to N2o over Pt/Ba/Al2o3 Nox storage/reduction catalysts. Catal Today 176:324–327

    Article  CAS  Google Scholar 

  45. Sun P-F, Wang W-L, Zhao X, Dang J-S (2020) Defective H-Bn sheet embedded atomic metals as highly active and selective electrocatalysts for Nh3 fabrication via no reduction. Phys Chem Chem Phys 22:22627–22634

    Article  CAS  PubMed  Google Scholar 

  46. Roy S, Baiker A (2019) Nox storage−reduction catalysis: From mechanism and materials properties to storage−reduction performance. Chem Rev 109:4054–4091

    Article  CAS  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  48. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:502–517

    Article  Google Scholar 

  49. Grimme S (2006) Semiempirical Gga-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  50. Monkhorst HJ, Pack JD (1976) Special points for brillonin-zone integrations. Phys Rev B 13:5192

    Article  Google Scholar 

  51. Jin C, Lin F, Suenaga K, Iijima S (2009) Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett 102:195505

    Article  CAS  PubMed  Google Scholar 

  52. Zhou X, Zhou X, Zhou Y, Zhou Y, Xue Y (2018) Dft simulation on H2 adsorption over Ni-decorated defective H-Bn nanosheets. Appl Surf Sci 439:246–253

    Article  CAS  Google Scholar 

  53. Huang B, Lee H (2012) Defect and impurity properties of hexagonal boron nitride: A first-principles calculation. Phys Rev B 86:245406

    Article  CAS  Google Scholar 

  54. He J, Jiao N, Zhang C, Xiao H, Chen X, Sun L (2014) Spin switch of the transition-metal-doped boron nitride sheet through H/F chemical decoration. J Phys Chem C 118:8899–8906

    Article  CAS  Google Scholar 

  55. Zhao P, Su Y, Zhang Y, Li S-J, Chen G (2011) Co catalytic oxidation on iron-embedded hexagonal boron nitride sheet. Chem Phys Lett 515:159–162

    Article  CAS  Google Scholar 

  56. Ma D, Ju W, Li T, Zhang X, He C, Ma B, Lu Z, Yang Z (2016) The Adsorption of Co and No on the Mos2 monolayer doped with Au, Pt, Pd, or Ni: A first-principles study. Appl Surf Sci 383:98–105

    Article  CAS  Google Scholar 

  57. Fan Y, Zhang J, Qiu Y, Zhu J, Zhang Y, Hu G (2017) A Dft study of transition metal (Fe Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)- embedded monolayer Mos2 for gas adsorption. Comput Mater Sci 138:255–266

    Article  CAS  Google Scholar 

  58. Wang X, Wang J (2021) Effects of Pt and Au adsorption on the gas sensing performance of Sns2 monolayers: A Dft study. Mater Sci Semiconduct Process 121:105416

    Article  CAS  Google Scholar 

  59. Hui W, Chang G, Gao W (2020) Exploring the electronic and magnetic properties of noble metal (Pd, Pt, Au) adsorbed Mose2 monolayers and their performance towards sensing gas molecules. Phys E Low Dimension Syst Nanostruct 122:114167

    Article  CAS  Google Scholar 

  60. Wu J, Yang H (2013) Platinum-based oxygen reduction electrocatalysts. Acc Chem Res 46:1848–1857

    Article  CAS  PubMed  Google Scholar 

  61. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of Co oxidation using Pt1/Feox. Nat Chem 3:634–641

    Article  CAS  PubMed  Google Scholar 

  62. Esrafili MD, Heydari S (2019) No reduction over an Al-embedded Mos2 monolayer: A first-principles study. RSC Adv 9:38973–38981

    Article  CAS  Google Scholar 

  63. Esrafili MD (2018) No reduction by co molecule over si-doped boron nitride nanosheet: A dispersion-corrected Dft study. Chem Phys Lett 695:131–137

    Article  CAS  Google Scholar 

  64. Meeprasert J, Junkaew A, Kungwan N, Jansang B, Namuangruk S (2016) A Cr-Phthalocyanine monolayer as a potential catalyst for no reduction investigated by Dft calculations. RSC Adv 6:20500–20506

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by The National Natural Science Foundation of China under Grant No.11764028 and the program of China Scholarships Council under Grant Number 201906070115.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si-Ying Zhong or Shao-Yi Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, SY., Wu, SY., Yu, XY. et al. First-Principles Studies of the Adsorption and Catalytic Properties for Gas Molecules on h-BN Monolayer Doped with Various Transition Metal Atoms. Catal Surv Asia 26, 69–79 (2022). https://doi.org/10.1007/s10563-021-09350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-021-09350-8

Keywords

Navigation