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Abstract
In this work, a functionalized gallium metal–organic framework with active dioxo-molybdenum (VI) centers was evaluated as 
a catalyst in the epoxidation of soybean oil using tert-butyl-hydroperoxide as an oxidizing agent. The influence of the reaction 
time, temperature, and concentration of the oxidizing agent was studied, and it was demonstrated that the highest epoxide 
selectivity was obtained at 110 °C after 4 h of reaction (29% conversion and 91% selectivity) using a soybean oil/oxidizing 
agent ratio of 1/2. The stability of the metal–organic framework was confirmed by infrared spectroscopy, X-ray powder 
diffraction, thermogravimetric analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy EDS. 
The stability tests demonstrated that the catalyst could be reused in the catalytic process for the recovery of vegetable oils.
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1  Introduction

Renewable raw materials for the production of biodegrad-
able materials have become a fundamental strategy for a 
global sustainable future alternative to replace the use of oil 
and its derivatives, which represent one of the main sources 
of environmental pollution [1–3]. Vegetable oils are one of 
the most promising, cheap, and available types of renew-
able sources, currently becoming the focus of interest for 
the chemical industry, and considered as environmentally 
friendly starting materials for the development of new pro-
cesses and products [4–6].

Vegetable oils are products extracted from the seeds and/
or fruits of oleaginous plants such as soybeans, palm and 
sunflower [2, 3], which at the molecular level are made up 
of triglycerides, glycerol esters, and straight-chain fatty 
acids [7]. They are currently of great importance for indus-
try due to their use in food and in the production of biofuels 

[4, 8–10]. Because of the presence of unsaturation in their 
chemical structure, much research is focused on obtaining 
EVOs, which are used nowadays as precursors for the syn-
thesis of polyurethane foams [11–14], plasticizers-stabilizers 
of high-use polymers such as PVC [15–18] and as essential 
components for obtaining biodegradable lubricants [19, 20].

In industry, EVOs are obtained through the Prileschajew 
reaction, which is a homogeneous classical epoxidation 
reaction catalyzed by percarboxylic acids (R–COO–OH) 
synthesized in situ from mineral acids, and used as oxidiz-
ing agents [21]. As highly toxic reagents are used in this 
reaction, the generated chemical waste is difficult to handle. 
On the other hand, the low selectivity, caused by the open-
ing of the oxirane ring, leads to several by-products which 
decreases the process efficiency and increases the costs of 
the separation processes [3, 22, 23].

Various homogeneous catalysts have been proposed for 
this reaction, ranging from the use of enzymes to epoxidation 
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in the presence of polyoxometalates or coordination com-
plexes. [3, 24–30]. From these studies it was observed that 
catalysts based on active transition metal centers such as 
Ru, Co, Mo, Rh, and Ti showed a high reactivity using more 
environmental friendly oxidizing agents such as O2, H2O2, 
and TBHP [31–34]. Despite these advances, the problems 
associated with the recovery of the catalyst from the reaction 
medium, urged to examine heterogeneous catalysts such as 
ion exchange resins, clays, silicates, and inorganic oxides [3, 
35–38]. Moreover, the incorporation of successful homoge-
neous catalysts on the surface of other inorganic solids have 
also been examined [39–41]. In the epoxidation of soybean 
oil, different heterogeneous catalysts have been evaluated, 
such as the Amberlite-16 resin, which was able to achieve a 
selectivity close to 80% or a natural zeolite with a selectivity 
of 82% and conversion of 96%, but using performic acid and 
H2O2 with formic acid, respectively [42, 43].

In the specific case of molybdenum, it represents one of 
the most studied structures in selective oxidation processes 
using enzymes known as oxotransferases, in which the active 
dioxomolybdenum (MoVIO2) unit is involved in the oxygen 
atoms transfer processes [44–47]. Adapting these natural 
systems into analogous bio-inspired solid materials, MoVIO2 
active units have been incorporated into different supports 
such as TiO2, SiO2, and montmorillonite K10 through func-
tional groups present on the ligands of their respective com-
plexes. The obtained materials demonstrated to be highly 
selective in the oxidation of arylalkanes and epoxidation of 
both linear and cyclic alkenes. Moreover, their advantage 
of easy separation and reuse afterwards showed significant 
improvements in the conversion and selectivity compared 
to bulk catalysts doped or modified with transition metals 
[48–53].

Metal–organic frameworks better known as MOFs consist 
of metals linked systematically by organic ligands with suit-
able substituents [54, 55]. These alternating metal–ligand 
combinations result into highly crystalline solids with a 
defined topology, large internal surfaces that give rise to 
high specific surface areas (up to 7000 m2 g−1), low densi-
ties (up to 0.13 g-cm−3), and high metal content [56–61]. 
Additionally, the structural stability of the metal–organic 
framework and the functionality of the functional groups or 
heteroatoms present on the organic linker have been used 
for the post-synthetic functionalization of these materials 
with metals, or with catalytic centers [62, 63]. MOFs have 
been examined for a range of applications e.g. in the removal 
of pollutants [64–66], catalytic and photocatalytic coupling 
reactions [67–69] and CO2 cycloaddition with epoxides 
[70–72].

