Skip to main content
Log in

Esterase-Immobilized Sea-Urchin-Like Fe3O4 Nanoparticles for Chloramphenicol Palmitate Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Mostly, enzyme activity is greatly reduced after immobilization due to unfavourable conformational change occurred during the immobilization procedure. Herein, we report a novel magnetic nanoparticle-based platform for Bacillus altitudinis esterase (EstBASΔSP) immobilization using dialdehyde starch (DAS) as a molecular glue. First polydopamine (PDA) was coated on the surface of Fe3O4 nanoparticles (Fe3O4 NPs) with a controllable thickness. Thereafter, PDA-functionalized Fe3O4 NPs were modified with dialdehyde starch (DAS) to provide the aldehyde groups, which was employed as a glue to further fix the EstBASΔSP on particle surface via covalent bonding, resulting in the formation of a sea-urchin-like esterase-immobilized magnetic nanoparticle. The obtained nanoparticles (Fe3O4@PDA/DAS) achieved an enzyme load of 162.72 mg/g and retained 65.7% of its specific enzyme activity, demonstrating better thermal and storage stability compared with the “polydopamine-coated” nanoparticles (Fe3O4@PDA) and free EstBASΔSP. In addition, in a chloramphenicol palmitate synthesis, the immobilized esterase (EstBASΔSP-Fe3O4@PDA/DAS) gave 99% conversion and purity in 21 h (chloramphenicol: 0.15 M, enzyme dosage: 50 mg/mL) and retained over 80% of its activity after 12 cycles. This study provides a general strategy for immobilizing enzyme on nanoparticles and employs them as a novel platform for enzyme-mediated biocatalytic reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li ZX, Ding Y, Li SM, Jiang YB, Liu Z, Ge J (2016) Highly active, stable and self-antimicrobial enzyme catalysts prepared by biomimetic mineralization of copper hydroxysulfate. Nanoscale 8:17440–17445

    Article  CAS  PubMed  Google Scholar 

  2. El-Shishtawy RM, Ahmed NSE, Almulaiky YQ (2021) Immobilization of catalase on chitosan/ZnO and chitosan/ZnO/Fe2O3 nanocomposites: a comparative study. Catalysts 11:820

    Article  CAS  Google Scholar 

  3. Almulaiky YQ, Almaghrabi O (2022) Polyphenol oxidase from Coleus forskohlii: purification, characterization, and immobilization onto alginate/ZnO nanocomposite materials. Catal Lett. https://doi.org/10.1007/s10562-022-03916-5

    Article  Google Scholar 

  4. Almulaiky Y, El-Shishtawy RM, Al-Harbi S (2021) Hydroxyapatite-decorated ZrO2 for α-amylase immobilization: toward the enhancement of enzyme stability and reusability. Int J Biol Macromol 167:299–308

    Article  CAS  PubMed  Google Scholar 

  5. Almulaiky YQ, Al-Harbi SA (2021) Preparation of a calcium alginate-coated polypyrrole/silver nanocomposite for site-specific immobilization of polygalacturonase with high reusability and enhanced stability. Catal Lett 152:28–42

    Article  Google Scholar 

  6. Thangaraj B, Solomon PR (2019) Immobilization of lipases—a review Part II: carrier materials. Chembioeng Rev 6:167–194

    Article  CAS  Google Scholar 

  7. Al-Najada AR, Almulaiky YQ, Aldhahri M (2019) Immobilisation of α-amylase on activated amidrazone acrylic fabric: a new approach for the enhancement of enzyme stability and reusability. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

  8. Aldhahri M, Almulaiky YQ, El-Shishtawy RM (2021) Ultra-thin 2D CuO nanosheet for HRP immobilization supported by encapsulation in a polymer matrix: characterization and dye degradation. Catal Lett 151(1):232–246

    Article  CAS  Google Scholar 

  9. Mohamed SA, Al-Harbi MH, Almulaiky YQ (2017) Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles. Electron J Biotechnol 27:84–90

    Article  CAS  Google Scholar 

  10. Yqaa B, Ah C (2019) A novel peroxidase from Arabian balsam (Commiphora gileadensis) stems: Its purification, characterization and immobilization on a carboxymethylcellulose/Fe3O4 magnetic hybrid material. Int J Biol Macromol 134:767–774

    Google Scholar 

  11. Wang Q, Yin BC, Ye BC (2016) A novel polydopamine-based chemiluminescence resonance energy transfer method for microRNA detection coupling duplex-specific nuclease-aided target recycling strategy. Biosens Bioelectron 80:366–372

