Skip to main content
Log in

Production of Furfural-Diethyl-Acetal as Biofuel Additives for Gasoline by Metal Free Porphyrin Photocatalyst Under Visible Light

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The protocol presents conversion of furfural (FFL) to furfural-diethyl-acetal (FDA), using ionic liquid tangled, sulphonic acid functionalized, porphyrin (ILSAFPc) as a photocatalyst under visible light at ambient conditions. The formation of FDA was achieved by reacting furfural and ethanol (1: 2.2) over ILSAFPc photocatalyst in a home-made photoreactor under 5 W LED light. The product was attained with 92% yield by photocatalytic acetalization in 18 h at room temperature and confirmed by 1H NMR and 13C NMR. The acetal was confirmed by the presence of CH singlet in 1H NMR, at (8.08) ppm and disappearance of CHO proton of the substrate at 18 h. In addition, FDA exhibited as an excellent fuel additive and results presented that both 15 and 20% blending by volume with the gasoline found comparable physicochemical properties including octane number and calorific value. Finally, ILSAFPc displayed reusability for six times under optimized conditions without significant change in the yield and structure.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Fig. 2
Scheme 5
Scheme 6
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abend AM, Chung L, Bibart RT, Brooks M, McCollum DG (2004) Concerning the stability of benzyl alcohol: formation of benzaldehyde dibenzyl acetal under aerobic conditions. J Pharm Biomed Anal 34:957–962. https://doi.org/10.1016/j.jpba.2003.11.007

    Article  CAS  PubMed  Google Scholar 

  2. Wegenhart BL, Liu S, Thom M, Stanley D, Abu-Omar MM (2012) Solvent-free methods for making acetals derived from glycerol and furfural and their use as a biodiesel fuel component. ACS Catal 2:2524–2530. https://doi.org/10.1021/cs300562e

    Article  CAS  Google Scholar 

  3. De SK, Gibbs RA (2004) Ruthenium(III) chloride-catalyzed chemoselective synthesis of acetals from aldehydes. Tetrahedron Lett 45:8141–8144. https://doi.org/10.1016/j.tetlet.2004.09.060

    Article  CAS  Google Scholar 

  4. Xia D, Jiang S, Li L, Xiang Y, Zhu L (2016) The biomimetic catalytic synthesis of acetal compounds using β-cyclodextrin as catalyst. Chin J Chem Eng 24:146–150. https://doi.org/10.1016/j.cjche.2015.06.008

    Article  CAS  Google Scholar 

  5. Appaturi JN, Jothi Ramalingam R, Al-Lohedan HA, Khoerunnisa F, Ling TC (2021) Ng, Selective synthesis of dioxolane biofuel additive via acetalization of glycerol and furfural enhanced by MCM-41-alanine bifunctional catalyst. Fuel 288:119573. https://doi.org/10.1016/j.fuel.2020.119573

    Article  CAS  Google Scholar 

  6. Kumar K, Pathak S, Upadhyayula S (2021) Acetalization of 5-hydroxymethyl furfural into biofuel additive cyclic acetal using protic ionic liquid catalyst- A thermodynamic and kinetic analysis. Renew Energy 167:282–293. https://doi.org/10.1016/j.renene.2020.11.084

    Article  CAS  Google Scholar 

  7. Yong JK, Varma RS (2005) Microwave-assisted preparation of 1-butyl-3-methylimidazolium tetrachlorogallate and its catalytic use in acetal formation under mild conditions. Tetrahedron Lett 46:7447–7449. https://doi.org/10.1016/j.tetlet.2005.08.059

    Article  CAS  Google Scholar 

  8. Miao J, Wan H, Shao Y, Guan G, Xu B (2011) Acetalization of carbonyl compounds catalyzed by acidic ionic liquid immobilized on silica gel. J Mol Catal A: Chem 348:77–82. https://doi.org/10.1016/j.molcata.2011.08.005

    Article  CAS  Google Scholar 

  9. Gromachevskaya EV, Kvitkovsky FV, Usova EB, Kulnevich VG (2004) Investigation in the area of furan acetal compounds. 13. Synthesis and structure of 1,3-dioxacyclanes based on furfural and glycerol. Chem Heterocycl Compd 40:979–985. https://doi.org/10.1023/B:COHC.0000046685.17653.c4