Regarding epoxidation reactions catalyzed by 
metal–organic structures, new solid materials are reported 
every day, but their applications are restricted to low molec-
ular weight unsaturated model molecules [55]. The novelty 

of this work was to evaluate the activity and stability of 
a metal–organic framework as a heterogenous catalyst in 
the epoxidation of unsaturated natural molecules with high 
molecular weight, which are of great industrial interest due 
to cheap and its availability as a renewable natural resource 
in Colombia and Latin-America. More specifically, it was 
examined the catalytic performance of the MoO2 catalytic 
sites incorporated in a metal–organic structure denoted as 
MoO2Cl2@COMOC-4, in the soybean oil epoxidation. Cur-
rently, different methods and catalysts are being studied to 
obtain epoxidized vegetable oils (EVO), seeking to replace 
highly harmful chemical agents and move towards more 
ecological and environmentally friendly processes [73–76]. 
To the best of our knowledge, this previously reported 
metal–organic framework functionalized with dioxo-molyb-
denum (VI) active center [77] represents the first example 
of this type of porous solids applied in the epoxidation of 
vegetable oils, resulting in an alternative oxidation catalyst 
with an enhanced selectivity. Moreover, compared to the 
conventional vegetable oil oxidation methods, the proposed 
method is also much greener than other processes.

2 � Experimental

All the experiments were performed using standard Schlenk 
techniques under an inert atmosphere. Scanning electron 
microscopy (SEM) images and energy-dispersive X-ray 
spectra (EDX) were obtained using a microscope FEI 
Quanta 200. Before analyses, the samples were metalized 
with a gold–palladium alloy using a Quorum Q150R ES 
metallizer. The surface area and porosity were determined 
from nitrogen (N2) gas adsorption isotherms, taken at 77 K 
with a Micromeretics ASAP 2010 adsorption analyzer in 
the P/P0 range of 1 × 10−5 to 0.99. Prior to the analyses, 
the solids were outgassed during 8 h at 110 °C and 1 µtorr. 
X-ray powder diffraction (XRPD) analyses were carried out 
using an X’Pert Pro MPD PANalytical equipment with Cu 
anode (Cu Kα radiation, λ = 1.54056 Å) and Bragg–Bren-
tano configuration. The FT-IR ATR spectra were obtained 
using a Shimadzu IR prestige 21 spectrophotometer (Colum-
bia, MD, USA). Diffuse reflectance UV–Vis spectra were 
recorded on a Hitachi U-3000 UV–Vis spectrophotometer. 
X-ray fluorescence (XRF) measurements were recorded with 
a NEX CG from Rigaku using a Mo-X-ray source. Differ-
ential Scanning Calorimetry (DSC) and Thermogravimet-
ric analysis (TGA) was carried out using a Mettler Toledo 
Model TGA-1 thermal analyzer in a temperature range of 
30–900 °C, under N2 at a heating rate of 10 °C min−1. A 
Bruker Avance 400 spectrometer was employed to measure 
the 1H NMR spectra of the collected samples (60 mg) dur-
ing catalytic experiments. The samples were dissolved in 
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deuterated chloroform (0.6 mL) containing TMS as internal 
standard.

2.1 � Synthesis of COMOC‑4

The synthesis of COMOC-4 was optimized at the gram 
scale based on a initially published procedure [61, 78]. 
Ga(NO3)3⋅H2O (1.2 g, 4.4 mmol) and 2,2’bipyridene-5,5’-
dicarboxylic acid (H2bpydc, 1.2 g, 5 mmol) were added to 
120 mL of DMF in a 250 mL Schlenk flask equipped with 
a magnetic stirrer. The mixture was heated to 110 °C and 
kept at this temperature for 0.5 h. Afterwards, the mixture 
was heated to 150 °C and held at this temperature for 48 h 
under gentle stirring. At the end of the reaction, an orange 
powder was separated by filtration and washed thoroughly 
with DMF, methanol, and acetone. In the following step, 
the as-synthesized MOF was suspended in DMF (0.5 g in 
50 mL DMF) and heated at 80 °C for 2 h after which it was 
collected through filtration, washed with DMF and acetone, 
and dried under vacuum.

3 � Synthesis of MoO2Cl2@COMOC‑4

MoO2Cl2@COMOC-4 was synthesized according to the pre-
viously published procedure [77]. Typically, 1.8 g MoO2Cl2 
was added to 75.0 mL of THF and stirred for 10 min at room 
temperature. The yellowish solution was filtrated to remove 
the solid impurities and evaporated up to dryness to obtain 
the MoO2Cl2 (THF)2 complex. The obtained complex was 
dissolved in 100 mL of THF, after which 2.5 g COMOC-4 
was added to this solution and vigorously stirred at room 
temperature for 2 h. The solid product was filtered, washed 
with acetone, and activated before use.

