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Abstract
Catalytic conversion of hydrocarbons occurring at metal nanoparticles in porous pellets is often accompanied by the forma-
tion of coke in the form of growing heterogeneous film-like aggregates or carbon nanofilaments. The latter processes result 
in deactivation of metal nanoparticles. The corresponding kinetic models imply the formation and growth of film-like coke 
aggregates. Herein, I present an alternative generic kinetic model focused on the formation and growth of carbon nanofila-
ments. These processes are considered to deactivate metal nanoparticles and reduce the rate of reactant diffusion in pores. In 
this framework, the kinetically limited reaction regime is described by simple analytical expressions. The diffusion-limited 
regime can be described as well but only numerically. The model presented can be used for interpretation of experimental 
results.
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1  Introduction

Many practically important heterogeneous catalytic reactions 
occurring with participation of hydrocarbons at metal nano-
particles (MNPs) in nanoporous supports are accompanied 
by the formation of coke which not only directly reduces the 
activity of MNPs but also suppresses the diffusion-mediated 
reactant supply via pores so that there is need in regeneration 
of a catalyst from time to time [1]. Mechanistically, the coke 
formation and removal are complex processes representing 
interesting examples of the interplay between reaction, dif-
fusion, and blocking or opening of pores. In particular, the 
corresponding pathways of the catalyst deactivation embrace 
(i) carbon chemisorption at MNPs hindering the access of 
reactants, (ii) MNP encapsulation by coke, (iii) pore plugging 
by coke in the form of growing heterogeneous film-like aggre-
gates or carbon nanofilaments (CNFs), and (iv) degradation 
of the porous support structure due to e.g. massive growth 
CNFs [2]. Each of these processes can be divided into its own 
steps and substeps and may occur via various scenarios. Taken 
together, such phenomena can physically be classified as a 
special type of percolation (for more conventional percolation, 
see [3] and references therein).

The understanding of the interplay of various processes 
running during the coke formation and removal is still lim-
ited, and the corresponding kinetic models are highly coarse-
grained. The early models of coke formation are reviewed 
in [4–6]. Examples of recent models of this category can be 
found in Refs. [7–11] and [12–14] focused on coke forma-
tion and removal, respectively. In all these models, coke is 
viewed as a continuous expanding or shrinking film located at 
the walls of nanopores. There are also generic self-consistent 
coarse-grained Monte Carlo simulations of coke formation and 
removal at the level of the pore network [15]. Herein, I present 
an alternative generic kinetic model of the coke-mediated cata-
lyst deactivation occurring via the CNF formation and growth 
on MNPs (as schematically shown in Fig. 1). The analysis is 
focused on the case when the main reaction and coke forma-
tion take place in a spherically shaped nanoporous pellet.

The details of how to describe the deactivation of MNPs 
in a porous pellet depends on whether the main reaction runs 
in the kinetically or diffusion-limited regime. In the absence 
of coke, these regimes can be illustrated in the framework of 
the classical Thiele model describing the first-order reaction 
running in a spherically shaped pellet [16] (briefly reviewed 
in [1, 15]). According to this model, the reactant concentration 
inside pores and the reaction effectiveness factor quantifying 
the role of diffusion are given by
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=
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where r is the radial coordinate, R is the pellet radius, 
� ≡ (De∕ke)

1∕2 is the scale of the diffusion length, and 
� = (keR

2∕De)
1∕2 is the corresponding modulus, whereas ke 

and De = (�∕�)Dm are the effective reaction rate constant 
and diffusion coefficient ( Dm is the molecular diffusion coef-
ficient, and � and � are the porosity and tortuosity factors 
[17]). If diffusion is rapid ( 𝜙 ≪ 1 ), the reactant distribu-
tion in pellets is nearly uniform so that � ≃ 1 . If diffusion is 
slow ( 𝜙 ≫ 1 ), the reactant concentration is relatively high 
near the external pellet-gas interface and drops inside so 
that 𝜂 ≃ 3∕𝜙 ≪ 1.

Below, I first analyze theoretically the first-order reaction 
and CNF growth at a single MNP (Sec. 2) and then locally 
(Sec. 2) and globally (Secs. 3 and 4) in a spherically shaped 
pellet in the kinetically and diffusion-limited regimes under 
isothermal conditions. Some of the elements of my analy-
sis are standard. Taken together, the treatment presented is, 
however, novel. Concerning the latter aspect, I can notice 
that the formation of filamentous coke is inherent to cata-
lytic reactions occurring on base transition MNPs (Ni, Co 

Fig. 1   Scheme of the growth of carbon nanofibers or nanotubes in 
nanopores on supported catalytic metal nanoparticles: (a) Initial and 
(b) late phases with the length of CNFs (nanofibers or nanotubes) 
much shorter and comparable with the pore diameter. During further 
growth of CNFs, their shape can be more complex, and the related 
strain can result in the formation of additional pores and subsequent 
degradation of catalyst structure [2] (in the model under consid-
eration, the latter process is not taken into account). In this scheme, 
MNPs are considered to remain at the pore walls during the CNF 
growth. In some systems, CNFs grow with a MNP on their top [2]
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and Fe) in porous supports, although there are a few related 
reports on noble metals MNSs (Rh, Pt, and Ru) as well [2]. 
The kinetic models describing diffusion-influenced reactions 
complicated by the CNF growth are however lacking. In the 
absence of reaction, the CNF growth at MNPs on flat sup-
ports has been extensively studied experimentally and theo-
retically (see, e.g., reviews focused on carbon nanotubes [18, 
19]). The corresponding models were, however, not used to 
describe reaction kinetics.

