Skip to main content
Log in

Urease-Based Biocatalytic Platforms―A Modern View of a Classic Enzyme with Applied Perspectives

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The biotechnology industry is currently seeking increased or improved enzyme efficiency and the emergence of new methods to maximize their shelf-life. Enzyme immobilization on solid supports offers characteristic features, such as recyclability, easy product recovery, improved enzyme stability, and biocatalytic properties. Biopolymers-based support materials provide cost-effective, and stability attributes to immobilized enzymes due to non-toxicity, biodegradability, biocompatibility, and the presence of multiple functional moieties. In addition, nanostructured materials with large specific surface areas and unique structural, physical, chemical, and operating characteristics have significantly contributed to biocatalytic systems for diverse biotechnological applications. Urease is a ubiquitous metalloenzyme that displays a high ability to catalyze urea's decomposition into ammonia and carbamate. This review provides information on urease immobilization using various biopolymers-based support matrices to develop nano-biocatalytic systems for biotechnological, medical, and industrial fields.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9

    Article  PubMed  Google Scholar 

  2. Liang S, Wu XL, Xiong J, Zong MH, Lou WY (2020) Metal-organic frameworks as novel matrices for efficient enzyme immobilization: an update review. Coord Chem Rev 406:213149

    Article  CAS  Google Scholar 

  3. Sahoo B, Sahu SK, Pramanik P (2011) A novel method for the immobilization of urease on phosphonate grafted iron oxide nanoparticle. J Mol Catal B Enzym 69(3–4):95–102

    Article  CAS  Google Scholar 

  4. Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal HM (2017) Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants–a review. Sci Total Environ 576:646–659

    Article  CAS  PubMed  Google Scholar 

  5. Basso A, Serban S (2019) Industrial applications of immobilized enzymes—a review. Mol Catal 479:110607

    Article  CAS  Google Scholar 

  6. Singh RK, Tiwari MK, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14(1):1232–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cooney MJ (2011) Kinetic measurements for enzyme immobilization. In: Minteer Shelley D (ed) Enzyme stabilization and immobilization. Humana Press, New Jersy, pp 207–225

    Chapter  Google Scholar 

  8. Schnell S (2014) Validity of the Michaelis–Menten equation–steady-state or reactant stationary assumption: that is the question. FEBS J 281(2):464–472

    Article  CAS  PubMed  Google Scholar 

  9. Bayramoğlu G, Altınok H, Bulut A, Denizli A, Arıca MY (2003) Preparation and application of spacer-arm-attached poly (hydroxyethyl methacrylate-co-glycidyl methacrylate) films for urease immobilisation. React Funct Polym 56(2):111–121

    Article  CAS  Google Scholar 

  10. Krajewska B (2009) Ureases. II. properties and their customizing by enzyme immobilizations: a review. J Mol Catal B 59(1–3):22–40

    Article  CAS  Google Scholar 

  11. Zhang J, Wang Z, He C, Liu X, Zhao W, Sun S, Zhao C (2019) Safe and effective removal of urea by urease-immobilized, carboxyl-functionalized PES beads with good reusability and storage stability. ACS Omega 4(2):2853–2862

    Article  CAS  Google Scholar 

  12. Bilal M, Asgher M, Cheng H, Yan Y, Iqbal HM (2019) Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design. Crit Rev Biotechnol 39(2):202–219

    Article  CAS  PubMed  Google Scholar 

  13. Bilal M, Iqbal HM (2019) Naturally-derived biopolymers: potential platforms for enzyme immobilization. Int J Biol Macromol 130:462–482

    Article  CAS  PubMed  Google Scholar 

  14. Kausar A, Sher F, Hazafa A, Javed A, Sillanpää M, Iqbal M (2020) Biocomposite of sodium-alginate with acidified clay for wastewater treatment: kinetic, equilibrium and thermodynamic studies. Int J Biol Macromol 161:1272–1285

    Article  CAS  PubMed  Google Scholar 

  15. Shahid F, Aman A, Qader SAU (2019) Immobilization of dextranase using anionic natural polymer alginate as a matrix for the degradation of a long-chain biopolymer (Dextran). Int J Poly Sci 2019:1–8