3.1 � Soybean Oil Epoxidation

The catalytic tests were carried out in a 25.0 mL round bot-
tom flask equipped with a reflux condenser containing 1.0 g 
of soybean oil (1.0 mmol, equivalent to 4.0 mmol of double 
bonds), 10.0 mL of toluene, 66.0 mg of MoO2Cl2@COMOC-4 
(0.04 mmol of Mo, equivalent to 1% of the double bonds pre-
sent in oil), and a 70% TBHP in aqueous solution used as the 
oxidizing agent. Several reaction parameters were examined 
including the substrate/TBHP ratio and the temperature. At the 
end of the required reaction time, the mixture was filtered, and 
the catalyst was separated and washed (initially with toluene 
and then with acetone to be dried under vacuum). Before reuse 
and respective characterization of the catalyst, the solid was 
left under stirring in toluene at room temperature for 12 h after 
which it was filtered and dried under vacuum at 110 °C for 
4 h. Consequently, the reaction mixture was subjected to a liq-
uid–liquid extraction with 4.0% saline solution (15.0 mL × 2) 

and 15.0% w/v sodium bisulfite solution (0.5 mL), in order to 
decompose the remaining oxidizing agent and remove its by-
products (tert-butyl alcohol), from the reaction mixture. After 
that the organic phase was separated, dried over anhydrous 
Na2SO4, and the solvent was removed by rotaevaporation to 
obtain an off-white viscous liquid.

3.2 � Analytical Quantification Methods

The monitoring of the epoxidation reaction was carried out 
by determination of the oxirane oxygen content (% O.O, 
expressed as grams of oxirane oxygen per 100 g of oil) and 
the iodine number (IY) (defined as g I2 per 100 g of oil) 
before and after each catalytic test. The I.Y was determined 
by the classical method of Wijs [79], while the % O.O was 
calculated by applying the AOCS Official Method CD 9–57 
[80]. The catalytic activity was evaluated by determination 
of the conversion, selectivity, and yield of the epoxidation 
reaction, using the following equations, where i and f repre-
sent initial and final values respectively:

The previously described catalytic activity parameters 
were validated by applying a second quantification method 
previously published using 1H NMR in CDCl3 [81]. The 
molecular weight (M) of the original soybean oil (equal to 
871.5 g-mol−1) was calculated from its 1H NMR spectrum 
(Fig. 1), using the following equation:

where NF is the normalization factor (the relative peak area 
of one hydrogen) calculated from the signal area associated 
with the four hydrogens of the methylene groups of the glyc-
erol moiety (signal B in Fig. 1).

The number of double bonds (ND) present in the ini-
tial soybean oil sample was determined by the following 
equation:

which was used to determine the percentage of conver-
sion, epoxidation, and selectivity according to [82]:

%Conversion =
moles C = Cconsumed

moles(C = C)i
x100 =

(I.Y)i − (I.Y)f

(I.Y)i
x100

%Selectivity =
moles C = C converted to epoxide

moles deC = C consumed
x100

%Epoxidation =
moles C = C converted to epoxide

(I.Y)i
x100

M =
15.034G

3NF
+

14.026(C + D + E + F + H

2NF

+
26.016(A − NF)

2NF
+ 173.1,

NDi =
A − NF

2NF
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where NDf is the number of double bonds that remain unre-
acted and K and L are the peak areas associated with the 
hydrogens of the epoxide groups that are identified by new 
signals at chemical shifts of 2.9 (monoepoxide) and 3.1 (die-
poxide) ppm, respectively.

4 � Results and Discussion

4.1 � Synthesis, Characterization, and Structural 
Information

The X-ray diffraction analysis of COMOC-4 confirmed 
its crystallinity which corresponds to an open architecture 
typically observed for MIL-47 and MIL-53 series but con-
structed by infinite chains of octahedral GaO4(OH)2 units, in 
which each Ga3+ ion is bound to four dicarboxy-bipyridine 
ligands and two µ2-trans hydroxide anions (Fig. 2).

