Skip to main content
Log in

ZrO2 Supported Cu Nanoparticles for Sonogashira and Ullmann Coupling Reactions Under Palladium-Free Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cu nanoparticles supported on ZrO2 (CuNPs@ZrO2) were synthesized using a one‐step co-precipitation process, and their application in C–C coupling reactions was investigated. The catalyst was characterized using XRD, XPS, SEM, TEM, and TGA techniques. The prepared catalyst was used for the Sonogashira cross-coupling reactions of aryl bromides with phenyl-acetylene in the presence of K2CO3 in DMF at 110 °C, which resulted in substituted alkynes with good to excellent yields. The protocol was also extended for the Ullmann coupling reactions of aryl iodides under similar reaction conditions, yielding the desired products with good to excellent yields without homo-coupling. Interestingly, unlike other copper catalysts, the present catalyst worked under air and did not require an inert atmosphere to prevent alkyne. This catalytic system is versatile, tolerant, and significantly cheaper than the “traditional” Pd-catalyzed Sonogashira cross-coupling of terminal alkynes with aryl halides. The catalyst could be reused for five catalytic cycles with no significant change in the product yield. All of these characteristics make our prepared CuNPs@ZrO2 catalyst quite suitable for the gram-scale synthesis of biaryls and alkynes, with a simple workup.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Meijere AD, Brase S, Oestreich M (2013) Metal catalyzed cross-coupling reactions and more. John Wiley & Sons, New York

    Google Scholar 

  2. Takaya J (2021) Chem Sci 12:1964–1981

    Article  CAS  Google Scholar 

  3. Kochi JK (2002) J Organomet Chem 653:11–19

    Article  CAS  Google Scholar 

  4. Su B, Cao ZC, Shi ZJ (2015) Acc Chem Res 48:886–896

    Article  CAS  PubMed  Google Scholar 

  5. Miller DM, Buettener GR, Aust SD (1990) Free Radical Biol Med 8:95–108

    Article  CAS  Google Scholar 

  6. Baran NY (2017) Curr Org Chem 21(8):708–749

    Article  Google Scholar 

  7. Baran T, Sargın İ, Kaya M, Mulerčikas P, Kazlauskaitė S, Menteş A (2018) J Chem Eng 331:102–113

    Article  CAS  Google Scholar 

  8. Baran NY (2019) J Mol Struct 1176:266–274

    Article  Google Scholar 

  9. Baran NY, Baran T, Nasrollahzadeh M, Varma RS (2019) J Organomet Chem 900:120916

    Article  CAS  Google Scholar 

  10. Nasrollahzadeh M, Shafiei N, Baran T, Pakzad K, Reza Tahsili M, Baran NY, Shokouhimehr M (2021) J Organomet Chem 945:121849