    Article  CAS  Google Scholar 

  10. Xu M, Richard F, Corbet M, Marion P, Clacens JM (2020) Pickering emulsions assisted synthesis of fatty acetal over phenyl sulfonic groups grafted on activated charcoal. Appl Catal A General. https://doi.org/10.1016/j.apcata.2020.117543

    Article  Google Scholar 

  11. Zhang H, Wu Y, Li L, Zhu Z (2015) Photocatalytic direct conversion of ethanol to 1,1- diethoxyethane over noble-metal-loaded tio2 nanotubes and nanorods. Chemsuschem 8:1226–1231. https://doi.org/10.1002/cssc.201403305

    Article  CAS  PubMed  Google Scholar 

  12. Chao Y, Lai J, Yang Y, Zhou P, Zhang Y, Mu Z, Li S, Zheng J, Zhu Z, Tan Y (2018) Visible light-driven methanol dehydrogenation and conversion into 1,1-dimethoxymethane over a non-noble metal photocatalyst under acidic conditions. Catal Sci Technol 8:3372–3378. https://doi.org/10.1039/c8cy01030g

    Article  CAS  Google Scholar 

  13. Khajone VB, Bhagat PR (2020) Brønsted acid functionalized phthalocyanine on perylene diimide framework knotted with ionic liquid: An efficient photo-catalyst for production of biofuel component octyl levulinate at ambient conditions under visible light irradiation. Fuel 279:118390. https://doi.org/10.1016/j.fuel.2020.118390

    Article  CAS  Google Scholar 

  14. Li D, Shen X (2020) Iron- or copper-catalyzed cascade chloromethylation of activated alkenes: efficient access to chlorinated oxindoles. Tetrahedron Lett 61:152316. https://doi.org/10.1016/j.tetlet.2020.152316

    Article  CAS  Google Scholar 

  15. Qian F, Zhou HY, Wang JX (2020) Syntheses of naphthyl-based quaternary ammonium surfactants and their catalytic properties in chloromethylation of naphthalene. J Mol Liq 303:112557. https://doi.org/10.1016/j.molliq.2020.112557

    Article  CAS  Google Scholar 

  16. Ma X, Su C, Xu Q (2016) Erratum to: N-alkylation by hydrogen autotransfer reactions (top curr chem (Z), (2016), 374, 27, https://doi.org/10.1007/s41061-016-0027-1). Top Curr Chem 374:1. https://doi.org/10.1007/s41061-016-0034-2.

  17. Feng X, Huang M (2021) Effect of the ancillary ligand in N-heterocyclic carbene iridium(III) catalyzed N-alkylation of amines with alcohols. Polyhedron 205:115289. https://doi.org/10.1016/j.poly.2021.115289

    Article  CAS  Google Scholar 

  18. Benjamin M, Manoj D, Thenmozhi K, Bhagat PR, Saravanakumar D, Senthilkumar S (2017) A bioinspired ionic liquid tagged cobalt-salophen complex for nonenzymatic detection of glucose. Biosens Bioelectron 91:380–387. https://doi.org/10.1016/j.bios.2016.12.064

    Article  CAS  PubMed  Google Scholar 

  19. Lei Z, Chen B, Koo YM, Macfarlane DR (2017) Introduction: Ionic Liquids. Chem Rev 117:6633–6635. https://doi.org/10.1021/acs.chemrev.7b00246

    Article  CAS  PubMed  Google Scholar 

  20. Singh C, Chaubey S, Singh P, Sharma K, Shambhavi A, Kumar RK, Yadav DK, Dwivedi JO, Baeg U, Kumar BC, Yadav BC, Pandey G (2020) Self-assembled carbon nitride/cobalt (III) porphyrin photocatalyst for mimicking natural photosynthesis. Diamond Related Mater 101:107648. https://doi.org/10.1016/j.diamond.2019.107648