After incorporation of MoO2Cl2, the main Bragg diffrac-
tion angles of COMOC-4 are preserved, but a slight decrease 
in the intensities of some peaks in the MoO2Cl2@COMOC-4 
diffractogram was observed, suggesting that the crystallin-
ity of the COMOC structure might be partially impaired in 
the post-functionalization process [83]. Additionally, new 

%Conversion =
NDi − NDf

NDi

x100,

%Epoxidation =
(K + L)∕2

NF × NDi

x100,

%Selectivity =
%Epoxidation

%Conversion
x100,

Bragg reflections (or splitting) have been identified close to 
the original ones at of lower intensity, originated by slight 
distortions in the shape and angle of the linkers because of 
the interaction between the Mo(VI) center and the chelating 
nitrogen atoms (about 2θ = 14°). The results obtained from 
nitrogen adsorption, infrared and UV–Vis diffuse reflectance 
spectroscopy for COMOC-4 and MoO2Cl2@COMOC-4 are 
in agreement with the previously reported data (see Support-
ing information, Figure S1-S4 and Table S1). BET surface 
areas and pore volumes are 742 m2/g and 1.66 cm3/g for 
COMOC-4 and 214 m2/g and 0.78 cm3/g for MoO2Cl2@
COMOC-4, reveling a partial deterioration of the textural 
properties as consequence of the incorporation of MoO2Cl2 
units. A quantity of 5.9% Mo in the MoO2Cl2@COMOC-4 
sample was determined by means of XRF. In other words, 
22% of bipyridine sites was loaded with the active dioxo-
molybdenum (VI) complex (the Mo/Ga molar ratio is 0.22) 
based on the empirical formula of the catalysts, namely 
C12H7N2Cl0.44GaMo0.22O4.44.

4.2 � Soybean Oil Epoxidation Reaction

The catalytic performance of the MoO2Cl2@COMOC-4 cat-
alyst was evaluated in the epoxidation of soybean oil using 
TBHP as oxygen donor agent. In the experimental design, 
the molar concentration of the oil (≈0.1 M) and the molar 
relation between the number of unsaturations and Mo active 
centers were kept constant (100:1), using toluene as solvent. 
To demonstrate the participation of the MoO2 active center 
and the role of the oxidizing agent in the catalytic epoxida-
tion process, different control experiments were carried out. 
An initial control reaction was performed at 80 °C in the 
presence of MoO2Cl2@COMOC-4 and in the absence of 
the oxygen donor agent (TBHP). A conversion of 3.3% and 
a selectivity of 17.7% (Table 1, Entry 1) were obtained, due 
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to the oxygen atom transfer from the dioxo-molybdenum 
(VI) unit towards the double bond [48, 84–86]. A scheme of 
the stoichiometric epoxidation process of soybean oil from 
MoO2Cl2@COMOC-4 catalyst without oxygen donor agent 
is presented in Fig. 3.

A second control reaction using the same temperature 
was carried out with TBHP as oxygen donor agent using 
a molar ratio TBHP: double bonds: catalyst of 100:100:0 
(without Mo catalyst). In this test, a conversion of 37.7% of 
the respective oil was observed but with a very low selectiv-
ity (13.3%) towards the epoxide (Table 1, Entry 2). This low 
selectivity is caused by side reactions that result in different 
products such as alcohols, ketones, or carboxylic derivates 
(Fig. 4), which is the main problem associated with conven-
tional epoxidation methods [3].

A first test in the presence of MoO2Cl2@COMOC-4 and 
the oxygen donor agent (TBHP) was carried out at 80 °C 
during 4 h employing a molar ratio TBHP: double bonds: 
catalyst of 100:100:1. As shown in Table 1, entry 3, a con-
version of 17.0% and a selectivity of 56.4% were obtained. 
The respective monitoring of the oil sample, before and 

at the end of the reaction, using 1H NMR spectroscopy 
corroborated the appearance of the oxirane ring (signals 
at 3.1 and 2.9 ppm) and the respective decrease in the 
signal corresponding to the proton A, as seen in Fig. 5. 
A preference towards the formation of monoepoxide was 
deduced because of the higher intensity of the signal at 
2.9 ppm compared to the characteristic diepoxide signal 
at 3.1 ppm [87].

It is well known that transition metal ions in their high-
est oxidation state such as Mo(VI) can simultaneously sup-
port one or several oxygen ligands such as oxo, peroxide, 
hydroxide or hydroperoxide in their coordination sphere, 
and the type of oxygen ligand that is incorporated into 
the active molybdenum center depends on the oxidizing 
agent used in the respective catalytic process [85, 86]. On 
the other hand, although the mechanism of epoxidation of 
alkenes is still controversially discussed [84, 88, 89], the 
epoxidation mechanism in vegetable oils using THBP as 
an oxidizing agent has been previously reported [90], and 
the results are in agreement with the ideas proposed by 
Sobczak [29], that begins with the formation of the species 

Table 1   Results of the 
preliminary experiments of 
epoxidation of soybean oil at 
80 °C

a Reaction was carried out with toluene as solvent and molar ratio of TBHP:number of double bonds in the 
oil:catalyst of 0:100:1
b Reaction was carried out with toluene as solvent and molar ratio of TBHP:number of double bonds in the 
oil:catalyst of 100:100:0
c Reaction was carried out with toluene as solvent and molar ratio of TBHP:number of double bonds in the 
oil:catalyst of 100:100:1
d TON total turnover number, moles of epoxide formed per mole of catalyst
e TOF turnover frequency which is calculated by the expression (epoxide)/(catalyst) × time (h−1)