    Article  CAS  Google Scholar 

  16. Taqieddin E, Amiji M (2004) Enzyme immobilization in novel alginate–chitosan core-shell microcapsules. Biomaterials 25(10):1937–1945

    Article  CAS  PubMed  Google Scholar 

  17. Danial EN, Hamza AH, Mahmoud RH (2015) Characteristics of immobilized urease on grafted alginate bead systems. Braz Arch Biol Technol 58(2):147–153

    Article  CAS  Google Scholar 

  18. Fapyane D, Berillo D, Marty JL, Revsbech NP (2020) Urea biosensor based on a CO2 microsensor. ACS Omega 5(42):27582–27590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Urrutia P, Bernal C, Wilson L, Illanes A (2018) Use of chitosan heterofunctionality for enzyme immobilization: β-galactosidase immobilization for galacto-oligosaccharide synthesis. Int J Biol Macromol 116:182–193

    Article  CAS  PubMed  Google Scholar 

  20. Hein S, Wang K, Stevens WF, Kjems J (2008) Chitosan composites for biomedical applications: status, challenges and perspectives. Mater Sci Technol 24(9):1053–1061

    Article  CAS  Google Scholar 

  21. Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M (2020) Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ Chem Lett 18(2):315–323

    Article  CAS  Google Scholar 

  22. Kumar S, Jana AK, Dhamija I, Maiti M (2014) Chitosan-assisted immobilization of serratiopeptidase on magnetic nanoparticles, characterization and its target delivery. J Drug Target 22(2):123–137

    Article  CAS  PubMed  Google Scholar 

  23. Feng YQ, Liang ZY, Meng SX (2005) Adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose under biocatalysis of immobilized urease: equilibrium and kinetic. Biochem Eng J 24(1):65–72

    Article  CAS  Google Scholar 

  24. Malhotra I, Basir SF (2020) Immobilization of invertase in calcium alginate and calcium alginate-kappa-carrageenan beads and its application in bioethanol production. Prep Biochem Biotechnol 50(5):494–503

    Article  CAS  PubMed  Google Scholar 

  25. Baysal SH, Karagöz R (2005) Preparation and characterization of κ-carrageenan immobilized urease. Prep Biochem Biotechnol 35(2):135–143

    Article  CAS  PubMed  Google Scholar 

  26. Kara F, Demirel G, Tümtürk H (2006) Immobilization of urease by using chitosan–alginate and poly (acrylamide-co-acrylic acid)/κ-carrageenan supports. Bioprocess Biosyst Eng 29(3):207–211

    Article  CAS  PubMed  Google Scholar 

  27. Wu X, Zhao F, Varcoe JR, Thumser AE, Avignone-Rossa C, Slade RC (2009) Direct electron transfer of glucose oxidase immobilized in an ionic liquid recons-tituted cellulose–carbon nanotube matrix. Bioelectrochemistry 77(1):64–68

    Article  CAS  PubMed  Google Scholar 

  28. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  CAS  Google Scholar 

  29. Liu Y, Chen JY (2016) Enzyme immobilization on cellulose matrixes. J Bioact Compat Polym 31(6):553–567

    Article  CAS  Google Scholar 

  30. Lv M, Ma X, Anderson DP, Chang PR (2018) Immobilization of urease onto cellulose spheres for the selective removal of urea. Cellulose 25(1):233–243

    Article  CAS  Google Scholar 

  31. Reddy K, Ravi C, Srivastava PK, Dey PM, Kayastha AM (2004) Immobilization of pigeonpea (Cajanus cajan) urease on DEAE-cellulose paper strips for urea estimation. Biotechnol App Biochem 39(3):323–327

    Article  Google Scholar 

  32. Luo Z, Fu X (2010) Immobilization of urease on dialdehyde porous starch. Starch–Stärke 62(12):652–657

    Article  CAS  Google Scholar 

  33. Mulhbacher J, McGeeney K, Ispas-Szabo P, Lenaerts V, Mateescu MA (2002) Modified high amylose starch for immobilization of uricase for therapeutic application. Biotechnol Appl Biochem 36(3):163–170