    Article  CAS  Google Scholar 

  11. Shafiei N, Nasrollahzadeh M, Baran T, Baran NY, Shokouhimehr M (2021) Carbohydr Polym 262:117920

    Article  CAS  PubMed  Google Scholar 

  12. Nasrollahzadeh M, Motahharifar N, Ghorbannezhad F, Bidgoli NSS, Baran T, Varma RS (2020) Mol Catal 480:110645

    Article  CAS  Google Scholar 

  13. Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed 51:5062–5085

    Article  CAS  Google Scholar 

  14. Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem 124:5150–5174

    Article  Google Scholar 

  15. Sonogashira K (2002) J Organomet Chem 653:46–49

    Article  CAS  Google Scholar 

  16. Sonogashira K (1999) In: Trost IFBM (ed) Comprehensive organic synthesis, vol 3. Pergamon Press, Oxford, pp 521–549

  17. Chinchilla R, Najera C (2007) Chem Rev 107:874–922

    Article  CAS  PubMed  Google Scholar 

  18. Doucet H, Hierso J-C (2007) Angew Chem Int Ed 46:834–871

    Article  CAS  Google Scholar 

  19. Chinchilla R, Najera C (2011) Chem Soc Rev 40:5084–5121

    Article  CAS  PubMed  Google Scholar 

  20. Doucet H, Hierso J-C (2007) Angew Chem 119:850–888

    Article  Google Scholar 

  21. Gazvoda M, Virant M, Pevec A, Urankar D, Bolje A, Kočevar M, Košmrlj J (2016) Chem Commun 52:1571–1574

    Article  CAS  Google Scholar 

  22. Gazvoda M, Virant M, Pinter B, Kosmrlj J (2018) Nat Commun 9:4814

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dissanayake KC, Ebukuyo PO, Dhahir YJ, Wheeler K, He H (2019) Chem Commun 55:4973–4976

    Article  CAS  Google Scholar 

  24. Monnier F, Turtaut F, Duroure L, Taillefer M (2008) Org Lett 10:3203–3206

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Blanchard V, Danoun G, Zhang Z, Tlili A, Zhang W, Monnier F, Van Der Lee A, Mao J, Taillefer M (2017) ChemistrySelect 2:11599–11602

    Article  CAS  Google Scholar 

  26. Mao J, Guo J, Fang F, Ji S (2008) Tetrahedron 64:3905–3911

    Article  CAS  Google Scholar 

  27. Shanmugam M, Sagadevan A, Charpe VP, Pampana VKK, Hwang KC (2019) Chemsuschem 12:1–7

    Article  Google Scholar 

  28. Arundhathi KV, Vaishnavi P, Aneeja T, Anilkumar G (2023) RSC Adv 13:4823–4834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heuze K, Mery D, Gauss D, Astruc D (2003) Chem Commun 2003:2274–2275

    Article  Google Scholar 

  30. Saito S, Ohtani S, Miyaura N (1997) J Org Chem 62:8024–8030

    Article  CAS  PubMed  Google Scholar 

  31. Zim D, Lando VR, Dupont J, Monteiro AL (2001) Org Lett 3:3049–3051

    Article  CAS  PubMed  Google Scholar 

  32. Beletskaya IP, Cheprakov AP (2004) Coord Chem Rev 248:2337–2364

    Article  CAS  Google Scholar 

  33. Cheng LJ, Mankad NP (2020) Chem Soc Rev 49:8036–8064

    Article  CAS  PubMed  Google Scholar 

  34. Beletskaya IP, Cheprakov AP (2012) Organometallics 31:7753–7808

    Article  CAS  Google Scholar 

  35. Siemsen P, Livingston RC, Diederich F (2000) Angew Chem Int Ed 39:2632–2657

    Article  CAS  Google Scholar 

  36. Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M (2002) Chem Rev 102:1359–1470

    Article  CAS  PubMed  Google Scholar 

  37. Ley SV, Thomas AW (2003) Angew Chem Int Ed 42:5400–5449

    Article  CAS  Google Scholar 

  38. Hill NJ, Bowman MD, Esselman BJ, Byron SD, Kreitinger J, Leadbeater NE (2014) J Chem Educ 9:1054

    Article  Google Scholar 

  39. Monguchi Y, Sakai K, Endo K, Fujita Y, Niimura M, Yoshimura M, Mizusaki T, Sawama Y, Sajiki H (2012) ChemCatChem 4:546

    Article  CAS  Google Scholar 

  40. Liang Q, Xing P, Huang Z, Dong J, Sharpless KB, Li X, Jiang B (2015) Org Lett 17:1942

    Article  CAS  PubMed  Google Scholar 

  41. Garrett CE, Prasad K (2004) Adv Synth Catal 346:889

    Article  CAS  Google Scholar 

  42. Borhade SR, Waghmode SB (2011) Beilstein J Org Chem 7:310–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Patil SP, Jadhav SN, Inamdar FA, Ameen MA, Rode CV, Rajmane AS, Kumbhar AS (2023) Chem Pap. https://doi.org/10.1007/s11696-023-02885-2