Entry Tempera-
ture (°C)

Reaction 
time (h)

Conversion (%) Epoxida-
tion (%)

Selectivity (%) TONd TOF (h−1)e

1a 80 4 3.3 0.6 17.7 0.5 0.1
2b 80 4 37.7 5.0 13.3 – –
3c 80 4 17.0 9.6 56.4 9.4 2.3

Fig. 3   Stoichiometric epoxi-
dation of soybean oil from 
MoO2Cl2@COMOC-4 catalyst 
without oxygen donor agent. 
No reaction products were 
obtained when COMOC-4 solid 
was evaluated under the same 
conditions
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Mo(VI)–O–O–(CH3)3 as an intermediary through coordi-
nation via the peroxo oxygen bonded to the molybdenum 
atom, and formation of a hydrogen bonding with one of the 
terminal oxygens. The metal center acts as a Lewis acid by 
removing charge from the O–O bond, facilitating its dis-
sociation, combined it with the olefin nucleophilic attack to 
the electrophilic oxygen atom of the coordinated peroxide 
(Fig. 6) [91, 92].

To evaluate the stability of the MoO2Cl2@COMOC-4 
catalyst during the soybean oil epoxidation reaction, the used 
catalyst was characterized by means of XRPD, IR spectros-
copy, thermogravimetric analyses, and SEM microscopy 
(Figs. 7 and 8).

XRPD analyses of the used catalyst corroborated the 
structural integrity of the support in the soybean epoxi-
dation reaction (see Fig. 7a), and the IR spectrum of the 
catalyst after reaction (Fig. 7b) has the same signals in the 
range 600–1800 cm−1 assigned to the stretching vibrations 
of the bipyridine ligand in the fresh MoO2Cl2@COMOC-4 
catalyst. Furthermore, no changes in the intensity of the 
symmetric and asymmetric vibrations of dioxo-molyb-
denum (MoO2) were observed in the region between 890 
and 950 cm−1, evidencing the preservation of the oxidation 
state in the metal center during the catalytic test. The ther-
mogravimetric analyses, presented in Fig. 7c, demonstrate 
the high stability of the metal–organic structure since no 
significant changes in the loss of mass of the catalyst were 
observed between the fresh and spend catalyst. The tem-
perature decomposition of the catalysts was determined by 
DSC [93] (Figure S5 -Supporting information) obtaining a 
value close to 500 °C for the fresh solid, which presented 
a slight decrease (around 8 °C) when compared to the used 
MoO2Cl2@COMOC-4 catalyst.

Finally, SEM images of the MoO2Cl2@COMOC-4 cata-
lyst revealed heterogeneous morphology and particle sizes, 
and EDX analyses confirmed the presence of molybdenum 
in the metal–organic framework catalyst before and after 
the epoxidation process (Fig. 8). Evidently, irregular mor-
phologies were observed for MoO2Cl2@COMOC-4 catalyst 
before and after used, but the particle size was decreased for 
the used solid. This fractionation is a consequence of the 
mechanical attrition of the catalyst throughout the catalytic 
process. From these initial results, it was proposed to exam-
ine the influence of concentration of the oxidizing agent, the 
reaction time, and the reaction temperature in the heterog-
enous soybean oil epoxidation catalyzed by the MoO2Cl2@
COMOC-4 solid.

Fig. 4   Scheme of some side 
reactions under different condi-
tions in soybean oil epoxidation 
process

R (CH2)5 C
H

C
H

CH2 C
H

C
H

(CH2)4 CH3

O O

H3C O
O

OH

H

H

H2O2

H

H

H2O

R (CH2)5 C
H

C
H

CH2 C
H

C
H

(CH2)4 CH3

R (CH2)5 C
H

C
H

CH2 C
H

C
H

(CH2)4 CH3

R (CH2)5 C
H

C CH2 C C
H

(CH2)4 CH3

O

R (CH2)5 C
H

C
H

CH2 C
H

C
H

(CH2)4 CH
3

OH OOOCCH3 HO

OH OOH
OH OH

O H

OH OOH
OH OH

CH2

HC

H2C

O

O

C R1

O

C R2

O
R=

O C

O

0123456
ppm

A
B H

C D
E

F

G
K (2.9 ppm)L (3.1 ppm)

2.852.902.953.003.053.103.153.203.25
ppm

O
R

C CH2

O

(CH2)5 C
H

C
H

CH2 C
H

C
H

(CH2)4 CH3

O O

KLK L

Fig. 5   1H NMR spectrum of soybean oil after epoxidation reaction



1763Soybean Oil Epoxidation Catalyzed by a Functionalized Metal–Organic Framework with Active…

1 3

4.3 � Influence of the Concentration of Oxidizing 
Agent

To determine the optimal reaction conditions in the presence 
of the oxidizing agent (TBHP), three additional experiments 
were carried out in which the molar ratio of the oxidizing 
agent was varied with respect to the number of unsaturation 
contained in the oil (Fig. 9 and Table 2), while keeping the 
reaction time (4 h), the temperature (80 °C) and the moles of 
double bonds constant (Entries 2–4, Table 2). Initially, a 2:1 
molar ratio of oxidizing agent: unsaturations was evaluated, 
which resulted in an increase in the conversion, selectivity, 
and percentage of epoxidation (Entry 2, Table 2).