    Article  CAS  PubMed  Google Scholar 

  12. Xu ZL, Miyazaki K, Hori T (2016) Fabrication of polydopamine-coated superhydrophobic fabrics for oil/water separation and self-cleaning. Appl Surf Sci 370:243–251

    Article  CAS  Google Scholar 

  13. Liu YL, Ai KL, Lu LH (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115

    Article  CAS  PubMed  Google Scholar 

  14. Hou C, Zhu H, Li YF, Li YJ, Wang XY, Zhu WW, Zhou RD (2015) Facile synthesis of oxidic PEG-modified magnetic polydopamine nanospheres for Candida rugosa lipase immobilization. Appl Microbiol Biotechnol 99:1249–1259

    Article  CAS  PubMed  Google Scholar 

  15. Liu JS, Xu H, Tang X, Xu JH, Jin Z, Li H, Wang SH, Gou JX, Jin XQ (2017) Simple and tunable surface coatings via polydopamine for modulating pharmacokinetics, cell uptake and biodistribution of polymeric nanoparticles. RSC Adv 7:15864–15876

    Article  CAS  Google Scholar 

  16. Sakeer K, Scorza T, Romero H, Ispas-Szabo P, Mateescu MA (2017) Starch materials as biocompatible supports and procedure for fast separation of macrophages. Carbohyd Polym 163:108–117

    Article  CAS  Google Scholar 

  17. Para A, Karolczyk-Kostuch S (2002) Metal complexes of starch dialdehyde dithiosemicarbazone. Carbohyd Polym 50:151–158

    Article  CAS  Google Scholar 

  18. Wongsagon R, Shobsngob S, Varavinit S (2005) Preparation and physicochemical properties of dialdehyde tapioca starch. Starch-Starke 57:166–172

    Article  CAS  Google Scholar 

  19. Jiang XL, Yang Z, Peng YF, Han BQ, Li ZY, Li XH, Liu WS (2016) Preparation, characterization and feasibility study of dialdehyde carboxymethyl cellulose as a novel crosslinking reagent. Carbohyd Polym 137:632–641

    Article  CAS  Google Scholar 

  20. Basnyat B (2004) “Preliminary report on the beneficial effect of chloromycetin in the treatment of typhoid fever”—a commentary. Wilderness Environ Med 15:216–217

    Article  PubMed  Google Scholar 

  21. Fernandes RF, Cantaruti AAB, Porto AB, Ferreira GR, Flores S, Correa CC, Dos Santos HF, de Oliveira LFC, Machado FC (2017) Vibrational spectroscopic and supramolecular studies applied to a chloramphenicol derivative. Vib Spectrosc 88:63–70

    Article  CAS  Google Scholar 

  22. Ottolina G, Carrea G, Riva S (1990) Synthesis of ester derivatives of chloramphenicol by lipase-catalyzed transesterification in organic solvents. J Org Chem 55:2366–2369

    Article  CAS  Google Scholar 

  23. Tomaszewski T (1951) Side-effects of chloramphenicol and aureomycin*. BMJ 1:388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bizerra AMC, Montenegro TGC, Lemos TLG, de Oliveira MCF, de Mattos MC, Lavandera I, Gotor-Fernandez V, de Gonzalo G, Gotor V (2011) Enzymatic regioselective production of chloramphenicol esters. Tetrahedron 67:2858–2862

    Article  CAS  Google Scholar 

  25. Dong FY, Li LM, Lin L, He DN, Chen JW, Wei W, Wei DZ (2017) Transesterification synthesis of chloramphenicol esters with the lipase from Bacillus amyloliquefaciens. Molecules 22:1523

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lv DS, Xue XT, Wang N, Wu Q, Lin XF (2004) Enzyme catalyzed synthesis of some vinyl drug esters in organic medium. Prep Biochem Biotechnol 34:97–107

    Article  PubMed  Google Scholar 

  27. Wang R, Zhang YF, Huang JH, Lu DN, Ge J, Liu Z (2013) Substrate imprinted lipase nanogel for one-step synthesis of chloramphenicol palmitate. Green Chem 15:1155–1158

    Article  CAS  Google Scholar 

  28. El-Kersh TA, Plourde JR (1980) Biotransformation of antibiotics. Eur J Appl Microbiol Biotechnol 10:317–326

    Article  CAS  Google Scholar 

  29. Kumar R, Mahajan S, Kumar A, Singh D (2011) Identification of variables and value optimization for optimum lipase production by Bacillus pumilus RK31 using statistical methodology. New Biotechnol 28:65–71

