Skip to main content
Log in

Asymmetric Bio-oxidation Using Resting Cells of Rhodococcus rhodochrous ATCC 4276 Mutant QZ-3 for Preparation of (S)-Omeprazole in a Chloroform–Water Biphasic System Using Response Surface Methodology

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

(S)-Omeprazole is a very effective anti-ulcer medicine that is difficult to be prepared using whole cells at elevated substrate concentrations. In the chloroform–water biphasic system, resting cells of the mutant QZ-3 of Rhodococcus rhodochrous (R. rhodochrous) ATCC 4276 were used to catalyze the bio-oxidation of omeprazole sulfide for preparation of (S)-omeprazole. Using response surface methodology (RSM), the reaction was optimized to work at a substrate concentration of 180 mM and a cell concentration of 100 g/L. The optimal yield of (S)-omeprazole obtained was 92.9% with enantiomeric excess (ee) (> 99%), and no sulfone by-product was detected under the optimal working conditions; reaction temperature 37 °C, pH 7.3 and reaction time, 43 h. A quadratic polynomial model was established, which predicts the experimental data with very high accuracy (R2 = 0.9990). The chloroform–water biphasic system may contribute to the significant improvement in substrate tolerance because almost all substrates are partitioned in the organic phase (water solubility of omeprazole sulfide is only about 0.5 mg/mL), resulting in little damage and inhibition to cells by substrates. The mutant QZ-3 of R. rhodochrous ATCC 4276 exhibited high enantioselectivity, activity and substrate and product tolerance. The aerated flask provides enough oxygen for a high concentration of cells. Accordingly, bio-oxidation is thus more promising for efficient preparation of chiral sulfoxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pai V, Pai N (2007) Recent advances in chirally pure proton pump inhibitors. J Indian Med Assoc 105:469–470, 472, 474

  2. Andersson T, Weidolf L (2008) Stereoselective disposition of proton pump inhibitors. Clin Drug Investig 28:263–279. https://doi.org/10.2165/00044011-200828050-00001

    Article  CAS  PubMed  Google Scholar 

  3. Maitro G, Prestat G, Madec D, Poli G (2010) An escapade in the world of sulfenate anions: generation, reactivity and applications in domino processes. Tetrahedron Asymmetr 21:1075–1084. https://doi.org/10.1016/j.tetasy.2010.05.035

    Article  CAS  Google Scholar 

  4. Delamare M, Belot S, Caille JC et al (2009) A new titanate/(+)-(1R,2S)-cis-1-amino-2-indanol system for the asymmetric synthesis of (S)-tenatoprazole. Tetrahedron Lett 50:1702–1704. https://doi.org/10.1016/j.tetlet.2009.01.111

    Article  CAS  Google Scholar 

  5. Adam W, Korb MN, Roschmann KJ, Saha-Moller CR (1998) Titanium-catalyzed, asymmetric sulfoxidation of alkyl aryl sulfides with optically active hydroperoxides. J Org Chem 63:3423–3428. https://doi.org/10.1021/jo980243y

    Article  CAS  Google Scholar 

  6. Dembitsky VM (2003) Oxidation, epoxidation and sulfoxidation reactions catalysed by haloperoxidases. Tetrahedron 26:4701–4720. https://doi.org/10.1016/s0040-4020(03)00701-4

    Article  Google Scholar 

  7. Kamerbeek NM, Olsthoorn AJ, Fraaije MW, Janssen DB (2003) Substrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase. Appl Environ Microbiol 69:419–426. https://doi.org/10.1128/aem.69.1.419-426.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zambianchi F, Fraaije MW, Carrea G et al (2007) Titration and assignment of residues that regulate the enantioselectivity of phenylacetone monooxygenase. Adv Synth Catal 349:1327–1331. https://doi.org/10.1002/adsc.200600598

    Article  CAS  Google Scholar 

  9. Van Deurzen MPJ, van Rantwijk F, Sheldon RA (1997) Selective oxidations catalyzed by peroxidases. Tetrahedron 53:13183–13220. https://doi.org/10.1016/S0040-4020(97)00477-8