Using an oxidizing agent:doble bond ratio to 4:1 resulted 
only in a slightly further increase in the selectivity percent-
age (Fig. 9, and Entry 3 of Table 2) while the conversion and 
percentage of epoxidation decreased. This is because the 
generated by-product tert-butanol interferes in the catalytic 
cycle, which becomes more evident in our case when an 
oxidizing agent:double bond ratio of 8:1 was used (Entry 4, 
Table 2). In other words, increasing the concentration of the 
oxidizing agent leads to its decomposition and formation 

of larger amounts of by-product (tert-butanol), which was 
subsequently detected through the purification processes.

4.4 � Influence of Reaction Time

Once the best oxidizing agent:double bond molar ratio was 
determined at 80 °C, the influence of the reaction time was 
studied. Initially, two reaction times were evaluated, 4 and 
24 h (Entry 2 and 5, Table 2). After 4 h of reaction, the 
conversion reached a value of 18.6%, while after 24 h a con-
version of 75.8% was obtained (Fig. 10). Although a higher 
conversion was noted, the selectivity decreased from 66.6% 
to 14.8% after 24 h of reaction. This result shows that the 
epoxidation product is formed quite fast and that long reac-
tion times favors the formation of by-products due to collat-
eral reactions [94]. Additionally, a prolonged reaction time 
leads to a significant darkening (browning) of the oil after 
prolonged contact with atmospheric oxygen, which indicates 
the occurrence of undesired oxidation processes [95].
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4.5 � Influence of Temperature

To evaluate the influence of the reaction temperature, two 
additional experiments were carried out (at room tempera-
ture and at 110 °C) during 4 h of reaction, using the optimal 
concentration of the oxidizing agent. The catalytic activity 
of MoO2Cl2@COMOC-4 with TBHP at room temperature 
showed no formation of reaction products. On the contrary, 
an increase of the temperature to 110 °C (Entry 6, Table 2) 
led to a significant increase in the reaction yield (26.6% 
epoxidation, 29.4% conversion, and 90.6% selectivity) 

compared to the results obtained at 80 °C (Entry 2), as evi-
denced in Fig. 11.

Such an increase in activity for the vegetable oil oxida-
tion was already observed for different catalysts in literature. 
However, it is important to note that the conversion is rela-
tively low compared to the oxidation of molecules such as 
cyclohexene, cyclooctene or small linear alkenes with this 
type of catalyst [57, 77]. This low conversion is probably 
the result of the larger size of the constituent molecules of 
soybean oil, restricting the entering of the molecules into 
the pores of MOF.

Finally, two more reactions were carried out to establish 
the optimal reaction time at 110 °C. The reactions carried 
out for 8 h and 2 h (Entries 7 and 8, Table 2) did not show 
better results than the reaction performed during 4 h of 
catalysis at the same temperature. In this way, a prolonged 
reaction time largely affects the selectivity of the reaction. 
Also, from the TON and TOF (26.1 and 6.5 h−1) values, it 
is clear the catalyst exhibits its highest catalytic activity and 
selectivity after 4 h of reaction at 110 °C (Fig. 12).

Compared to published Mo-based heterogeneous and 
homogeneous catalyst systems (Entry 1–3), presented 
in Table 3, all these catalysts show more conversion than 
MoO2Cl2@COMOC-4 in epoxidation of soybean oil, reach-
ing transformations of the aliphatic double bonds above 
30%. The selectivity values observed, on the contrary, do 
show that the MoO2 unit is more selective being directly 
functionalized onto the solid metal–organic structure. This 
phenomenon has been previously observed in epoxidation 
reactions of natural products such as Limonene and alpha-
pinene, using different supports, and has been associated 
with the stability generated at the active center, when it is 
incorporated covalently on a solid structure, originating 
a more selective process towards the epoxide [102–104]. 
Additionally, when MoO2Cl2@COMOC-4 was compared 
with heterogeneous catalysts based on oxo-tungsten active 
centers (Entry 4–5, Table 3), SiO2, Amberlite IR-120, or 
AlO3 solid supports that use inorganic acids as co-catalysts 
(Entry 7–9, Table 3), the same trend was observed in the 
conversion and selectivity values. Finally, it is important 
to highlight that in our case, both the mass of catalyst used 
and the optimal reaction time are significantly lower than 
the heterogeneous processes that have shown good results in 
conversion and selectivity (Entry 6–10, Table 3), which may 
be favorable in economic terms in the future [105].