    Article  CAS  PubMed  Google Scholar 

  34. Edwards JV, Ullah AJ, Sethumadhavan K, Batiste S, Bel-Berger P, Von Hoven T, Caston-Pierre S (2007) New uses for immobilized enzymes and substrates on cotton and cellulose fibers. In: Eggleston G, Vercellotti JR (eds) Industrial application of enzymes on carbohydrate-based material. American Chemical Society, Washington, pp 171–185

    Chapter  Google Scholar 

  35. Monier M, El-Sokkary AMA (2012) Modification and characterization of cellulosic cotton fibers for efficient immobilization of urease. Int J Biol Macromol 51(1–2):18–24

    Article  CAS  PubMed  Google Scholar 

  36. Das N, Kayastha AM (1998) Immobilization of urease from pigeonpea (Cajanus cajan L.) on flannel cloth using polyethyleneimine. World J Microbiol Biotechnol 14(6):927–929

    Article  CAS  Google Scholar 

  37. Meinel L, Betz O, Fajardo R, Hofmann S, Nazarian A, Cory E, Kirker-Head C (2006) Silk based biomaterials to heal critical sized femur defects. Bone 39(4):922–931

    Article  CAS  PubMed  Google Scholar 

  38. Yildirim S, Borer ME, Wenk E, Meinel L, Lacroix C (2010) Development of silk fibroin-based beads for immobilized cell fermentations. J Microencapsul 27(1):1–9

    Article  CAS  PubMed  Google Scholar 

  39. Moon BM, Choi MJ, Sultan MT, Yang JW, Ju HW, Lee JM, Park CH (2017) Novel fabrication method of the peritoneal dialysis filter using silk fibroin with urease fixation system. J Biomed Mater Res B Appl Biomater 105(7):2136–2144

    Article  CAS  PubMed  Google Scholar 

  40. Fan J, Luo J, Wan Y (2017) Membrane chromatography for fast enzyme purification, immobilization and catalysis: a renewable biocatalytic membrane. J Membr Sci 538:68–76

    Article  CAS  Google Scholar 

  41. Vaz RP, Ferreira Filho EX (2019) Ion exchange chromatography for enzyme immobilization. In: Bahadir Acikara O (ed) Applications of ion exchange materials in biomedical industries. Springer, Cham, pp 13–27

    Chapter  Google Scholar 

  42. Guidini CZ, Fischer J, Santana LNS, Cardoso VL, Ribeiro EJ (2010) Immobilization of Aspergillus oryzae β-galactosidase in ion exchange resins by combined ionic-binding method and cross-linking. Biochem Eng J 52(2–3):137–143

    Article  CAS  Google Scholar 

  43. Guidini CZ, Fischer J, de Resende MM, Cardoso VL, Ribeiro EJ (2011) β-galactosidase of Aspergillus oryzae immobilized in an ion exchange resin combining the ionic-binding and crosslinking methods: kinetics and stability during the hydrolysis of lactose. J Mol Catal B Enzym 71(3–4):139–145

    Article  CAS  Google Scholar 

  44. Krishna BL, Singh AN, Patra S, Dubey VK (2011) Purification, characterization and immobilization of urease from Momordica charantia seeds. Process Biochem 46(7):1486–1491

    Article  CAS  Google Scholar 

  45. Keusgen M, Glodek J, Milka P, Krest I (2001) Immobilization of enzymes on PTFE surfaces. Biotechnol Bioeng 72(5):530–540

    Article  CAS  PubMed  Google Scholar 

  46. Tastan E, Önder S, Kok FN (2011) Immobilization of laccase on polymer grafted polytetrafluoroethylene membranes for biosensor construction. Talanta 84(2):524–530

    Article  CAS  PubMed  Google Scholar 

  47. Kim J, Sung GY, Park M (2020) Efficient portable urea biosensor based on urease immobilized membrane for monitoring of physiological fluids. Biomedicines 8(12):596

    Article  CAS  PubMed Central  Google Scholar 

  48. Du L, Huang M, Feng JX (2017) Immobilization of α-amylase on eggshell membrane and Ag-nanoparticle-decorated eggshell membrane for the biotransformation of starch. Starch-Stärke 69(9–10):1600352

