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Abstract
Mesoporous silica materials (MSMs) are widely used materials in many applications due to their diverse pore structures. 
However, the electrical conductivity of MSMs is poor which limits their use in electrochemical applications. In this study, 
widely used MSMs of different structural properties such as MCM-41, MCM-48, SBA-15, and SBA-16 were synthesized and 
reinforced with graphene oxide (GO) to obtain conductive composite supports for enzyme immobilization. MSMs were first 
synthesized using a hydrothermal method and characterized by Fourier-transform infrared spectroscopy, X-ray crystallog-
raphy, scanning electron microscopy/energy dispersive X-ray, and MAPPING techniques. Aqueous dispersion of GO:MSM 
composites were prepared with as-synthesized materials and coated on screen-printed electrodes (SPE). The best composites 
were chosen based on their electroanalytical performance. Glucose oxidase (GOx) was then immobilized on modified SPEs 
using a simple drop-casting method to produce enzymatic electrodes. The electroanalytical performance of the enzymatic 
electrodes was investigated using different glucose concentrations to demonstrate biocatalytic activity. Stability tests were 
performed using intraday and interday measurements which revealed that SPE/GO:MCM-41/GOx electrode showed a more 
stable performance (3-folds) than SPE/GO/GOx electrode. This study presents an investigation of MSM mixed with GO in 
enzymatic electrochemical systems providing insight into the use of such materials to preserve enzyme activity.
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1  Introduction

Mesoporous silica materials (MSMs) have widely been used 
as adsorbents, thin films, low-k materials, nanowires, and 
catalysts due to their large specific surface areas and pore 
sizes ranging from 2 to 50 nm [1]. Some of the most com-
mon MSMs known in the market are SBA-15 and M41S-
family due to their high surface area, large pore volume, 
regular pore distribution, and flexible synthesis conditions 
[2–4]. There are different variations of MSMs available with 
various pore shapes and sizes of both families providing 

opportunities in catalysis, drug delivery and imaging 
applications.

MSMs with diverse pore configurations include MCM-
41 (hexagonal pores), MCM-48 (cubic pores), and MCM-
50 (unstable lamellar pores) [5]. Furthermore, well-known 
MSMs have space groups of p6mm (MCM-41), Ia3d 
(MCM-48), p6mm (SBA-15), and Im3m (SBA-16) [6]. Sil-
ica materials have a high number of silanol groups on their 
surface, we can readily adjust the physicochemical nature 
of the surface through the functionalization process. On the 
other hand, MSMs have a large surface area and a high pore 
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volume, which means they have a high loading capacity and 
are unique prospects for various applications [7] such as 
biomaterials [8], catalyst [9], adsorbent [10], sensor [11], 
and drug delivery [12].

In the M41S family, the pores of MCM-41 type catalysts 
are in a two-dimensional hexagonal structure, while the 
pores of MCM-48 are in a three-dimensional cubic structure 
[13, 14]. SBA-15, on the other hand, has high thermal stabil-
ity and a wheat chain structure and SBA-16 is considered 
the most interesting mesothelium among SBA-type silica 
materials and is widely used in the field of biomaterials due 
to its spherical morphology [8, 15]. Different methods are 
used in the synthesis of MSMs such as impregnation, pre-
cipitation/co-precipitation, sol–gel, ion exchange, thermal 
fusion, solid–liquid leaching, and wet impregnation [16]. 
However, depending on the thermal strength and the amount 
of material obtained after synthesis, the hydrothermal syn-
thesis method is widely used in the synthesis of silica-
derived mesoporous materials since it can eliminate the use 
of high-grade materials.

Silica-based materials are known as poor electrical con-
ductors, but they have been utilized in electrochemical sys-
tems. There are several examples of the way silica-based 
materials were employed in these systems such as deposited 
on conductive electrode surfaces or as thin films, manufac-
tured as metal or carbon composites, and dispersed into 
conductive composites [17]. Therefore, they can be utilized 
as an immobilization matrix for selective ligands, electro-
catalysts, metal particles, and enzymes [18]. There are also 
examples of MSMs reinforced with carbon-based materials 
such as carbon nanomembranes [19] and mesoporous car-
bon [20] mainly for capacitor applications. This potential 
of MSMs in electrochemical systems opened up possibili-
ties for their use in immunological sensors, aptasensors, 
and enzymatic biosensors [21–23]. Such systems can offer 
a variety of opportunities for different applications such 
as diagnosis of bacterial infections, cancer therapy, cancer 
detection, detection of heavy metals, contaminated food 
detection, the detection of viruses, and enzymatic biosen-
sors [22].