4.6 � Catalytic Reuse Evaluation

To evaluate the reusability of the MoO2Cl2@COMOC-4 
catalyst in the soybean oil epoxidation at 110 °C, the solid 
catalyst was separated from the reaction medium by means 
of filtration after 4 h of reaction, washed with toluene and 

Fig. 7   XRPD, IR and thermogravimetric analysis of MoO2Cl2@
COMOC-4 catalyst fresh and used in the epoxidation reaction with 
TBHP
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acetone, and dried in vacuum. Interestingly, as shown in 
Table 4, the catalytic activity is preserved during a new suc-
cessive catalytic test with a slight decrease in the % conver-
sion and % epoxidation (22.0% and 20.3% respectively), but 
an increase in the selectivity values reaching 92.3%.

Initially, to analyze the stability of the active center on 
the surface, an elemental analysis of Mo using Plasma Mass 
Spectrometry (ICP-MS) was carried out, evidencing a slow 
reduction of the concentration of active center (decrease 
0.7% wt Mo), but confirming the presence of molybdenum 
in the metal–organic framework catalyst after the epoxida-
tion process. The oxidation state stability of MoO2 (VI) 
entity in MoO2Cl2@COMOC-4 catalyst was confirmed by 
XPS measurements before and after catalysis (Fig. 13). In 
both samples Mo is present in the oxidation state + 6, con-
firmed by the molybdenum 3d peak signals (Mo3d5/2 and 

Fig. 8   SEM images and EDX 
of a COMOC-4, b MoO2Cl2@
COMOC-4 catalyst, and c used 
MoO2Cl2@COMOC-4 catalyst
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Mo 3d3/2 Peaks) localized at an average value 232.4 and 
235.6 eV, characteristics of this oxidation state [106].

Further, the surface properties of the metal–organic struc-
ture obtained by N2 adsorption–desorption measurements of 
the new and used catalyst were compared. Evidently, the N2 
adsorption–desorption isotherms of MoO2Cl2@COMOC-4 
fresh and used are different (Fig. 14), revealing a decrease 
in the BET surface area and porosity. Adsorption–desorp-
tion isotherms type IVa (IUPAC classification), typical of 
mesoporous materials, was maintained. The BJH pore size 
distributions (Fig. 14-inset) show monomodal functions 
with pore diameters centered about 14 nm and 12 nm for 
the catalysts fresh and used, respectively. However, the 
population of pores (cumulative pore volume) was clearly 
reduced for the used catalyst. Furthermore, values of BET 
area and pore volume of 214 m2/g and 0.78 cm3/g for fresh 
MoO2Cl2@COMOC-4, and 73  m2/g and 0.31 cm3/g for 
used MoO2Cl2@COMOC-4, were obtained (Table 5). These 
reductions of porosity and surface areas likely are the result 
of the partial blockage of the pores by the large molecules 
of vegetable oil, which is understandable considering the 
oleic nature and bulky size of oleic and linoleic acid (main 
constituents of the vegetable oil under study). A similar 
effect has been previously observed by other authors [83]. 
These reductions of porosity and surface area and this low 
conversion are probably the result of the size of the constitu-
ent molecules of soybean oil, restricting the entering of the 
molecules into the pores of MOF, suggesting that the reac-
tion takes place mainly on the active sites available on the 

Table 2   Results obtained 
to determine the optimal 
reaction conditions in soybean 
oil epoxidation catalyzed by 
MoO2Cl2@COMOC-4 with 
TBHP as oxidizing agent

a Molar ratio of TBHP: number of double bonds in the oil:catalyst of 100:100:1
b Molar ratio of TBHP: number of double bonds in the oil:catalyst of 200:100:1
c Molar ratio of TBHP: number of double bonds in the oil:catalyst of 400:100:1
d Molar ratio of TBHP: number of double bonds in the oil:catalyst of 800:100:1
e TON Total turnover number, moles of epoxide formed per mole of catalyst
f TOF Turnover frequency, which is calculated by the expression (epoxide)/(catalyst) × time (h−1)

Entry Tempera-
ture (°C)

Reaction 
time (h)

Conversion (%) Selectivity (%) Epoxidation (%) TONe TOF (h−1)f

1a 80 4 17.0 56.4 9.6 9.4 2.3
2b 80 4 18.6 66.6 12.4 12.1 3.0
3c 80 4 16.7 68.1 11.4 11.3 2.8
4d 80 4 8.7 52.5 4.6 6.9 1.7
5b 80 24 75.8 14.8 11.2 10.0 0.4
6b 110 4 29.4 90.6 26.6 26.1 6.5
7b 110 8 34.8 28.5 9.9 9.8 1.2
8b 110 2 18.3 78.6 14.4 14.3 7.2
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Fig. 10   Evaluation of the reaction time in the soybean oil epoxidation 
at 80 °C catalyzed by MoO2Cl2@COMOC-4 with TBHP
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surface of the catalyst. The results suggest that MoO2Cl2@
COMOC-4 has good potential to be reusable catalysis for 
the epoxidation processes of vegetable oils; nevertheless, 
more research is necessary to diminish or reduce the effect 
of pores clogging.