    Article  Google Scholar 

  10. Colonna S, Gaggero N, Richelmi C, Pasta P (1999) Recent biotechnological developments in the use of peroxidases. Trends Biotechnol 17:163–168. https://doi.org/10.1016/S0167-7799(98)01288-8

    Article  CAS  PubMed  Google Scholar 

  11. Adam W, Heckel F, Saha-Möller CR, Schreier P (2002) Biocatalytic synthesis of optically active oxyfunctionalized building blocks with enzymes, chemoenzymes and microorganisms. J Organomet Chem 661:17–29. https://doi.org/10.1016/s0022-328x(02)01805-3

    Article  CAS  Google Scholar 

  12. Dzyuba SV, Klibanov AM (2003) Asymmetric thiosulfinations catalyzed by bovine serum albumin and horseradish peroxidase. Biotechnol Lett 25:1961–1965. https://doi.org/10.1023/b:bile.0000004385.50406.06

    Article  CAS  PubMed  Google Scholar 

  13. Ozaki S, Yang HJ, Matsui T et al (1999) Asymmetric oxidation catalyzed by myoglobin mutants. Tetrahedron Asymmetr 10:183–192. https://doi.org/10.1016/S0957-4166(98)00498-4

    Article  CAS  Google Scholar 

  14. Ozaki S, Matsui T, Watanabe Y (1997) Conversion of myoglobin into a peroxygenase: a catalytic intermediate of sulfoxidation and epoxidation by the F43H/H64L mutant. J Am Chem Soc 119:6666–6667. https://doi.org/10.1021/ja970453c

    Article  CAS  Google Scholar 

  15. Akasaka R, Mashino T, Hirobe M (1993) Cytochrome P450-like substrate oxidation catalyzed by cytochrome c and immobilized cytochrome c. Arch Biochem Biophys 301:355–360. https://doi.org/10.1006/abbi.1993.1155

    Article  CAS  PubMed  Google Scholar 

  16. Maczka W, Wińska K, Grabarczyk M (2018) Biotechnological methods of sulfoxidation: yesterday today, tomorrow. Catalysts 8:624–650. https://doi.org/10.3390/catal8120624

    Article  CAS  Google Scholar 

  17. Gao F, Wang L, Liu Y et al (2015) Enzymatic synthesis of (R)-modafinil by chloroperoxidase-catalyzed enantioselective sulfoxidation of 2-(diphenylmethylthio) acetamide. Biochem Eng J 93:243–249. https://doi.org/10.1016/j.bej.2014.10.017

    Article  CAS  Google Scholar 

  18. Pereira PC, Arends IWCE, Sheldon RA (2015) Optimizing the chloroperoxidase-glucose oxidase system: the effect of glucose oxidase on activity and enantioselectivity. Process Biochem 50:746–751. https://doi.org/10.1016/j.procbio.2015.02.006

    Article  CAS  Google Scholar 

  19. Bisagni S, Summers B, Kara S et al (2014) Exploring the substrate specificity and enantioselectivity of a Baeyer–Villiger monooxygenase from Dietzia sp. D5: oxidation of sulfides and aldehydes. Top Catal 57:366–375. https://doi.org/10.1007/s11244-013-0192-1

    Article  CAS  Google Scholar 

  20. Reetz MT, Daligault F, Brunner B et al (2004) Directed evolution of cyclohexanone monooxygenases: enantioselective biocatalysts for the oxidation of prochiral thioethers. Angew Chem 116:4170–4173. https://doi.org/10.1002/ange.200460311

    Article  Google Scholar 

  21. Carballeira JD, Quezada MA, Hoyos P et al (2009) Microbial cells as catalysts for stereoselective red-ox reactions. Biotechnol Adv 27:686–714. https://doi.org/10.1016/j.biotechadv.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  22. Olivo HF, Osorio-Lozada A, Peeples TL (2005) Microbial oxidation/amidation of benzhydrylsulfanyl acetic acid. Synthesis of (+)-modafinil. Tetrahedron Asymmetr 16:3507–3511. https://doi.org/10.1016/j.tetasy.2005.07.028