The use of MSMs in enzymatic biosensing is a promis-
ing application since the critical aspects of enzymatic sys-
tems can be supported by MSMs due to their critical prop-
erties. MSMs are shown to be effective in preserving the 
activity of enzymes due to their porous structure providing 
a protective environment for the enzymes [24, 25]. Fur-
thermore, the high specific pore volume of silica particles 
can accommodate high enzyme loadings, thus resulting 
in high current density from enzymatic electrochemical 
reactions. There are several studies demonstrating the use 
of MSMs in enzymatic electrochemical systems for the 
detection of cholesterol [26], catechol [27], ethanol [28], 

hydrogen peroxide [29], lactic acid [30], uric acid [31], 
and glucose [28]. Different composites were prepared to 
increase the conductivity of the MSM-modified electrodes 
and to retain the enzyme activity for glucose detection 
such as gold nanoparticles [32, 33], Prussian-blue [34], 
Nafion [35, 36], and single-walled carbon nanotubes [37].

There are a few studies in the literature demonstrat-
ing the use of enzyme-incorporated MSMs for biosensing 
applications using glucose oxidase (GOx) and laccase. In 
these studies, Yusan et. al. demonstrated that nanoparticle 
selenium incorporated MCM-41 could be very effective in 
retaining enzyme activity [38]. On the other hand, another 
study by Tvorynska et al. also showed that the MCM-41 
incorporated sensor was found to be the most stable sen-
sor configuration for laccase-based biosensors [39]. Most 
of the studies utilizing MSMs for enzymatic biosensors 
showed promising performance and good stability, yet 
there is still a need for comprehensive and systematic stud-
ies to demonstrate the effect of the conducting composite 
materials and the performance of the MSMs on retaining 
enzyme activity fundamentally.

Herein, four different MSMs from two different types 
(M41S and SBA) were first synthesized using a hydrother-
mal method. Then, graphene oxide (GO)-MSM composites 
were prepared as dispersions of as-synthesized material of 
optimized amounts into a conductive aqueous GO matrix. 
Screen-printed electrodes (SPEs) were modified with dif-
ferent material loadings of the prepared composite disper-
sions and electrochemically characterized using voltamme-
try and amperometry. The electroanalytical performance of 
the GOx immobilized electrodes was investigated in terms 
of the sensitivity and stability of the enzyme. As a result, 
this study aims to present a comprehensive investigation 
of the performance of MSMs reinforced with GO in enzy-
matic electrochemical applications for the first time in the 
literature. Therefore, it can provide insight into the use of 
MSMS as additives to carbon-modified electrochemical 
electrodes (such as graphene, nanotubes, graphite, etc.) to 
retain enzyme activity.

2 � Experimental

2.1 � Materials

Pluronic p 123, Pluronic p 127, and the chemicals used in 
electrochemical studies were obtained at analytical grade 
from Sigma-Aldrich. Cetyltrimethylammonium bromide 
(CTMAbr), tetraethyl orthosilicate, (TEOS), and sodium 
silicate were obtained from Merck.
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2.2 � Synthesis and Characterization of Mesoporous 
Silica

The synthesis of MCM-41, SBA-15, MCM-48, and SBA-16 
was carried out using the hydrothermal method according to 
the literature [40–43]. Briefly, the surfactant was dissolved at 
different temperatures and durations (MCM-41 and MCM-
48; 30 °C, 2–6 h, SBA-15; 40 °C, 2 h, SBA-16; 38 °C, 2 h) 
using a magnetic stirrer (Elektro-mag, Turkey) following 
by filtration and drying. The synthesis is then completed 
with the calcination process at different temperatures to 
remove impurities in the structure of materials (MCM-41 
and MCM-48: 550 °C and 6 h, SBA-15 and SBA-16: 540 °C 
and 5 h). Although the same hydrothermal synthesis method 
is used in the synthesis of these mesoporous materials, dif-
ferent chemicals are used as surfactants (CTMAbr, pluronic 
p 123, and pluronic p 127) and silica sources (TEOS and 
sodium silicate).

