Skip to main content

Advertisement

Log in

A Bifunctional Cationic Covalent Organic Polymer for Cooperative Conversion of CO2 to Cyclic Carbonate without Co-catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A cationic covalent organic polymer with bifunctional active site was synthesized, which was treated by N, N'-bis(5-bromomethylsalicylaldehyde)ethylenediamine (salen ligand) and tris(1H-imidazol-1-yl) triazine (TIT) in the presence of aluminum ethoxide. The bifunctional cationic covalent organic polymer was investigated by various characterization technologies including PXRD, FT-IR, XPS, TG, SEM, EDS, N2-adsorption and CO2-adsorption. In this polymer, aluminum acts as lewis acid site and bromine ion acts as nucleophile, cooperatively catalyzing the cycloaddition reaction of CO2 and epoxides. Due to its cooperative effect, a higher catalytic activity was found to exhibit 98.1% conversion of epichlorohydrin under optimized conditions (Initial pressure 1.0 MPa, 0.57 mol% catalyst of COP-Al, 90 °C, reaction time 18 h, in the absence of a co-catalyst). Notably, the heterogeneous catalyst still showed good activity and stability after five cycles.

Graphic Abstract

A salen-based cationic covalent organic polymers (COP-Al) was used as a bifunctional catalyst for the cycloaddition reaction of CO2 and epoxides with high activity under solvent-free and co-catalyst-free conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Schnoor JL (2014) Ocean acidification: the other problem with CO2. Environ Sci Technol 48(18):10529–10530

    Article  CAS  Google Scholar 

  2. Jeong K, Hong T, Kim J (2018) Development of a CO2 emission benchmark for achieving the national CO2 emission reduction target by 2030. Energy Build 158(1):86–94

    Article  Google Scholar 

  3. McCollum D, Bauer N, Calvin K et al (2013) Fossil resource and energy security dynamics in conventional and carbon-constrained worlds. Clim Change 123(3–4):413–426

    Google Scholar 

  4. Jessop P, Leitner W (2017) Green chemistry in 2017. Green Chem 19(1):15–17

    Article  CAS  Google Scholar 

  5. Liu Q, Wu L, Jackstell R et al (2015) Using carbon dioxide as a building block in organic synthesis. Nat Commun 6:1–15

    CAS  Google Scholar 

  6. Alvarez A, Bansode A, Urakawa A et al (2017) Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117(14):9804–9838

    Article  CAS  Google Scholar 

  7. Toshiyasu S, Jun-Chul C, Hiroyuki Y (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387

    Article  Google Scholar 

  8. Kamphuis AJ, Picchioni F, Pescarmona PP (2019) CO2-fixation into cyclic and polymeric carbonates: principles and applications. Green Chem 21(3):406–448

    Article  CAS  Google Scholar 

  9. Appel AM, Bercaw JE, Bocarsly AB et al (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 8(113):6621–6658

    Article  Google Scholar 

  10. Martín C, Fiorani G, Kleij AW (2015) Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catal 5(2):1353–1370

    Article  Google Scholar 

  11. Hou SL, Dong J, Jiang XL et al (2019) A noble-metal-free metal-organic framework (MOF) catalyst for the highly efficient conversion of CO2 with propargylic alcohols. Angew Chem Int Ed 58(2):577–581

    Article  CAS  Google Scholar 

  12. Liu L, Wang SM, Han ZB et al (2016) Exceptionally robust in-based metal-organic framework for highly efficient carbon dioxide capture and conversion. Inorg Chem 55(7):3558–3565

    Article  CAS  Google Scholar 

  13. Jiang HL, Wu Q, Ding M et al (2020) Encapsulating soluble active species into hollow crystalline porous capsules beyond integration of homogeneous and heterogeneous catalysis. Natl Sci Rev 7(1):37–45

    Article  Google Scholar 

  14. Ding M, Flaig RW, Jiang HL et al (2019) Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 48(10):2783–2828

    Article  CAS  Google Scholar 

  15. Zhang GC, Zhong JL, Xu M et al (2019) Ternary BiVO4/NiS/Au nanocomposites with efficient charge separations for enhanced visible light photocatalytic performance. Chem Eng J 375:122093

    Article  CAS  Google Scholar 

  16. Ng CK, Toh RW, Lin TT et al (2019) Metal-salen molecular cages as efficient and recyclable heterogeneous catalysts for cycloaddition of CO2 with epoxides under ambient conditions. Chem Sci 10(5):1549–1554

    Article  CAS  Google Scholar 

  17. Ding M, Jiang HL (2018) Incorporation of imidazolium-based Poly(ionic liquid)s into a metal-organic framework for CO2 capture and conversion. ACS Catal 8(4):3194–3201

    Article  CAS  Google Scholar 

  18. Li J, Han Y, Lin H et al (2019) Cobalt–salen-based porous ionic polymer: the role of valence on cooperative conversion of CO2 to cyclic carbonate. ACS Appl Mater Int 12(1):609–618

    Article  Google Scholar 

  19. Puthiaraj P, Lee YR, Zhang S et al (2016) Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis. J Mater Chem A 4(42):16288–16311

    Article  CAS  Google Scholar 

  20. Peron DV, Zholobenko VL, de la Rocha MR et al (2019) Nickel–zeolite composite catalysts with metal nanoparticles selectively encapsulated in the zeolite micropores. J Mater Sci 54(7):5399–5411