    Article  CAS  Google Scholar 

  30. Hong YY, Zhao H, Pu CL, Zhan QL, Sheng QY, Lan MB (2018) Hydrophilic phytic acid-coated magnetic graphene for titanium(IV) immobilization as a novel hydrophilic interaction liquid chromatography-immobilized metal affinity chromatography platform for glyco- and phosphopeptide enrichment with controllable selectivity. Anal Chem 90:11008–11015

    Article  CAS  PubMed  Google Scholar 

  31. Hou C, Qi ZG, Zhu H (2015) Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Colloids Surf B 128:544–551

    Article  CAS  Google Scholar 

  32. Wang J, Liu HY, Leng F, Zheng LL, Yang JH, Wang W, Huang CZ (2014) Autofluorescent and pH-responsive mesoporous silica for cancer-targeted and controlled drug release. Microporous Mesoporous Mater 186:187–193

    Article  CAS  Google Scholar 

  33. Hofreiter BT, Alexander BH, Wolff IA (1955) Rapid estimation of dialdehyde content of periodate oxystarch through quantitative alkali consumption. Anal Chem 27:1930–1931

    Article  CAS  Google Scholar 

  34. Chen C, Sun W, Lv HY, Li H, Wang YB, Wang P (2018) Spacer arm-facilitated tethering of laccase on magnetic polydopamine nanoparticles for efficient biocatalytic water treatment. Chem Eng J 350:949–959

    Article  CAS  Google Scholar 

  35. Gao W, Wu K, Chen L, Fan H, Zhao Z, Gao B, Wang H, Wei D (2016) A novel esterase from a marine mud metagenomic library for biocatalytic synthesis of short-chain flavor esters. Microb Cell Fact 15:41

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dong FY, Tang XD, Yang XH, Lin L, He DN, Wei W, Wei DZ (2019) Immobilization of a novel ESTBAS esterase from Bacillus altitudinis onto an epoxy resin: characterization and regioselective synthesis of chloramphenicol palmitate. Catalysts 9:620

    Article  CAS  Google Scholar 

  37. Zhang LM, Zhang S, Dong F, Cai WT, Shan J, Zhang XB, Man SL (2014) Antioxidant activity and in vitro digestibility of dialdehyde starches as influenced by their physical and structural properties. Food Chem 149:296–301

    Article  CAS  PubMed  Google Scholar 

  38. Wang YX, Wang SH, Niu HY, Ma YR, Zeng T, Cai YQ, Meng ZF (2013) Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1283:20–26

    Article  CAS  PubMed  Google Scholar 

  39. Gao F, Qu H, Duan YY, Wang J, Song X, Ji TJ, Cao LX, Nie GJ, Sun SQ (2014) Dopamine coating as a general and facile route to biofunctionalization of superparamagnetic Fe3O4 nanoparticles for magnetic separation of proteins. RSC Adv 4:6657–6663

    Article  CAS  Google Scholar 

  40. Yigitoglu M, Temocin Z (2010) Immobilization of Candida rugosa lipase on glutaraldehyde-activated polyester fiber and its application for hydrolysis of some vegetable oils. J Mol Catal B 66:130–135

    Article  CAS  Google Scholar 

  41. Daugs ED (2000) The preparation and isolation of chloramphenicol palmitate in toluene. Org Process Res Dev 4:301–304

    Article  CAS  Google Scholar 

  42. Acharya P, Rajakumara E, Sankaranarayanan R, Rao NM (2004) Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. J Mol Biol 341:1271–1281

    Article  CAS  PubMed  Google Scholar 

  43. Wang FH, Zhang H, Zhao ZX, Wei RX, Yang B, Wang YH (2017) Recombinant Lipase from Gibberella zeae exhibits broad substrate specificity: a comparative study on emulsified and monomolecular substrate. Int J Mol Sci 18:1535

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant No. C31570795), the Shanghai outstanding technical leaders plan 19XD1431800, the National Natural Science Foundation of China (Grant Nos. 81830052 and 81530053) and Shanghai Key Laboratory of Molecular Imaging (Grant No. 18DZ2260400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wei.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2004 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, F., Lin, L., Su, Y. et al. Esterase-Immobilized Sea-Urchin-Like Fe3O4 Nanoparticles for Chloramphenicol Palmitate Synthesis. Catal Lett 153, 1974–1987 (2023). https://doi.org/10.1007/s10562-022-04136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04136-7

Keywords

Navigation