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Abstract
The direct epoxidation of mixed ethene and propene feedstocks using hydrogen peroxide over a titanium silicalite (TS-1) 
catalyst was investigated within a continuous trickle bed reactor operating in laboratory scale. Methanol was employed as the 
reaction solvent. This study aimed to streamline the epoxidation process by obviating the need for prior separation of alkenes, 
thereby enhancing process efficiency. An extensive array of operational parameters was explored in a trickle bed reactor, 
encompassing experimental parameters such as temperature, total pressure, hydrogen peroxide concentration, liquid flow rate, 
and gas composition. In contrast to prior investigations involving separate ethene and propene epoxidation, this study revealed 
a reduction in epoxide selectivity. The principal by-products observed were methoxy species, formed through the interaction 
between the epoxide and methanol, resulting in a ring-opening reaction. The influence of water on this ring-opening process 
was negligible. Notably, the tunability of the system was demonstrated, highlighting low temperature and elevated partial 
ethene pressure as pivotal factors for augmentingthe epoxide selectivity. The findings suggest that binary olefin mixtures 
exhibit diminished selectivity but improved stability. This behavior is potentially linked to the olefin solubility in methanol, 
or alterations in the surface species concentrations, typically associated with catalyst activity variations. These insights 
offer a valuable foundation for understanding and optimizing the direct epoxidation of mixed ethene and propene feedstock.
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1 Introduction

Epoxidation of light olefins attends a high interest at both 
academic and industrial levels [1, 2]. The epoxidation pro-
cess for ethene [3] and propene [1, 2] are well established. 
The dominant industrial process for ethane epoxidation is 
based on the use of oxygen as oxidation agent and a pro-
moted silver catalyst, whereas propene is epoxidized in 
liquid phase with hydrogen peroxide in the presence of 
titanium silicalite catalysts. Ethene epoxidation is a proven 
technology, but the selectivity is still a problem, because 
total oxidation of ethane to carbon dioxide is a competing 
parallel process. In the currently operating industrial pro-
cesses, ethene and propene are separated before further 
epoxidation treatment [1, 3]. However, nowadays a way to 
utilize biomass is to convert it to synthesis gas consisting 
mainly of carbon monoxide and hydrogen [4]. By applying 
the Fischer–Tropsch concept on the synthesis gas, a mixture 
of alkenes is obtained, which makes it attractive for the utili-
zation of these mixtures directly, without any pre-separation. 

Since the discovery of the titanium silicalite catalyst TS-1 
ca. 40 years ago [5], the liquid-phase epoxidation of pro-
pene has been studied [6–13]. However, the epoxidation of 
ethene under similar conditions has been dedicated mainly 
to compare the catalyst performance [14–17]. Today, the 
hydrogen peroxide-propene oxide process or HPPO is an 
established industrial reality [1, 2], being a cost efficient 
and sustainable process. Nevertheless, recent research pub-
lished in open literature indicates that is possible to utilize 
an analogous concept for the epoxidation of ethene [18–21].

Nowadays TS-1 continues to be of high interest, recently 
the effort has been dedicated to the understanding of the 
material itself and the mechanism of this material in the 
epoxidation process. Recently the presence of dinuclear 
sites has been described and analyzed with NMR [22, 23]. 
Later on, new mechanisms have been screened with resolved 
experiments and modeling [24]. In the industrial arena, the 
utilization of titanium silicate for propylene epoxidation con-
tinues in evolution. Recently, Sumimoto Chemicals devel-
oped a process, where the epoxidation process is performed 



2103Epoxidation of Light Olefin Mixtures with Hydrogen Peroxide on TS-1 Catalyst  

1 3

as a reaction between the propene and cumene hydroperox-
ide on titanium silicate and this process is targeting produc-
tion volumes exceeding 1 million tons per year [2]. However, 
many new applications of the titanium silicalites have been 
developed, e.g. epoxidation of allyl alcohol [25, 26] and the 
oxidation of limonene [27].