Fourier-transform infrared spectroscopy (FT-IR) analyses 
of mesoporous materials were performed using the Perkin 
Elmer IR USA (Attenuated Total Reflectance (ATR) tech-
nique) device between 380 and 4000 cm−1. The Panalytical 
Empryan HT (Netherlands) instrument was used to per-
form X-ray crystallography (XRD) analyses to determine 
the structural phases of mesoporous materials using CuK 
(= 1.540) radiation, 0.066 step size (sensitivity), 30 V (ten-
sion), 40 kV (current), and 0° < 2θ < 70° range. The surface 
morphologies of the samples were analyzed using scan-
ning electron microscopy/energy dispersive X-ray (SEM/
EDX, Zeiss SUPRA V40, Germany) analysis. In addition, 
the MAPPING analysis method was used to determine the 
distributions of C and Si elements in the structure of the 
catalyst sample.

2.3 � Electrode Preparation and Characterization

All electrochemical experiments were carried out at 
23 ± 1 °C using Ivium Potentiostat (Ivium Technologies, 
Netherlands) and carbon SPE (Model: Dropsens DRP-
X1110 with a carbon working electrode surface area of 
0.059 cm2, obtained from Metrohm AG, Switzerland). 
Carbon and silver paste electrodes were used as the coun-
ter, and reference electrodes, respectively. SPEs were pre-
treated using linear sweep voltammetry (LSV) in a solution 
containing 0.1 M KCl to remove impurities on the work-
ing electrode surface and obtain reproducible results before 
any experiments [44]. Aqueous dispersions of GO (1 mg/
mL, Ultra-pure water, 18.2 MΩ-cm, 4–10% edge oxidized 
exfoliated graphene nanoplatelets, Sigma-Aldrich) and GO-
mesoporous silica mixtures with different mass ratios (1:1, 
1:1.5, and 1:2) were prepared and sonicated (Bandelin RK 
100 H, Germany) until homogenous mixtures were obtained. 
Then, the working electrode of the SPEs was drop-coated 

until a material loading of 0.15 mg/cm2 was achieved [45]. 
This value was chosen due to physical constraints of the 
working electrode surface area and above this level, the 
coating failed. The coated electrodes with different material 
ratios were then electrochemically characterized using cyclic 
voltammetry (CV, 50 mV/s) in a solution containing 2 mM 
K3Fe(CN)6/K4Fe(CN)6 redox couple in 0.1 M KCl. Bare 
electrode (BE) and GO-only coated SPE were also tested as 
control experiments. The optimal GO to mesoporous silica 
amount ratio was chosen based on the anodic and cathodic 
current changes in CV experiments.

2.4 � Enzyme Immobilization and Electrochemical 
Glucose Oxidation

First, drop-coating 1 µL of ethanoic Nafion solution (0.05% 
w/w in ethanol) as a supporting layer and dried at room 
temperature for 15 min. Subsequently, drop-coating 1 µL 
of GOx [1, 5, and 10 mg/mL in 0.1 M phosphate buffer 
(PBS), pH 7.4] on Nafion-modified SPEs created an active 
enzymatic layer for electrochemical glucose oxidation. All 
prepared electrodes were kept at 4 °C for 24 h and immersed 
in PBS for 15 min following consecutive washing steps at 
least 3 times to remove weakly adsorbed species before use. 
The prepared enzymatic electrodes were denoted as SPE/
GO/GOx, SPE/GO:MCM-41/GOx, SPE/GO:MCM-48/
GOx, SPE/GO:SBA-15/GOx, and SPE/GO:SBA-16/GOx. 
The electrochemical glucose oxidation was tested using 
chronoamperometry (CA) with an applied voltage of 0.14 V 
for 120 s in 1 mM ferrocene carboxylic acid (FcCOOH, in 
0.1 M PBS, pH 7.4) containing 0 and 5 mM glucose. The 
enzyme concentration for the immobilization was also opti-
mized using LSV (5 mV/s) and used for the electrochemical 
performance tests. All electrochemical tests were conducted 
with three independently prepared electrodes unless other-
wise stated (N = 3 samples). A schematic representation of 
electrode preparation steps is shown in Fig. 1.