    Article  CAS  Google Scholar 

  49. Vasudevan T, Das S, Sodaye S, Pandey AK, Reddy AVR (2009) Pore-functionalized polymer membranes for preconcentration of heavy metal ions. Talanta 78(1):171–177

    Article  CAS  PubMed  Google Scholar 

  50. D’Souza SF, Kumar J, Jha SK, Kubal BS (2013) Immobilization of the urease on eggshell membrane and its application in biosensor. Mater Sci Eng C 33(2):850–854

    Article  CAS  Google Scholar 

  51. Gabrovska K, Georgieva A, Godjevargova T, Stoilova O, Manolova N (2007) Poly(acrylonitrile) chitosan composite membranes for urease immobilization. J Biotechnol 129(4):674–680

    Article  CAS  PubMed  Google Scholar 

  52. Jung B (2004) Preparation of hydrophilic polyacrylonitrile blend membranes for ultrafiltration. J Membr Sci 229(1–2):129–136

    Article  CAS  Google Scholar 

  53. Wan LS, Xu ZK, Huang XJ, Wang ZG, Wang JL (2005) Copolymerization of acrylonitrile with N-vinyl-2-pyrrolidone to improve the hemocompatibility of polyacrylonitrile. Polymer 46(18):7715–7723

    Article  CAS  Google Scholar 

  54. Torres P, Batista-Viera F (2017) Immobilized trienzymatic system with enhanced stabilization for the biotransformation of lactose. Molecules 22(2):284

    Article  PubMed Central  CAS  Google Scholar 

  55. Fidaleo M, Tavilli E (2021) Urea removal in rosé and red wines by immobilised acid urease in a packed bed reactor. Food Bioprod Process 126:42–50

    Article  CAS  Google Scholar 

  56. Ayhan F, Yousefi Rad A, Ayhan H (2003) Biocompatibility investigation and urea removal from blood by urease-immobilized HEMA incorporated poly (ethyleneglycol dimethacrylate) microbeads. J Biomed Mate Res Part B 64(1):13–18

    Article  CAS  Google Scholar 

  57. Godjevargova T, Gabrovska K (2003) Immobilization of urease onto chemically modified acrylonitrile copolymer membranes. J Biotechnol 103(2):107–111

    Article  CAS  PubMed  Google Scholar 

  58. Ramesh R, Puhazhendi P, Kumar J, Gowthaman MK, D’Souza SF, Kamini NR (2015) Potentiometric biosensor for determination of urea in milk using immobilized arthrobacter creatinolyticus urease. Mater Sci Eng C 49:786–792

    Article  CAS  Google Scholar 

  59. Bergaya F, Theng BKG, Lagaly G (2013) General introduction: clays, clay minerals, and clay science. In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science. Elsevier, Amsterdam, pp 1–19

    Google Scholar 

  60. Zhou CH, Keeling J (2013) Fundamental and applied research on clay minerals: from climate and environment to nanotechnology. Appl Clay Sci 74:3–9

    Article  CAS  Google Scholar 

  61. Zhou CH, Shen ZF, Liu LH, Liu SM (2011) Preparation and functionality of clay-containing films. J Mater Chem 21(39):15132–15153

    Article  CAS  Google Scholar 

  62. An N, Zhou CH, Zhuang XY, Tong DS, Yu WH (2015) Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl Clay Sci 114:283–296

    Article  CAS  Google Scholar 

  63. Liu FG, Zhao LZ, An N, Tong DS, Yu WH, Zhou CH (2015) Modification of inorganic porous materials as gene vectors: an overview. J Porous Mater 22(4):927–937

    Article  CAS  Google Scholar 

  64. De Melo JV, Cosnier S, Mousty C, Martelet C, Jaffrezic-Renault N (2002) Urea biosensors based on immobilization of urease into two oppositely charged clays (laponite and Zn–Al layered double hydroxides). Anal Chem 74(16):4037–4043

    Article  PubMed  CAS  Google Scholar 

  65. Hosseinian M, Najafpour G, Rahimpour A (2019) Amperometric urea biosensor based on immobilized urease on polypyrrole and macroporous polypyrrole modified Pt electrode. Turk J Chem 43(4):1063–1074