    Article  CAS  Google Scholar 

  21. Rimer JD (2018) Rational design of zeolite catalysts. Nat Catal 1(7):488–489

    Article  CAS  Google Scholar 

  22. Jiang JX, Wang C, Laybourn A et al (2011) Metal-organic conjugated microporous polymers. Angew Chem Int Ed 50(5):1072–1075

    Article  CAS  Google Scholar 

  23. Xu Y, Jin S, Xu H et al (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42(20):8012–8031

    Article  CAS  Google Scholar 

  24. Xie Y, Wang TT, Liu XH et al (2013) Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat Commun 4:1960–1966

    Article  Google Scholar 

  25. Luo R, Liu X, Chen M et al (2020) Recent advances on imidazolium-functionalized cationic covalent organic polymers for CO2 adsorption and simultaneous conversion into cyclic carbonates. Chemsuschem 13(16):3945–3966

    Article  CAS  Google Scholar 

  26. Liu ZW, Han BH (2020) Evaluation of an imidazolium-based porous organic polymer as radioactive waste scavenger. Environ Sci Technol 54(1):216–224

    CAS  PubMed  Google Scholar 

  27. Zhang Y, Su K, Hong Z et al (2019) Robust cationic calix[4]arene polymer as an efficient catalyst for cycloaddition of epoxides with CO2. Ind Eng Chem Res 59(15):7247–7254

    Article  Google Scholar 

  28. Ma D, Li J, Liu K et al (2018) Di-ionic multifunctional porous organic frameworks for efficient CO2 fixation under mild and co-catalyst free conditions. Green Chem 20(23):5285–5291

    Article  CAS  Google Scholar 

  29. Alkordi MH, Weseliński LJ, D’Elia V et al (2016) CO2 conversion: the potential of porous-organic polymers (POPs) for catalytic CO2–epoxide insertion. J Mater Chem A 4(19):7453–7460

    Article  CAS  Google Scholar 

  30. Wu X, Chen C, Guo Z et al (2019) Metal- and halide-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. ACS Catal 9(3):1895–1906

    Article  CAS  Google Scholar 

  31. Wang W, Li C, Yan L et al (2016) Ionic liquid/Zn-PPh3 integrated porous organic polymers featuring multifunctional sites: highly active heterogeneous catalyst for cooperative conversion of CO2 to cyclic carbonates. ACS Catal 6(9):6091–6100

    Article  CAS  Google Scholar 

  32. Liu TT, Liang J, Huang YB et al (2016) A bifunctional cationic porous organic polymer based on a Salen-(Al) metalloligand for the cycloaddition of carbon dioxide to produce cyclic carbonates. Chem Commun 52(90):13288–13291

    Article  CAS  Google Scholar 

  33. Luo R, Chen M, Liu X et al (2020) Recent advances on CO2 capture and simultaneous conversion into cyclic carbonates over porous organic polymers having accessible metal sites. J Mater Chem A 8(36):18408–18424

    Article  CAS  Google Scholar 

  34. Melendez J, North M, Villuendas P (2009) One-component catalysts for cyclic carbonate synthesis. Chem Commun 40(18):2577–2579

    Article  Google Scholar 

  35. Meléndez J, North M, Pasquale R (2007) Synthesis of cyclic carbonates from atmospheric pressure carbon dioxide using exceptionally active aluminium(salen) complexes as catalysts. Eur J Inorg Chem 21:3323–3326

    Article  Google Scholar 

  36. Yang S, Zhang Q, Hu Y et al (2018) Synthesis of s-triazine based tri-imidazole derivatives and their application as thermal latent curing agents for epoxy resin. Mater Lett 216:127–130

    Article  CAS  Google Scholar 

  37. Clegg W, Harrington RW, North M et al (2010) Cyclic carbonate synthesis catalysed by bimetallic aluminium-salen complexes. Chem Eur J 16(23):6828–6843

    Article  CAS  Google Scholar 

  38. Kuznetsova SA, Rulev YA, Larionov VA et al (2018) Self-assembled ionic composites of negatively charged Zn(salen) complexes and triphenylmethane derived polycations as recyclable catalysts for the addition of carbon dioxide to epoxides. ChemCatChem 11(1):511–519

    Article  Google Scholar 

  39. Zhong H, Su Y, Chen X et al (2017) Imidazolium- and triazine-based porous organic polymers for heterogeneous catalytic conversion of co2 into cyclic carbonates. Chemsuschem 10(24):4855–4863

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (21671090 and 21701076), LiaoNing Revitalization Talents Program (XLYC1802125), and Liaoning Province Doctor Startup Fund (20180540056) for financial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

R-YZ: Writing-Original Draft, Software, Investigation. YZ: Investigation, Validation, Formal analysis. JT: Visualization, Software. LL: Resources, Visualization. Z-BH: Conceptualization, Methodology, Resources, Writing-Review & Editing, Supervision.

Corresponding authors

Correspondence to Lin Liu or Zheng-Bo Han.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, RY., Zhang, Y., Tong, J. et al. A Bifunctional Cationic Covalent Organic Polymer for Cooperative Conversion of CO2 to Cyclic Carbonate without Co-catalyst. Catal Lett 151, 2833–2841 (2021). https://doi.org/10.1007/s10562-021-03534-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03534-7

Keywords

Navigation