3 � Results and Discussion

3.1 � Characterization Studies of the Mesoporous 
Silica Materials

Characterizations of the synthesized MCM-48, MCM-41, 
SBA-16, and SBA-15 were first performed using FT-IR, 
XRD, and SEM. FT-IR analysis results of silica-derived 
mesoporous materials showed that Si–O–Si bands of the 
silica structure were seen at wavelengths of 1059  cm−1 
[46], 1053  cm−1 [47], 1065  cm−1 [15], and 1064  cm−1 
[48], respectively (Fig. 2a). The bands of MCM-41 at 965 
and 789 cm−1 correspond to the Si–OH and Si–O struc-
tures, respectively (Fig. 2a) [49]. In addition, the peaks at 
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2927 cm−1 and 2857 cm−1 belong to the expansion of the 
CH(CH2CH2CH2NH2) structure of MCM-48 (Fig. 2a) [46]. 
–OH stretch can be seen at the 1635 cm−1 band and the water 
in the structure shows a wide bandgap of around 3368 cm−1 
(especially for MCM-41 and MCM-48; Fig. 2a) [50]. The 
symmetrical stretching vibration mode of O–H of isolated 
central silanol (Si–OH) groups are represented by the peaks 
at 3725 cm−1 (SBA-15; Fig. 2a) and 3749 cm−1 (MCM-48; 
Fig. 2a) [50, 51]. Although shifts were observed in the Bragg 
fundamental peaks from the XRD analysis result of MCM-
41, the basic Bragg peaks of d(100), d(110), and d(200) 
reflections were obtained. These baseline Bragg peak val-
ues obtained showed that MCM-41 had a regular hexagonal 
structure (Fig. 2b) [50].

Due to the SiO2 groups in the structures of silica-based 
materials (MCM-41, MCM-48, SBA-15, and SBA-16), no 
clear differences may be observed in the FTIR results. In 
addition, precise determinations may not be possible due 
to the wide peaks of OH and Si–O–Si structures. After the 
modification processes, clear differences can be observed 
in the FT-IR analysis results depending on the functional 
groups. A more narrow wavelength result for the FT-IR anal-
yses are also given in Figs. S7 and S8 to emphasize some of 
the peaks in Fig. 2a.

MCM-48’s main Bragg peaks (d(211) and d(220)) were 
measured at 2Θ:1.33 and 2.4, respectively (Fig. 2b) [42, 
46]. Low-angle XRD analysis showed that the main Bragg 
peak (d110) of the SBA-16 support material was obtained at 
2θ:0.84 (Fig. 2b) [15, 41]. XRD analysis for SBA-15 showed 

that d(100) and d(110) reflections were observed showing 
the main Bragg peaks of the mesoporous structure (Fig. 2b) 
[52].

According to the SEM analysis results, the cubic structure 
of MCM-48 [53], the hexagonal structure of MCM-41 [53], 
the spherical structure of SBA-16 [15], and the wheat chain 
structures of SBA-15 [54] were confirmed (Fig. 2c). Moreo-
ver, the EDX and MAPPING analysis were used to deter-
mine the distributions of C and Si elements in the structure 
(Figures S1–4). The SEM image of GO shows the randomly 
aggregated and crumpled sheets align with the previously 
reported characteristics [55]. Finally, the surface charac-
teristics of the GO:MCM-41 composite were confirmed 
with SEM images demonstrating the crumbled GO sheets 
were wrapped around the hexagonal structure of MCM-41. 
Thereby, the MCM-41 particles are shown to be covered 
with GO flakes that would provide electrical conductivity 
for the prepared films (further confirmed by electrochemical 
measurements).

3.2 � Electrochemical Characterization 
and Optimization of GO‑Mesoporous Silica 
Ratio

To investigate the behaviour of the GO-mesoporous sil-
ica-coated SPEs at different material ratios, a series of 
CV experiments have been conducted in 0.1 M KCl con-
taining 2 mM K3Fe(CN)6/K4Fe(CN)6. Figure 3 shows the 

Fig. 1   Schematic representation of electrode preparation steps using MSMs
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voltammograms and respective anodic and cathodic peak 
current values with changing GO-mesoporous silica ratio.

A reversible redox response was observed for BE at ca. 
0.18 V and ca. 0.075 V (vs Ag/Ag+) for oxidation and reduc-
tion processes, respectively. The voltage separation between 

anodic and cathodic peaks was ca. 0.1 V (vs Ag/Ag+) and 
the anodic to cathodic peak current ratio (ipa/ipc) was ca. 1.02 
suggesting chemical reversibility and quasi-reversible elec-
tron transfer [56]. It can also be seen that the modification of 
SPEs with GO and GO-MSM at different ratios didn’t cause 