    Article  CAS  Google Scholar 

  66. Bromley RG, Heinberg C (2006) Attachment strategies of organisms on hard substrates: a palaeontological view. Palaeogeogr Palaeoclim Palaeoecol 232(2–4):429–453

    Article  Google Scholar 

  67. Mishra N, Pithawala K, Bahadur A (2011) Byssus thread: a novel support material for urease immobilization. Appl Biochem Biotechnol 165(7):1568–1576

    Article  CAS  PubMed  Google Scholar 

  68. Waite JH (2002) Adhesion a la moule. Integr Comp Biol 42(6):1172–1180

    Article  CAS  PubMed  Google Scholar 

  69. Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z (2016) Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85:152–167

    Article  CAS  PubMed  Google Scholar 

  70. Piao M, Zou D, Yang Y, Ren X, Qin C, Piao Y (2019) Multi-functional laccase immobilized hydrogel microparticles for efficient removal of bisphenol A. Materials 12(5):704

    Article  CAS  PubMed Central  Google Scholar 

  71. Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Tambourgi EB (2011) Efficiency of hydrogels based on natural polysaccharides in the removal of Cd2+ ions from aqueous solutions. Chem Eng J 168(1):68–76

    Article  CAS  Google Scholar 

  72. Chen JP, Chiu SH (2000) A poly (N-isopropylacrylamide-co-N-acryloxysuccinimide-co-2-hydroxyethyl methacrylate) composite hydrogel membrane for urease immobilization to enhance urea hydrolysis rate by temperature swing. Enzyme Microb Technol 26(5–6):359–367

    Article  CAS  PubMed  Google Scholar 

  73. Arsalan A, Younus H (2018) Enzymes and nanoparticles: modulation of enzymatic activity via nanoparticles. Int J Biol Macromol 118:1833–1847

    Article  CAS  PubMed  Google Scholar 

  74. Leitgeb M, Knez Ž, Vasić K (2016) Micro-and nanocarriers for immobilization of enzymes. In: Stanciu SG (ed) Micro and nanotechnologies for biotechnology. InTech, London

    Google Scholar 

  75. Tebeka IR, Silva AG, Petri DF (2009) Hydrolytic activity of free and immobilized cellulase. Langmuir 25(3):1582–1587

    Article  CAS  PubMed  Google Scholar 

  76. Liang YY, Zhang LM (2007) Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan. Biomacromol 8(5):1480–1486

    Article  CAS  Google Scholar 

  77. Tsang SC, Yu CH, Gao X, Tam K (2006) Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier. J Phys Chem B 110(34):16914–16922

    Article  CAS  PubMed  Google Scholar 

  78. Pouponneau P, Leroux JC, Martel S (2009) Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials 30(31):6327–6332

    Article  CAS  PubMed  Google Scholar 

  79. Al-Rawi UA, Sher F, Hazafa A, Rasheed T, Al-Shara NK, Lima EC, Shanshool J (2020) Catalytic activity of pt loaded zeolites for hydroisomerization of n-hexane using supercritical CO2. Ind Eng Chem Res 59(51):22092–22106

    Article  CAS  Google Scholar 

  80. Rashid T, Iqbal D, Hazafa A, Hussain S, Sher F, Sher F (2020) Formulation of zeolite supported nano-metallic catalyst and applications in textile effluent treatment. J Environ Chem Eng 8(4):104023

    Article  CAS  Google Scholar 

  81. Sehar S, Sher F, Zhang S, Khalid U, Sulejmanović J, Lima EC (2020) Thermodynamic and kinetic study of synthesised graphene oxide-CuO nanocomposites: a way forward to fuel additive and photocatalytic potentials. J Mol Liq 313:113494

    Article  CAS  Google Scholar 

  82. Tiwari A, Aryal S, Pilla S, Gong S (2009) An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles. Talanta 78(4–5):1401–1407

    Article  CAS  PubMed  Google Scholar 

  83. Garg S, De A, Mozumdar S (2015) pH-dependent immobilization of urease on glutathione-capped gold nanoparticles. J Biomed Mater Res Part A 103(5):1771–1783