    Article  Google Scholar 

  44. Kumbhar A, Jadhav S, Kamble S, Rashinkar G, Salunkhe R (2013) Tetrahedron Lett 54:1331–1337

    Article  CAS  Google Scholar 

  45. Jadhav SN, Kumbhar AS, Rode CV, Salunkhe RS (2016) Green Chem 18:1898–1911

    Article  CAS  Google Scholar 

  46. Rajmane A, Bandal R, Shirke S, More U, Patil S, Kumbhar A (2023) J Mol Liq 391:123247. https://doi.org/10.1016/j.molliq.2023.123247

    Article  CAS  Google Scholar 

  47. Rajmane A, Jadhav D, Bagade K, Patil S, Kumbhar A (2023) Res Chem Intermed. https://doi.org/10.1007/s11164-023-05147-8

    Article  Google Scholar 

  48. Hengne AM, Rode CV (2012) Green Chem 14:1064–1072

    Article  CAS  Google Scholar 

  49. Zhu J, Ma L, Feng J, Geng T, Wei W, Xie J (2018) J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-018-9635-6

    Article  Google Scholar 

  50. Wang L, Zhu W, Zheng D, Yu X, Cui J, Jia M, Zhang W, Wang Z (2010) React Kinet Mech Catal 101:365–375

    Article  CAS  Google Scholar 

  51. Morales J, Caballero A, Holgado JP, Espinos JP, Gonza´lez-Elipe AR (2002) J Phys Chem B 106:10185–10190

    Article  CAS  Google Scholar 

  52. Fath RH, Hoseini SJ (2018) Appl Organometal Chem 32: e3964

  53. Xing GY, Xing GY, Zhu SY, Li DY, Liu PN (2023) J Phys Chem Lett 14(19):4462–4470

    Article  CAS  PubMed  Google Scholar 

  54. Mastalir Á, Molnár Á (2023) Molecules 28(4):1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Domyati D, Latifi R (2018) L. Tahsini. J Organomet Chem 860:98–105

    Article  CAS  Google Scholar 

  56. Fath RH, Hoseini SJ (2017) Appl Organometal Chem 32:e3964

    Article  Google Scholar 

  57. Mitrofanov AY, Murashkina AV, Martín-García I, Alonso F, Beletskaya IP (2017) Catal Sci Technol 7:4401–4412

    Article  CAS  Google Scholar 

  58. Kou J, Saha A, Stamper CB, Varma RS (2012) Chem Commun 48:5862–5864

    Article  CAS  Google Scholar 

  59. Yuan Y, Zhu H, Zhao D, Zhang L (2011) Synth 11:1792–1798

    Article  Google Scholar 

  60. Biffis A, Scattolin E, Ravasio N, Zaccheria F (2007) Tetrahedron Lett 48:8761–8764

    Article  CAS  Google Scholar 

  61. Sheikh S, Nasseri MA, Allahresani A, Varma RS (2022) Sci Rep 12:17986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Seema Patil, is grateful to the Department of Science and Technology (DST), New Delhi, Government of India, for the award of the Women Scientist Scheme-A (WOSA), File no. SR/WOS-A/CS-85/2018. Archana Rajmane is a BARTI-Fellow and grateful to the Government of Maharashtra (India) for the financial support under Dr. Babasaheb Ambedkar National Research Fellowship (BANRF-2020) [BANRF-2020/21-22/850 dated 16/02/2022].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjun S. Kumbhar.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7236 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.P., Rajmane, A.S., Jadhav, S.N. et al. ZrO2 Supported Cu Nanoparticles for Sonogashira and Ullmann Coupling Reactions Under Palladium-Free Conditions. Catal Lett 154, 3078–3090 (2024). https://doi.org/10.1007/s10562-023-04513-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04513-w

Keywords

Navigation