Fig. 2   a FT-IR analysis b low-angle XRD patterns and c SEM images of MCM-41, MCM-48, SBA-15, SBA-16, GO and GO:MCM-41
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Fig. 3   CVs (50 mV/s) and 
anodic and cathodic peak 
current values of a SPE/
GO:MCM-41, b SPE/
GO:MCM-48, c SPE/
GO:SBA-15, d SPE/
GO:SBA-16 in 2 mM 
K3Fe(CN)6/K4Fe(CN)6 redox 
couple in 0.1 M KCl, (N = 3 
samples)
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a significant difference in the electrochemical parameters.. 
However, different modifications on SPEs made a difference 
in the catalytic response between electrodes. GO-modified 
electrode (SPE/GO) showed a significant increase in anodic 
and cathodic peak current values showing higher peak cur-
rent values than BE. On the other hand, electrodes modi-
fied with the silica materials for all mixing ratios showed 
lower peak current values than SPE/GO as the integration of 
electrically insulating silica with GO would be expected the 
lower the overall conductivity of the composite [57]. How-
ever, GO:MCM-41 modified electrode with a 1:1 ratio was 
the only configuration that resulted in the highest current 
values. As the pore volume and active surface area of the 
mesoporous silica increase, the interactions between GO and 
the silica material would change as well as the electrochemi-
cal response due to an increase in total electroactive area. 
MCM-41 was reported to have a relatively larger surface 
area and pore-loading capacity than other silica materials 
used in this study which could be the reason for the better 
response [40].

3.3 � Electrochemical Glucose Oxidation Studies

After the electrochemical investigation of the GO-
mesoporous silica materials, enzyme adsorption was per-
formed to evaluate the performance of these compositions 
in enzymatic glucose oxidation. In this work, the molecu-
lar aspects of mesoporous silica materials were not taken 
into account in the performance of the enzymatic perfor-
mance, rather it was aimed to compare the performance of 

the different types of silica materials in the performance 
of enzymatic glucose oxidation. Therefore a series of CA 
experiments were performed in 0.1 PBS solution containing 
1 mM FcCOOH as an electron transfer mediator. FcCOOH 
was chosen as a reliable electron transfer mediator in aque-
ous electrochemistry that was widely used in the literature 
[58, 59]. The optimization studies for enzyme concentration 
using LSV revealed that increasing the enzyme concentra-
tion for immobilization didn’t cause a significant change 
in the performance of electrochemical glucose oxidation 
(Fig. S5). This could be due to the saturation that might 
be reached in the mesopores of the silica materials, hence 
further increasing the enzyme concentration wouldn’t make 
a significant contribution to the catalytic response due to 
mass transfer limitations. As a result, 1 mg/mL was chosen 
for the electrochemical experiments. After enzyme load-
ing optimization, CA experiments were performed using 
modified SPEs with GO, GO:MCM-41, GO:MCM-48, 
GO:SBA-15, and GO:SBA-16 with a material loading of 
0.15 mg/cm2 at a 1:1 ratio to investigate the analytical per-
formance of the prepared electrodes. Figure 4 shows the 
CA response of SPE/GO/GOx, SPE/GO:MCM-41/GOx, 
and SPE/GO:MCM-48/GOx with increasing glucose con-
centration. SPE/GO:SBA-15/GOx and SPE/GO:SBA-16/
GOx electrodes were also tested but didn’t show a linear 
response (Fig. S6). However, MCM-modified electrodes 
showed a relatively good response to different glucose con-
centrations up to 7 mM. SPE/GO:MCM-41/GOx showed the 
best performance among all silica-modified electrodes show-
ing similar performance to GO-only electrodes. In terms of 

Fig. 4   CA curves (applied voltage: 0.14 V for 120 s) and calibration 
graphs of (a) and d SPE/GO, b and e SPE/GO:MCM-41, and c and d 
SPE/GO:MCM-48 electrodes tested in 0.1 M PBS (pH 7.4) contain-

ing 1 mM FcCOOH for glucose concentrations between 0 and 7 mM, 
(N = 3 samples)
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analytical performance the sensitivity of GO, GO:MCM-41, 
and GO:MCM-48-modified electrodes were calculated as 
0.51 µA/mM, 0.39 µA/mM, and 0.17 µA/mM, respectively. 
These suggest that MCM-modified electrodes showed prom-
ising performance compared to other GO-modified elec-
trodes without giving up a significant analytical performance 
similar to previous investigations without the incorporation 
of the enzyme. On the other hand, although this study didn’t 
aim to develop a functional enzymatic biosensor, the fol-
lowing limit of detection (LOD) values were calculated for 
GO, GO:MCM-41, and GO:MCM-48-modified electrodes 
as 0.43, 2.62, and 0.80 mM, respectively (LOD: 3.3xSD/
Slope) [60].