    Article  CAS  Google Scholar 

  84. Eghbali M, Farahbakhsh A, Rohani A, Pour AN (2015) Urea biosensor based on immobilization of urease on ZnO nanoparticles. Orient J Chem 31(2):1237–1242

    Article  CAS  Google Scholar 

  85. Ali SMU, Ibupoto ZH, Salman S, Nur O, Willander M, Danielsson B (2011) Selective determination of urea using urease immobilized on ZnO nanowires. Sens Actuators B Chem 160(1):637–643

    Article  CAS  Google Scholar 

  86. Zdarta J, Meyer AS, Jesionowski T, Pinelo M (2018) A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8(2):92

    Article  CAS  Google Scholar 

  87. Netto CG, Toma HE, Andrade LH (2013) Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B Enzym 85:71–92

    Article  CAS  Google Scholar 

  88. Pogorilyi RP, Melnyk IV, Zub YL, Seisenbaeva GA, Kessler VG (2014) Immobilization of urease on magnetic nanoparticles coated by polysiloxane layers bearing thiol-or thiol-and alkyl-functions. J Mater Chem B 2(18):2694–2702

    Article  CAS  PubMed  Google Scholar 

  89. Sahraoui Y, Barhoumi H, Maaref A, Nicole JR (2011) A novel capacitive biosensor for urea assay based on modified magnetic nanobeads. Sens Lett 9(6):2141–2146

    Article  CAS  Google Scholar 

  90. Zhang J, Yan B, He C, Hao Y, Sun S, Zhao W, Zhao C (2020) Urease-immobilized magnetic graphene oxide as a safe and effective urea removal recyclable nanocatalyst for blood purification. Ind Eng Chem Res 59(19):8955–8964

    Article  CAS  Google Scholar 

  91. Nguyen PT, Kim YI, Kim MI (2020) Reagent-free colorimetric cholesterol test strip based on self color-changing property of nanoceria. Front Chem 8:798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hur J, Park HG, Kim MI (2017) Reagentless colorimetric biosensing platform based on nanoceria within an agarose gel matrix. Biosens Bioelectron 93:226–233

    Article  PubMed  CAS  Google Scholar 

  93. Ornatska M, Sharpe E, Andreescu D, Andreescu S (2011) Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal Chem 83(11):4273–4280

    Article  CAS  PubMed  Google Scholar 

  94. Al-Hakeim HK, Khudhair MK, Grulke EA (2016) Immobilization of urease enzyme on nanoceria modifies secondary and tertiary protein structures. Acta Chimica Slovaca 9(1):44–53

    Article  CAS  Google Scholar 

  95. Gabrovska K, Ivanov J, Vasileva I, Dimova N, Godjevargova T (2011) Immobilization of urease on nanostructured polymer membrane and preparation of urea amperometric biosensor. Int J Biol Macromol 48(4):620–626

    Article  CAS  PubMed  Google Scholar 

  96. Kale P, Bodade A, Chaudhari G (2016) Study of immobilization of urease on pva-nano nife2o4 nanocomposite for biosensor applications. Int J Pharm Pharm Sci 8(7):380–5

    CAS  Google Scholar 

  97. Jakhar S, Pundir CS (2018) Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor. Biosens Bioelectron 100:242–250

    Article  CAS  PubMed  Google Scholar 

  98. Daoud FBO, Kaddour S, Sadoun T (2010) Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies. Colloids Surf, B 75(1):93–99

    Article  CAS  Google Scholar 

  99. Dutta S, Bhattacharyya A, De P, Ray P, Basu S (2009) Removal of mercury from its aqueous solution using charcoal-immobilized papain (CIP). J Hazard Mater 172(2–3):888–896

    Article  CAS  PubMed  Google Scholar 

  100. Silva VDM, De Marco LM, Delvivo FM, Coelho JV, Silvestre MPC (2005) Imobilização da pancreatina em carvão ativado e em alumina para o preparo de hidrolisados de soro de leite. Acta Sci Health Sci 27(2):163–169

    CAS  Google Scholar 

  101. Meshram BH, Kondawar SB, Mahajan AP, Mahore RP, Burghate DK (2014) Urease immobilized polypyrrole/multi-walled carbon nanotubes composite biosensor for heavy metal ions detection. J Chin Adv Mater Soc 2(4):223–235