    Article  CAS  Google Scholar 

  21. Barona-Castaño JC, Carmona-Vargas CC, Brocksom TJ, De Oliveira KT, Graça M, Neves PMS, Amparo M, Faustino F (2016) Porphyrins as catalysts in scalable organic reactions. Molecules. https://doi.org/10.3390/molecules21030310

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cai L, Li Y, Li Y, Wang H, Yu Y, Liu Y, Duan Q (2018) Synthesis of zincphthalocyanine-based conjugated microporous polymers with rigid-linker as novel and green heterogeneous photocatalysts. J Hazard Mater 348:47–55. https://doi.org/10.1016/j.jhazmat.2018.01.027

    Article  CAS  PubMed  Google Scholar 

  23. Elhalil A, Elmoubarki R, Farnane M, Machrouhi A, Mahjoubi FZ, Sadiq M, Qourzal S, Abdennouri M, Barka N (2019) Novel Ag-ZnO-La 2 O 2 CO 3 photocatalysts derived from the layered double hydroxide structure with excellent photocatalytic performance for the degradation of pharmaceutical compounds. J Sci Adv Mater Dev 4:34–46. https://doi.org/10.1016/j.jsamd.2019.01.002

    Article  Google Scholar 

  24. Khan S, Narula AK (2019) Ternary photocatalyst based on conducting polymer doped functionalized multiwall carbon nanotubes decorated with nanorods of metal oxide. Mater Sci Eng B Solid-State Mater Adv Technol 243:86–95. https://doi.org/10.1016/j.mseb.2019.04.002

    Article  CAS  Google Scholar 

  25. Oveisi M, Mahmoodi NM, Asli MA (2019) Halogen lamp activated nanocomposites as nanoporous photocatalysts: synthesis, characterization, and pollutant degradation mechanism. J Mol Liq 281:389–400. https://doi.org/10.1016/j.molliq.2019.02.069

    Article  CAS  Google Scholar 

  26. Wang X, Bai FQ, Xie M, Hao L, Zhang HX (2015) A theoretical investigation on the π-conjugation effect on the structures and spectral properties of tetra pyrrole zinc complexes. Synth Met 210:258–267. https://doi.org/10.1016/j.synthmet.2015.10.012

    Article  CAS  Google Scholar 

  27. Zhang F, Shi J, Jin Y, Fu Y, Zhong Y, Zhu W (2015) Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem Eng J 259:183–190. https://doi.org/10.1016/j.cej.2014.07.119

    Article  CAS  Google Scholar 

  28. Menegazzo F, Manzoli M, di Michele A, Ghedini E, Signoretto M (2018) Supported gold nanoparticles for furfural valorization in the future bio-based industry. Top Catal 61:1877–1887. https://doi.org/10.1007/s11244-018-1003-5

    Article  CAS  Google Scholar 

  29. Rahman KH, Kar AK (2020) Effect of band gap variation and sensitization process of polyaniline (PANI)-TiO2p-n heterojunction photocatalysts on the enhancement of photocatalytic degradation of toxic methylene blue with UV irradiation. J Environ Chem Eng 8:104181. https://doi.org/10.1016/j.jece.2020.104181

    Article  CAS  Google Scholar 

  30. He G, Liu J, He Q (2019) Effective photodegradation of tetracycline by narrow-energy band gap 806. https://doi.org/10.1016/j.jallcom.2019.07.233

  31. Spectrophotometric and spectrofluorimetric Study of Rose Bengal B and Its Reaction with Platinum(1V) 109:77–379 (1984)

  32. Ginjupalli S, Balla P, Shaik H, Nekkala N, Ponnala B, Mitta H (2019) Comparative study of vapour phase glycerol dehydration over different tungstated metal phosphate acid catalysts†. 16860–16869. https://doi.org/10.1039/c9nj04484a

  33. Ferro VR, García De La Vega JM, González-Jonte RH, Poveda LA (2001) A theoretical study of subphthalocyanine and its nitro- and tertbutyl-derivatives. J Mol Struct 537:223–234. https://doi.org/10.1016/S0166-1280(00)00679-5

    Article  CAS  Google Scholar 

  34. Cheng S, Kou J (2021) Hydrotalcite-like compounds and their catalytic application in highly selective acetalization at 11086–11092. https://doi.org/10.1039/d1nj01462e