The TS-1 material is a Ti containing zeolite with MFI 
structure [5], where titanium has a tetrahedral structure and 
it is embedded in the silica matrix [2]. The TS-1 material 
is produced via hydrothermal methods. However, the prep-
aration of titanium silicates is an extensive topic, among 
the preparations it is possible to find sol–gel, coprecipita-
tion, grafting, and others [2]. For the present investigation 
a commercial TS-1 hydrothermally produced was utilized. 
Nonetheless, in nowadays many strategies to improve the 
Ti-based heterogenous catalyst have been proposed [28–32], 
such as support on silica the titanium-based catalyst [25], 
tuning the titanium silicate crystal size [26] and porosity 
[27], enhancing the surface hydrophobicity [28], utilizing 
amorphous Ti–SiO2 [29].

Studies on the epoxidation of mixtures do not exist in 
the classical literature. However, recently we have investi-
gated the epoxidation of binary (propene and butene) and 
ternary (ethene, propene and 1-butene) mixtures in a labo-
ratory-scale trickle bed reactor [19]. The results displayed a 
high catalyst activity and selectivity for binary and ternary 
mixtures. The production of ring-opening by-products was 
suppressed achieving in most of the conditions a complete 
selectivity to epoxides.

The present work is devoted to the epoxidation of binary 
mixtures of ethene and propene. The broad range of experi-
mental conditions comprised the changes in temperature, 
pressure, flow rates and concentrations. This will allow to 
observe that not all the mixtures behave in the same way and 
the correlation with a previous study.

2  Experimental Section

2.1  Chemicals

The gases were nitrogen (AGA), ethene (AGA) and propene 
(AGA). Hydrogen peroxide (> 30 wt%, Fisher Chemicals), 
methanol (> 99.9 wt%, Sigma-Aldrich), 1-methoxyethanol 
(> 99.5 wt%, Sigma-Aldrich), ethene glycol (> 99.5 wt%, 
Fluka), propene oxide (99.9%, Sigma-Aldrich), 1-methoxy-
2-propanol (> 99.5%, Sigma-Aldrich), ferroin indicator (0.1 
wt%, Sigma-Aldrich), cerium (IV) sulphate solution (0.1 M, 
Honeywell) and propene glycol (> 99.5%, Sigma-Aldrich) 
were used without further purification. Commercial tita-
nium-silicalite (TS-1) of ACS material type B was employed 
as the heterogeneous catalyst.

2.2  Experimental Equipment and Procedures

The experimental set-up is illustrated in Fig. 1. The gas phase 
consisted of a mixture of nitrogen, ethene and propene fed 
into the reactor through three different mass flow controllers 
(MFC-1, MFC-2 and MFC-3). At the same time, a solution of 
hydrogen peroxide, water and methanol was entered into the 
reactor through a HPLC pump. The reactor had an internal 
diameter and length of 1.5 and 34 cm, respectively. The cata-
lyst bed comprised 1 g the commercial TS-1 catalyst diluted in 
20 g of quartz sand. The pressure was controlled by Equilibar 
U3L Ultra Low Flow Back Pressure Regulator (PC-1). In the 
downstream, a pressure controller at a gas–liquid separator was 
located. The gas phase passed a condenser at 0 °C, towards the 
online Micro Gas Chromatograph (Agilent 490 Micro GC). 
Liquid-phase samples were collected from the bottom of the 
liquid–gas separator and analyzed offline via a gas chromato-
graph (Agilent 6890N GC). The chemical analysis and calibra-
tions were carried out as reported in previous work in ethene 
[20] and propene [33] epoxidation.

2.3  Experimental Program

The experimental program for the ethene and propene mix-
tures is displayed in Table 1. Step changes of the reactants 
were introduced at the reactor inlet and the experiment was 
continued until a steady state was reached. The main experi-
mental parameters studied were temperature, total pressure, 
partial pressures of reactants, liquid flow rate and hydrogen 
peroxide concentration.

The yields of the products were defined as

where F denotes the flow of amount of substance (molar 
flow).