Enzyme-modified electrodes usually suffer from low sta-
bility in vitro and significant effort has been spent to improve 
the stability of enzymes immobilized on electrodes [61, 62]. 
In this study, silica was used to help enhance enzyme stabil-
ity, therefore, a series of inter-day and intra-day experiments 
have been performed. The anodic peak current values of 
the LSV experiments were used to investigate the stabil-
ity of the enzyme immobilized on different modified elec-
trodes. The tests were conducted with SPE/GO/GOx and 
SPE/GO:MCM-41/GOx electrodes in 0.1 M PBS containing 
1 mM FcCOOH and glucose concentrations of 0 and 5 mM.

Figure 5a shows the intraday experiment results consist-
ing of 6 measurements with 1 h intervals. The electrodes 
were kept in 0.1 M PBS between experiments at room 
temperature for intraday and + 4 °C for interday experi-
ments and washed with 0.1 PBS before tests. The intraday 
experimental results show that both electrodes show simi-
lar performance, and the results didn’t show a significant 
change in the current response regardless of glucose con-
centration. On the other hand, interday experiments for 

14 days (tested on days 0, 7, and 14) revealed that the per-
formance of the SPE/GO:MCM41/GOx electrode showed 
superior performance over the SPE/GO/GOx electrode 
(Fig. 5b). Table 1 also summarizes the percentage change 
for intraday and interday stability measurements. The SPE/
GO/GOx electrode showed a 40.57% decrease in current 
whereas the current change for SPE/GO:MCM-41/GOx 
was ca. 13.75%. All intraday and interday experiments 
showed a good degree of repeatability with relative stand-
ard deviation (RSD %) values less than 10% except for 
SPE/GO/GOx is 23.65%. This could be due to the unsta-
ble behaviour of the SPE/GO/GOx electrode compared to 
SPE/GO:MCM-41/GOx supporting that silica-based GO 
composite might provide a more suitable environment 
for coating and enzyme stability. The RSD values of the 
intraday and interday stability experiments are presented 
in Table S1.

Fig. 5   Intraday (a) and interday (b) stability experiments of SPE/GO and SPE/GO:MCM-41 electrodes for 0 and 5 mM glucose concentrations. 
Electrodes were tested in 0.1 M PBS (pH 7.4) containing 1 mM FcCOOH, (N = 3 samples)

Table 1   Percentage change for inter-day and intra-day stability exper-
iments

a Tested on days 0, 7 and 14

Electrode configuration Intraday stability % 
change

Interdaya stability 
% change

0 mM 5 mM 0 mM 5 mM

GO 1.45 10.95 4.83 40.57
GO/MCM-41 7.36 17.32 1.61 13.75
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4 � Conclusion

In this study, an electrochemical investigation of the per-
formance of different GO composite materials prepared 
using mesoporous silica materials (MCM-41, MCM-48, 
SBA-15, and SBA-16) on enzymatic glucose oxidation. 
Optimization studies were conducted to find the optimal 
GO-to-mesoporous silica ratio and the effect of enzyme 
loading on the performance of the prepared electrodes. 
The results showed that the GO to mesoporous silica ratio 
was found to be 1:1 and the optimum enzyme working 
concentration was 1 mg/mL. Among all mesoporous silica 
materials, MCM:41 showed the most promising perfor-
mance, therefore it was used for the enzymatic investiga-
tions. Enzymatic glucose oxidation experiments showed 
that GO:MCM-41-modified electrodes showed very prom-
ising results in detecting different glucose levels at similar 
sensitivity values. The sensitivity of enzyme-immobilized 
GO, GO:MCM-41, and GO:MCM-48-modified electrodes 
were calculated as 0.51 μA/mM, 0.39 μA/mM, and 0.17 
μA/mM, respectively. Furthermore, it showed superior 
stability compared to GO-only modified enzymatic elec-
trodes. Interday experiments revealed that SPE/GO/GOx 
electrode showed a 40% decrease in current whereas the 
current change for SPE/GO:MCM-41/GOx was about 
14%. This study shows that an optimized amount of com-
posite materials (1:1 for this study) consisting of GO and 
mesoporous silica, especially MCM-41 due to its relatively 
larger surface area and pore-loading capacity, can pro-
vide a suitable environment for enzyme retention on the 
surface. These findings could be important for long-term 
applications of enzymes such as enzymatic biofuel cells 
and continuous monitoring of glucose where the stability 
of the enzymes on silica supports such as MCM-family is 
one of the key factors for the desired performance.
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