  35. Sun K, Shao Y, Li Q, Zhang L, Ye Z, Dong D, Zhang S, Wang Y, Li X, Hu X (2020) Catalysis science & technology cobalt sulfate and tetrahydrofuran for selective. 2293–2302. https://doi.org/10.1039/d0cy00225a

  36. Est RC, Francisco JL, Bautista FM, Urbano FJ, Marinas A (2021) Fourth generation synthesis of solketal by glycerol acetalization with acetone: a solar-light photocatalytic approach. 2–8. https://doi.org/10.1016/j.jtice.2021.06.035

  37. Baburao V, Kamlesh K, Balinge R, Rambhau P (2020) Polymer ‑ supported fe ‑ phthalocyanine derived heterogeneous photo ‑ catalyst for the synthesis of tetrazoles under visible light irradiation.

  38. Bhagat PR, Bhansali KJ, Raut SU, Barange SH (2020) Sulphonic acid functionalized porphyrin anchored with mesosubstituted triazolium ionic liquid moiety: heterogeneous photocatalyst for metal/base free C-C cross-coupling and C-N/C-H activation using aryl chloride under visible light irradiations. New J Chem. https://doi.org/10.1039/d0nj03637d

    Article  Google Scholar 

  39. Corro G, Pal U, Tellez N (2013) Biodiesel production from Jatropha curcas crude oil using ZnO/SiO2 photocatalyst for free fatty acids esterification. Appl Catal B 129:39–47. https://doi.org/10.1016/j.apcatb.2012.09.004

    Article  CAS  Google Scholar 

  40. Wahlbom CF, Hahn-Hägerdal B (2002) Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 78:172–178. https://doi.org/10.1002/bit.10188

    Article  CAS  PubMed  Google Scholar 

  41. Giubertoni G, Sofronov OO, Bakker HJ (2020) Effect of intramolecular hydrogen-bond formation on the molecular conformation of amino acids, communications. Chemistry 3:1–6. https://doi.org/10.1038/s42004-020-0329-7

    Article  CAS  Google Scholar 

  42. Asnake G, Ivar O, Morken J (2021) Characterizing the potential and suitability of Ethiopian variety Jatropha curcas for biodiesel production : variation in yield and physicochemical properties of oil across different growing areas. Energy Rep 7:439–452. https://doi.org/10.1016/j.egyr.2021.01.007

    Article  Google Scholar 

  43. Asnake G, Morken J, Ivar O, Demrew Z (2021) Factors affecting the potential of Jatropha curcas for sustainable biodiesel production: a critical review. Renew Sustain Energy Rev 137:110500. https://doi.org/10.1016/j.rser.2020.110500

    Article  CAS  Google Scholar 

  44. Zhang Q, Yu L, Yang B, Xu C, Zhang W, Xu Q, Diao G (2021) Magnetic Fe 3 O 4 @ Ru-doped TiO 2 nanocomposite as a recyclable photocatalyst for advanced photodegradation of methylene blue in simulated sunlight. https://doi.org/10.1016/j.cplett.2021.138609

  45. Kumar A, Goyal V, Sarki N et al (2020) Biocarbon supported nanoscale ruthenium oxide-based catalyst for clean hydrogenation of arenes and heteroarenes. ACS Sustain Chem Eng 8:15740–15754. https://doi.org/10.1021/acssuschemeng.0c05773

    Article  CAS  Google Scholar 

  46. Natte K, Narani A, Goyal V et al (2020) Cover picture: synthesis of functional chemicals from lignin-derived monomers by selective organic transformations (Adv. Synth. Catal. 23/2020). Adv Synth Catal 362:5141–5141. https://doi.org/10.1002/adsc.202001276

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pundlik Rambhau Bhagat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7831 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhansali, K.J., Bhagat, P.R. Production of Furfural-Diethyl-Acetal as Biofuel Additives for Gasoline by Metal Free Porphyrin Photocatalyst Under Visible Light. Catal Lett 152, 2386–2400 (2022). https://doi.org/10.1007/s10562-021-03809-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03809-z

Keywords

Navigation