2 � Local Reaction and CNF Growth

Phenomenologically, the CNF growth at a single MNP can 
be divided into two steps including nucleation and growth 
itself [20]. In particular, the CNF nucleation can be viewed 
as a process of reversible attachment and detachment of C 
atoms up to the formation of a critical nucleus [20]. By anal-
ogy with the conventional nucleation (reviewed e.g. in [21]), 
the CNF nucleation occurring at time t on a MNP located at 
the pore wall inside a pellet at coordinate r can be (i) char-
acterized in terms of the corresponding probability p(r, t), 
(ii) viewed as a first-order process with respect to this prob-
ability or, in other words, as a Poisson process (reviewed e.g. 
in [22]), and (iii) described as

where � is the nucleation rate constant, c(r, t) is the local 
reactant concentration [as in (1)], and n is the kinetic order 
with respect to this concentration. The integration of this 
equation yields

The CNF growth after nucleation can be described in the 
spirit of the kinetic models used earlier for the growth of 
carbon nanotubes at a flat surface (see e.g. [23, 24]). In par-
ticular, the equation for the length of a CNF nucleated at 
time t′ is

where � and m are the corresponding growth-rate constant 
and kinetic order, and l∗ is the maximal length determined 
by the spatial constraints on the growth. At a flat surface, 
the spatial constraints are related to CNFs themselves, and 
l∗ is large (e.g., ∼ 1 mm [23, 24]). In the case under con-
sideration, the CNF growth is complicated by the spatial 

(2)dp(r, t)∕dt = �cn(r, t)[1 − p(r, t)],

(3)p(t, r) = 1 − exp
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0
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constraints in nanopores as well, and l∗ is expected to be 
much shorter than 1 mm.

After nucleation, a part of the MNP remains active [2]. 
At the simplest level, this can be described by introducing 
the reaction rate constants before and after nucleation, k and 
k∗ . Then, focusing on the first-order reaction [as in (1)], the 
local reaction rate, i.e., the reaction rate averaged over many 
MNPs can be represented as

Depending on the definition, k and k∗ can characterize the 
reaction rate per MNP or per unit volume of the catalyst. 
Below, I use the latter definition.

In addition, it is convenient to introduce the volume of 
CNFs per unit volume of the pellet,

where � is the CNF radius, and c⋆ is the local MNP con-
centration. In combination with (2), this equation results in

To describe the whole process, the equations introduced 
above should be combined with those for calculation of the 
reactant distribution in a pellet.

3 � Kinetically Limited Reaction Regime

If the reaction runs in the kinetically limited regime, the 
gradients in c(r, t) are negligible, i.e., c(r, t) can be consid-
ered to be constant, i.e., independent of r and t. In this case, 
p(r, t), w(r, t), and v(r, t) depend only on t, whereas l(r, t, t�) 
depends only on t and t′ . Under these conditions, Eqs. (3), 
(5), (6) and (8) are reduced to

Then, Eq. (12) in combination with (9) and (10) yield

(6)w(r, t) = kc(r, t)[1 − p(r, t)] + k∗c(r, t)p(r, t).
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(11)w(t) =kc exp(−�cnt) + k∗c[1 − exp(−�cnt)],
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or 

where v∗ ≡ 𝜋𝜌2l∗c⋆ is the maximal volume of CNFs. If the 
CNF nucleation is slow ( 𝜅cn ≪ 𝛾cm ), the latter equation can 
be simplified as

If the CNF growth is slow ( 𝜅cn ≫ 𝛾cm ), it can be reduced to

(14)

v(t)

v∗
=1 − exp(−�cnt) −

�cn[exp(−�cmt) − exp(−�cnt)]

�cn − �cm
,

(15)v(t)∕v∗ ≃ 1 − exp(−�cnt).

(16)v(t)∕v∗ ≃ 1 − exp(−�cmt).

Typical kinetics predicted by Eqs. (11) and (14) are shown 
in Figs. 2 and 3.

4 � Diffusion‑Limited Reaction Regime

In the absence of coke, the diffusion-influenced transient 
kinetics of heterogeneous catalytic reactions occurring in 
porous spherically shaped pellets are usually described as

where, as already mentioned in the Introduction,

is the coordinate- and time-independent effective diffusion 
coefficient ( Dm , � , and � are the corresponding molecular 
diffusion coefficient and porosity and tortuosity factors, 
respectively).