5 � Conclusions

The catalytic activity of MoO2Cl2@COMOC-4 was dem-
onstrated in the selective epoxidation of commercial soy-
bean oil in the presence of tert-butyl-hydroperoxide as 
an oxidizing agent. The analysis of the temperature, the 
reaction time, and the TBHP: double bonds molar ratio in 
the oil revealed that the best conversion, selectivity, and 
epoxidation results were obtained at 110 °C for 4 h and a 
200: 100: 1 molar ratio (TBHP: double bonds: catalyst). 
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Fig. 12   Evaluation of the reaction time for the soybean oil epoxida-
tion at 110 °C catalyzed by MoO2Cl2@COMOC-4 with TBHP

Table 3   Comparison of catalytic activity of MoO2Cl2@COMOC-4 with other heterogeneous catalysts in the soybeam oil epoxidation

a Catalyst in homogeneous phase
b Mechanical agitation combining with ultrasonic agitation
c The fresh catalyst has lost its activity after one use, although the activity can be recovered by calcination at high temperature
d In the presence of inorganic acids such as acetic acid
e Relative conversion to oxirane

Entry Catalyst Oxidant Oxidant to 
substrate molar 
ratio

catalyst mass (g) Time (h) T (°C) Conversion/Selectivity References

1 [MoO2(acac)2] TBHP 1.0 0.013 24 80 94.1/ 41.4a [87]
2 [MoO2(acac)2]-montmoril-

lonite K-10
TBHP 2.0 0.480 24 80 65.0/24.8 [51]

3 MoO3/Al2O3 TBHP 1.4 0.300 4 80 36.3/34.0 [96]
4 {PO4[W(O)(O2)2]4}3-Hal-

loysite nanotubes
H2O2 3.0 0.300 2.6 40 22.3/55.0b [97]

5 {PO4[W(O)(O2)2]4}3− 
entrapped into SBA-15

H2O2 5.0 2.000 5 70 55.7/68.2 [98]

6 Cadmium/titanium sili-
calite-1 zeolite

H2O2 2.5 0.100 12 80 17.8/98c [99]

7 Amberlite IR-120 TBHP 2.2 0.200 5 80 82.6/82.3 [100]
8 Meso-Ti-HMS TBHP 1.1 0.500 24 80 72.0/50.0 [23]
9 γ-Al2O3 H2O2 5.0 0.600 10 80 75.0/64.0d [75]
10 SnO2-Al2O3-NiO/SO4

2− H2O2/HCOOH 2.0/2.0 3.0 (0.5%wt) 1.5 65 86.97%e [101]
11 MoO2Cl2@COMOC-4 TBHP 2.0 0.066 24 110 29.4/90.6 This work
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The results obtained from the stability of the catalyst dur-
ing two cycles confirmed the catalyst’s ability to be reused 
in catalytic processes for the recovery of vegetable oils.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10562-​022-​04096-y.
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Table 4   Results of the catalyst reuse evaluation in soybean oil epoxi-
dation catalyzed by MoO2Cl2@COMOC-4 with TBHP as oxidizing 
agent a 110 °C

a Molar ratio of TBHP: number of double bonds in the oil:catalyst of 
200:100:1. Reaction time: 4 h
b TON Total turnover number, moles of epoxide formed per mole of 
catalyst
c TOF Turnover frequency, it was calculated by the expression (epox-
ide)/(catalyst) × time (h−1)

Conversiona 
(%)

Selectivity 
(%)

Epoxida-
tion (%)

TON b TOF (h−1) c

Run 1 29.4 90.6 26.6 26.1 6.5
Run 2 22.0 92.3 20.3 23.4 5.8

Fig. 13   The Mo 3d3/2 and Mo 3d5/2 peak of MoO2Cl2@COMOC-4 
catalyst before and after catalysis
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Table 5   Results of the Mo loading, surface area and pore size distri-
bution of MoO2Cl2@COMOC-4 catalyst before and after catalysis

a Determined using plasma mass spectrometry (ICP-MS)
b Pore volume determined by Gurvitsch´s method at P/P0 = 0.99

Catalysts Mo load-
ing % wta

Lagmuir 
Surface 
Area (m2/g)

BET Surface 
Area (m2/g)

Pore 
Volume 
(cm3/g)b

MoO2Cl2@
COMOC-4

5.8 419 214 0.78

MoO2Cl2@
COMOC-4 
(used)

5.1 66 73 0.31
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