    Article  CAS  Google Scholar 

  102. Saeedfar K, Heng LY, Ling TL, Rezayi M (2013) Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate. Sensors 13(12):16851–16866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Yang Z, Si S, Dai H, Zhang C (2007) Piezoelectric urea biosensor based on immobilization of urease onto nanoporous alumina membranes. Biosens Bioelectron 22(12):3283–3287

    Article  CAS  PubMed  Google Scholar 

  104. Sultan MT, Moon BM, Yang JW, Lee OJ, Kim SH, Lee JS, Park CH (2019) Recirculating peritoneal dialysis system using urease-fixed silk fibroin membrane filter with spherical carbonaceous adsorbent. Mater Sci Eng, C 97:55–66

    Article  CAS  Google Scholar 

  105. Wolfe EA, Chang TMS (1987) Orally ingested microencapsulated urease and an adsorbent, zirconium phosphate, to remove urea in kidney failure. Int J Artif Organs 10(4):269–74

    Article  CAS  PubMed  Google Scholar 

  106. Zhou C, Bhinderwala F, Lehman MK, Thomas VC, Chaudhari SS, Yamada KJ, Fey PD (2019) Urease is an essential component of the acid response network of Staphylococcus aureus and is required for a persistent murine kidney infection. PLoS Pathog 15(1):e1007538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics 2010. CA A Cancer J Clin 60(5):277–300

    Article  Google Scholar 

  108. Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. Am J Cancer Res 7(5):1016

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Liversidge G, Mitchell H, Chen P (2011) Altering the tumor microenvironment. Drug Dev Deliv 11:68–72

    Google Scholar 

  110. Wong WY, DeLuca CI, Tian B, Wilson I, Molund S, Warriar N, Chao H (2005) Urease-induced alkalinization of extracellular pH and its antitumor activity in human breast and lung cancers. J Exp Ther Oncol 5(2):93–9

    CAS  PubMed  Google Scholar 

  111. Wright CI, Van-Buren L, Kroner CI, Koning MMG (2007) Herbal medicines as diuretics: a review of the scientific evidence. J Ethnopharmacol 114(1):1–31

    Article  CAS  PubMed  Google Scholar 

  112. de Souza SCR, Sodek L, Polacco JC, Mazzafera P (2020) Urease deficiency alters nitrogen metabolism and gene expression in urease-null soybean without affecting growth or productivity under nitrate supply. Acta Physiol Plant 42(3):1–11

    Article  CAS  Google Scholar 

  113. Jin D, Zhao S, Zheng N, Beckers Y, Wang J (2018) Urea metabolism and regulation by rumen bacterial urease in ruminants–a review. Ann of Animal Sci 18(2):303–318

    Article  Google Scholar 

  114. Polacco JC, Holland MA (1993) Roles of urease in plant cells. Int Rev Cytol 145:65–103

    Article  CAS  Google Scholar 

  115. Sujoy B, Aparna A (2013) Enzymology, immobilization and applications of urease enzyme. Int Res J Biol Sci 2(6):51–56

    Google Scholar 

  116. Hussey S, Jones NL (2011) Helicobacter pylori in childhood. In: Saunders WB (ed) Pediatric gastrointestinal and liver disease. Elsevier, Amsterdam, pp 293–308

    Chapter  Google Scholar 

  117. Moynihan HJ, Lee CK, Clark W, Wang NH (1989) Urea hydrolysis by immobilized urease in a fixed-bed reactor: analysis and kinetic parameter estimation. Biotechnol Bioeng 34(7):951–963