The product selectivity was calculated from

The reactant conversion is related to the yield and 
selectivity,

(1)Product yield =
Fproduct

F
0 olefin

(2)Product selectivity =
Fproduct

Fproducts(epoxide+glycol+methoxy)

(3)Conversion =
Epoxide yield

Epoxide selectivity
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3  Experimental Results and Discussion

3.1  Titanosilicate Catalyst

The TS-1 of ACS materials was the catalyst employed: 
CAS No 13463-67-7 (titanium dioxide)/7621-86-9 (silicon 
dioxide); the microporous titanosilicate molecular sieve 
had been prepared by a hydrothermal method [20] with a 
ratio Si/Ti ≥ 25. The titanium in the material displays a tet-
rahedral coordination and it is embedded in the matrix of 
the silicon structure. The Micromeritics 3 Flex equipment 
was utilized to measure the surface area, pore size distribu-
tion and pore volume of the catalyst material with nitrogen 
physisorption. The catalyst sample was degassed two times 
before the measurement: first ex-situ for the period of 18 h 
at 180 °C and 0.1 mbar, followed by an in-situ degassing at 
180 °C and 0.05 mbar. For the TS-1 material, the surface 
area (Dubinin–Radushkevich method) was 450  m2/g, the 
average pore size was 0.66 nm and the pore volume was 
0.42  cm3/g, as determined by the nitrogen physisorption 
measurements.

3.2  Epoxidation of Ethene and Propene Mixture

In the experimental work, the reactions displayed in 
Scheme 1 were expected to be present in the ethene and 
propene epoxidation networks in similar ways. The olefin 
reacts with hydrogen peroxide to yield the alkene oxide (the 

epoxide). Later on, the epoxide species can undergo con-
secutive reactions, where two main ring-opening products 
are expected, a glycol and a methoxy species. The presence 
of further polymerization and condensation products has not 
been reported in literature[19, 20, 33]. In this work, the pres-
ence of glycols was not observed as ring-opening products, 
while the ring-opening products were always the methoxy 
species. The solvent utilized was methanol, because, it has 
demonstrated a higher activity with the TS-1 catalyst specifi-
cally [6, 34–36].

The total number of experiments was 16 with a total of 
c.a. 100 h of time on stream. During the entire period the 
catalyst did not suffer deactivation. Nonetheless, in order to 
clean the catalyst bed after each experiment, the catalyst was 
flushed with methanol during 1 h, no organic components 
were detected in the outflow after the flushing procedure.

3.2.1  Temperature Effect

The temperature effect on the reactant conversion and the 
product distribution was studied at 15–55 °C. The tem-
perature domain was selected, because the decomposition 
of hydrogen peroxide is enhanced at temperatures exceed-
ing 55 °C [33]. The pressure was kept constant during the 
experiments carried out at 4.5 bar. The results suggest a 
high activity of propene, while the conversion of ethene dis-
played to be similar to the previously reported studies [18, 
20]. An explanation to this observation could be the low 

Fig. 1  Experimental set-up for olefin epoxidation
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partial pressure of propene in the gas mixture. Important 
changes in the activity for propene with the change in the 
partial pressure has been reported [33], where the conversion 
of ethene has displayed to be constant at different partial 
pressures [20].

The epoxide selectivities displayed to be relatively low 
in most of the experiments. The highest selectivity was 
achieved at 15 °C with 64% for ethene and ca. 94% for pro-
pene. Nevertheless, these selectivities are lower than those 
reported for the single molecule epoxidation experiments 
[20, 33]. The results suggest a completely different behavior 
compared to the mixtures of propene and 1-butene and the 
ternary mixture of ethene- propene-butane: these complex 
systems displayed epoxide selectivities exceeding 90% [19] 
(Fig. 2).