If the reaction is accompanied by the coke formation, it 
reduces the porosity and, in combination with diffusion limi-
tations, results in the dependence of the effective diffusion 
coefficient on r and t. Under these conditions, Eqs. (17) and 
(18) should be modified as

Concerning expression (20), I can notice that Dm depends 
on r and t provided the diffusion is of the Knudsen type or 
close to this type, because in this case, Dm depends on the 
size and structure of pores. � depends on r and t as well for 
the same reason. In the case of pores filled by CNFs, both 
these dependencies are complex and the corresponding ana-
lytical expressions are lacking. In contrast, the dependence 
of � on r and t can analytically be described as

where �
◦
 is the porosity in the absence of coke [as in Eq. 

(18) except the subscript which has been added in order to 
indicate that this is the porosity at t = 0 ], and v(r, t) is the 
dimensionless volume defined by (8).

On the timescale of coke formation, the reaction is rapid, 
and accordingly Eq. (19) can be solved in the steady-state 
approximation. Using this approximation and Eq. (6) for the 
reaction rate, Eq. (19) can be replaced by

(17)�
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(20)De(r, t) =
�(r, t)

�(r, t)
Dm(r, t).

(21)�(r, t) = �
◦
− v(r, t),

Fig. 2   Normalized reaction rate as a function of �cnt in the kineti-
cally limited reaction regime with k∗∕k = 0.1 , 0.2, and 0.5 [according 
to Eq. (11)]

Fig. 3   Normalized volume of growing CNFs as a function of �cmt 
in the kinetically limited reaction regime with �cn∕�cm = 0.1 , 1, and 
10 [according to Eq. (14)]. In these cases, the nucleation of CNFs is 
slow, moderate, and rapid, respectively
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This equation contains t as a parameter and should be inte-
grated numerically at any given t with the conventional 
boundary equations,

where c
◦
 is the reactant concentration at the pellet boundary. 

Then, one can calculate the increment of p(r, t) by employ-
ing Eq. (3). This procedure should be prolonged step by step.

Eqs. (19)-(23) make it possible to describe various situa-
tions. Their use is, however, complicated by the abundance 
of the parameters and some uncertainty in the dependence of 
� on the amount of coke. The full-scale application of Eqs. 
(19)-(23) makes sense in order to interpret specific experi-
mental studies providing detailed information reaction kinet-
ics and CNF formation. In fact, such detailed studies are still 
lacking (reviewed in [2]).

Under such circumstances, I will use Eqs. (19)-(23) only 
for brief discussion of what may happens asymptotically 
at t → ∞ . In this limit, the model predicts that the reaction 
goes extinct, i.e. w → 0 , provided (i) the CNF formation 
fully deactivate a MNP (i.e., k∗ = 0 ) and/or (ii) CNFs are 
able to fill all the porous space. Mathematically, the latter 
means v(r, t) → �

◦
 and De(r, t) → 0 [Eqs. (20) and (21)], and 

accordingly the diffusion-mediated reactant supply is fully 
suppressed. Physically, however, CNFs are not expected to 
be able to fill all the porous space (see, e.g., typical CNF 
snapshots in [2]). This means that De(r, t) is expected to drop 
down to some finite value, De(r, t) → D∗ at t → ∞ . In turn, 
the reaction rate constant can drop down to a finite value, 
k∗ > 0 , at t → ∞ as well [Eq. (6)]. With this specification at 
t → ∞ , the model proposed will be equivalent to the Thiele 
model (see the Introduction) with the corresponding reac-
tion rate constant, k∗ , and reactant diffusion coefficient, D∗ , 
and accordingly, with these parameters, the reactant con-
centration inside pores and the reaction effectiveness factor 
quantifying the role of diffusion will be given by Eq. (1).

5 � Conclusion

I have presented a generic model describing the kinetics 
of catalytic reaction occurring on MNPs in a spherically 
shaped porous pellet and accompanying by the forma-
tion and growth of CNFs. The latter processes deactivate 
MNPs and reduce the rate of reactant diffusion in pores. 
In this framework, the kinetically limited reaction regime 

(22)
1

r2
�

�r

(

r2De(r, t)
�c(r, t)

�r

)

= kc(r, t)[1 − p(r, t)] + k∗c(r, t)p(r, t).

(23)c(R, t) = c
◦
and

�c(r, t)

�r

|
|
|
|r=0

= 0,

is described by simple analytical expressions (Sec. 3). The 
diffusion-limited regime can be described as well (Sec. 4) 
but only numerically. The model presented can be used for 
interpretation of experimental results and also as a basis 
for developing more advanced models of the kinetics of 
catalytic reactions accompanying by the CNF formation 
and growth.
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