    Article  CAS  PubMed  Google Scholar 

  118. Zonia LE, Stebbins NE, Polacco JC (1995) Essential role of urease in germination of nitrogen-limited Arabidopsis thaliana seeds. Plant Physiol 107(4):1097–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rechenmacher C, Wiebke-Strohm B, Oliveira-Busatto LAD, Polacco JC, Carlini CR, Bodanese-Zanettini MH (2017) Effect of soybean ureases on seed germination and plant development. Genet Mol Biol 40(1):209–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Solnick JV, Canfield DR, Hansen LM, Torabian SZ (2000) Immunization with recombinant helicobacter pylori urease in specific-pathogen-free rhesus monkeys (Macaca mulatta). Infect Immun 68(5):2560–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Carballo M, Dillon JR, Lussier M, Milthorp P, Winston S, Brodeur B (1992) Evaluation of a urease-based confirmatory enzyme-linked immunosorbent assay for diagnosis of Neisseria gonorrhoeae. J Clin Microbiol 30(8):2181–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Andrich L, Esti M, Moresi M (2010) Urea degradation in some white wines by immobilized acid urease in a stirred bioreactor. J Agric Food Chem 58(11):6747–6753

    Article  CAS  PubMed  Google Scholar 

  123. Fidaleo M, Esti M, Moresi M (2006) Assessment of urea degradation rate in model wine solutions by acid urease from Lactobacillus fermentum. J Agric Food Chem 54(17):6226–6235

    Article  CAS  PubMed  Google Scholar 

  124. Lonvaud-Funel A (2016) Undesirable compounds and spoilage microorganisms in wine. In: Victoria Moreno-Arribas M, Bartolomé Suáldea B (eds) Wine safety, consumer preference, and human health. Springer, Cham, pp 3–26

    Chapter  Google Scholar 

  125. Pérez JAC, Sosa-Hernández JE, Hussain SM, Bilal M, Parra-Saldivar R, Iqbal HM (2019) Bioinspired biomaterials and enzyme-based biosensors for point-of-care applications with reference to cancer and bio-imaging. Biocatal Agric Biotechnol 17:168–176

    Article  Google Scholar 

  126. Nguyen HH, Lee SH, Lee UJ, Fermin CD, Kim M (2019) Immobilized enzymes in biosensor applications. Materials 12(1):121

    Article  CAS  PubMed Central  Google Scholar 

  127. Sheppard NF Jr, Mears DJ, Guiseppi-Elie A (1996) Model of an immobilized enzyme conductimetric urea biosensor. Biosens Bioelectron 11(10):967–979

    Article  CAS  Google Scholar 

  128. Konieczna I, Zarnowiec P, Kwinkowski M, Kolesinska B, Fraczyk J, Kaminski Z, Kaca W (2012) Bacterial urease and its role in long-lasting human diseases. Curr Protein Pept Sci 13(8):789–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Claus H, Mojsov K (2018) Enzymes for wine fermentation: current and perspective applications. Fermentation 4(3):52

    Article  CAS  Google Scholar 

  130. Girelli AM, Scuto FR (2020) Eggshell membrane as feedstock in enzyme immobilization. J Biotechnol 325:241

    Article  PubMed  CAS  Google Scholar 

  131. Lv S (2020) Silk fibroin-based materials for catalyst immobilization. Molecules 25(21):4929

    Article  CAS  PubMed Central  Google Scholar 

  132. Martı́n MT, Plou FJ, Alcalde M, Ballesteros A (2003) Immobilization on Eupergit C of cyclodextrin glucosyltransferase (CGTase) and properties of the immobilized biocatalyst. J Mol Catal B Enzym 21(4–6):299–308

    Article  Google Scholar 

  133. Şenel M, Coşkun A, Abasıyanık MF, Bozkurt A (2010) Immobilization of urease in poly (1-vinyl imidazole)/poly (acrylic acid) network. Chem Pap 64(1):1–7

    Article  CAS  Google Scholar 

  134. Wahab RA, Elias N, Abdullah F, Ghoshal SK (2020) On the taught new tricks of enzymes immobilization: an all-inclusive overview. React Funct Polym 152(2):104613

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Consejo Nacional de Ciencia y Tecnología (CONACYT) is thankfully acknowledged for partially supporting this work under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz M.N. Iqbal (CVU: 735340).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Bilal or Hafiz M. N. Iqbal.

Ethics declarations

Conflict of interests

The author(s) declare no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Rafeeq, H., Afsheen, N. et al. Urease-Based Biocatalytic Platforms―A Modern View of a Classic Enzyme with Applied Perspectives. Catal Lett 152, 414–437 (2022). https://doi.org/10.1007/s10562-021-03647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03647-z

Keywords

Navigation