3.2.2  Effect of Liquid Flow Rate

The effect of the liquid flow rate was studied between 0.5 
and 2 ml/min. The liquid phase comprised of 2 wt%  H2O2, 
5 wt%  H2O and 93 wt% of methanol. The pressure and the 
temperature were kept constants at 4.5 bar and 45 °C. The 
results suggest a high activity for propene, while, for ethene, 
small changes from 0.5 to 1 ml/min were noticed. The results 

correlate with the previously reported ones for the results of 
single olefins [20, 33].

An increase of the epoxide selectivity was observed with 
the increase of the liquid flow rates. This trend has been 
observed previously in the epoxidation of single olefins [20, 
33]. Nevertheless, the selectivities were lower than for other 
mixtures studied previously [19] (Fig. 3).

3.2.3  Effect of Hydrogen Peroxide Concentration

The effect of the hydrogen peroxide concentration on the 
reactant conversion and the product selectivity was studied 
by changing the hydrogen peroxide concentration between 1 
and 4 wt% in the feed. All the other experimental parameters 
were kept constant and the primary experimental results are 
shown in Fig. 4. The alkene conversion exhibited an increase 
with the increase in the inlet concentration of hydrogen per-
oxide. The selectivity of propene oxide decreased with the 
increase of the hydrogen peroxide concentration, which is 
in agreement with the results obtained for propene epoxida-
tion [33]. Nevertheless, the behavior of the ethene selectiv-
ity in the mixture suggests a minimum in the experimental 
results, which differs from the previously reported experi-
mental results under similar conditions [20]. However, the 
previously reported mixture experiments on alkene suggest a 

Scheme 1  Reaction scheme for 
ethene and propene epoxidation
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different behavior from ethene epoxidation [19]. The results 
of this indicate that the optimal operation conditions remain 
at low concentrations of hydrogen peroxide as demonstrated 
in Fig. 4. However, this minimum could be related to a 
higher conversion in the beginning of the catalytic bed. Due 
to this, the epoxide selectivity experiences a decrease at 2 
wt%  H2O2. While, at 4 wt% of hydrogen peroxide the high 
concentration of the peroxide does not allow a high amount 
of side reaction over the surface of the catalyst, because, the 
 H2O2 is producing hydroperoxo species with the titanium 
site.

3.2.4  Pressure Effect

The effect of the total pressure was investigated at 
2.5–8.5 bar. Figure 5 indicates an increase of the activity 
and selectivity for the ethene epoxide with the increase in the 
pressure. On the other hand, propene displayed a constant 
high activity but the epoxide selectivity decreased with the 
increase of the total pressure. The conversion results display 
a similar behavior compared to the single olefin epoxida-
tion [20, 33]. However, the selectivities are different. This 
behavior is positive for ethene due the higher concentra-
tion of ethene being present during the residence time in the 
reactor device. Nonetheless, the results are negative for the 
propene epoxidation. This rather complex behavior can be 
explained due the solubility of propene in the liquid phase. 
The increase in the pressure generates a higher amount of 
propene to be absorbed in the liquid phase at the start of the 
catalytic bed, which initiates a higher rate of the propene 
epoxidation step. Consequently, a higher residence time for 
propene oxide becomes available for undergoing ring open-
ing reactions.

3.2.5  Effect of Gas Composition

The effect of the gas composition was studied under three 
experimental conditions, for ethene and propene mixtures. 
The results suggested that the increase in the propene con-
centration decreases the conversion, but increasing the 
propene oxide selectivity. The ethene conversion results 
suggest a higher activity as the system was performed with 
an equimolar mixture. Nevertheless, as in the propene, the 
selectivity of ethene oxide was higher when the partial pres-
sure of ethene was higher. The maximum observed in these 
experiments can be related to the changes in the absorp-
tion in the liquid phase affecting the amount of each olefin 
present in the liquid phase. Nonetheless, we observed that 
for each olefin the most selective conditions were obtained 
when the concentrations of them were the highest in the 
system (Fig. 6).

3.2.6  Discussion of Experimental Results

The literature devoted to titanium silicate catalysts indi-
cates that the activity decrease as the olefin chain length 
increases [37]. Nevertheless, the most active single C2 to 
C4 α-olefin reaction at the steady state is propene [33], fol-
lowed by ethene [18, 20]. However, as the chain becomes 
bigger than propene the activity drops [38–41]. Nonetheless, 
the selectivity increases as the olefin chain length increases 
[18, 20, 33, 38].

The epoxidation of the α-olefin mixtures exhibited a 
different behavior. The epoxidation of a binary mixture of 
propene and 1-butene displayed a higher activity for the 
longer α-olefin [19] and the same is observed for the present 
work where propene is more active than ethene. Moreover, 
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Fig. 5  Conversion (a) and selectivity (b) of a mixture of ethene and propene at different total pressures at 45 °C. The flow of ethene and propene 
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the study of ternary mixtures displayed a high activity for 
1-butene followed by propene and ethene [19].

The behavior of the mixture experiments indicates a trend 
towards the epoxidation of longer carbon chains. This behav-
ior is independent of the number of α-olefins in the mixture 
(binary or ternary) or the reaction conditions, the reaction 
systems (ethene/propene, propene/1-butene [19] and ethene/
propene/1-butene [19]) have been screened within a broad 
set of conditions confirming that the longest chain is the 
most active one.

A relevant element to be considered is the epoxide selec-
tivity in these systems. The ethene-propene system exhibited 
low selectivities compared to their single olefin epoxidation 
experiments. For the propene-1-butene system, the selectiv-
ity was similar to the propene epoxidation with a 90% selec-
tivity [19]. The ternary mixture exhibited almost a complete 
selectivity to epoxides [19].

The epoxidation mixture seems to behave closer to the 
longest olefin in the system. This can be observed for binary 
and ternary mixtures. The observation can be related to two 
elements. First, the solubility of the α-olefin in methanol 
increases as the chain becomes longer or to the interactions 
of reactants and products with the surface of the material is 
increased.

The encapsulation of 1-butene products in the pores of 
TS-1 has been discussed in literature [38, 40, 41] as the 
catalyst deactivation caused by products such as propene 
oxide on the titanium silicate material [42]. Nonetheless, 
the study of binary mixtures could indicate a decrease in 
these negative interactions, because, it is not possible to 
observe any deactivation reported for these molecules. How-
ever, the presence of a second molecule competing for the 
epoxidation suggests a decrease in the alkene conversion. 
For ethene and propene and for propene and 1-butene, these 

two systems exhibited lower selectivities than observed in 
the corresponding single molecule epoxidation experiments. 
However, the catalyst stability was better. On the contrary, 
in the ternary experiments, both the selectivity and stability 
were improved compared to the systems of single olefins. 
Therefore, it is highly probable that the presence of a sec-
ond or a third molecule can affect the concentrations on the 
surface of the titanium silicate catalyst, by decreasing the 
deactivation by encapsulation, but, nonetheless, decreasing 
the selectivity.

4  Conclusions

The epoxidation of binary ethene and propene mixtures with 
hydrogen peroxide on the commercially available titanium 
silicate catalyst (TS-1) was investigated within a broad range 
of experimental conditions, by changing the temperature, 
pressure, volumetric flow rate and initial concentration.

The main reaction products were the desired epoxidized 
alkenes, but considerable amounts of secondary ring-open-
ing by-products were formed. However, even if the epoxida-
tion process is highly tunable on the reaction conditions, the 
epoxide selectivity displayed to be lower than for the other 
mixtures reported previously. The system displayed to be 
more selective at high liquid flow rates and low tempera-
tures, promoting low reaction temperatures, which is in the 
agreement with the reaction scheme of alkene epoxidation 
to epoxides and secondary products.

The results suggest that binary mixtures display a 
decrease in the selectivity but an increase in the stability, 
while, ternary mixtures are more selective and stable. It was 
concluded that it is possible that correlate this behavior with 
the solubility of the olefins in the solvent or with changes in 
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the surface species (products or by-products) concentrations 
usually related to changes on the activity of the catalyst.
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