    Article  CAS  Google Scholar 

  23. Pinedo-Rivilla C, Aleu J, Collado IG (2007) Enantiomeric oxidation of organic sulfides by the filamentous fungi Botrytis cinerea, Eutypa lataand Trichoderma viride. J Mol Catal B Enzym 49:18–23. https://doi.org/10.1016/j.molcatb.2007.07.001

    Article  CAS  Google Scholar 

  24. Ricci LC, Comasseto JV, Andrade LH et al (2005) Biotransformations of aryl alkyl sulfides by whole cells of white-rot Basidiomycetes. Enzyme Microb Technol 36:937–946. https://doi.org/10.1016/j.enzmictec.2005.01.021

    Article  CAS  Google Scholar 

  25. Borges KB, Borges WD, Duran-Patron R et al (2009) Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron Asymmetr 20:385–397. https://doi.org/10.1016/j.tetasy.2009.02.009

    Article  CAS  Google Scholar 

  26. Li AT, Yu HL, Pan JA et al (2011) Resolution of racemic sulfoxides with high productivity and enantioselectivity by a Rhodococcus sp. strain as an alternative to biooxidation of prochiral sulfides for efficient production of enantiopure sulfoxides. Bioresour Technol 102:1537–1542. https://doi.org/10.1016/j.biortech.2010.08.025

    Article  CAS  PubMed  Google Scholar 

  27. Elkin AA, Kylosova TI, Grishko VV, Ivshina IB (2013) Enantioselective oxidation of sulfides to sulfoxides by Gordonia terrae IEGM 136 and Rhodococcus rhodochrous IEGM 66. J Mol Catal B Enzym 89:82–85. https://doi.org/10.1016/j.molcatb.2012.12.001

    Article  CAS  Google Scholar 

  28. Holland HL, Brown FM, Lakshmaiah G et al (1997) Biotransformation of organic sulfides—VII. A predictive model for sulfoxidation by Helminthosporium species NRRL 4671. Tetrahedron Asymmetr 8:683–697. https://doi.org/10.1016/S0957-4166(97)00006-2

    Article  CAS  Google Scholar 

  29. Li AT, Zhang JD, Xu JH et al (2009) Isolation of Rhodococcus sp. strain ECU0066, a new sulfide monooxygenase-producing strain for asymmetric sulfoxidation. Appl Environ Microbiol 75:551–556. https://doi.org/10.1128/AEM.01527-08

    Article  CAS  PubMed  Google Scholar 

  30. Holland HL, Brown FM, Kerridge A et al (2003) Biotransformation of sulfides by Rhodocoeccus erythropolis. J Mol Catal B Enzym 22:219–223. https://doi.org/10.1016/s1381-1177(03)00040-7

    Article  CAS  Google Scholar 

  31. Li AT, Zhang JD, Yu HL et al (2011) Significantly improved asymmetric oxidation of sulfide with resting cells of Rhodococcus sp. in a biphasic system. Process Biochem 46:689–694. https://doi.org/10.1016/j.procbio.2010.11.010

    Article  CAS  Google Scholar 

  32. Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A (2018) Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem Soc Rev 47:1307–1350. https://doi.org/10.1039/C6CS00703A

    Article  CAS  PubMed  Google Scholar 

  33. Mascotti ML, Orden AA, Bisogno FR et al (2012) Aspergillus genus as a source of new catalysts for sulfide oxidation. J Mol Catal B Enzym 82:32–36. https://doi.org/10.1016/j.molcatb.2012.05.003

    Article  CAS  Google Scholar 

  34. Mascotti ML, Palazzolo MA, Lewkowicz E, Kurina-Sanz M (2013) Expanding the toolbox for enantioselective sulfide oxidations: Streptomyces strains as biocatalysts. Biocatal Agric Biotechnol 2:399–402. https://doi.org/10.1016/j.bcab.2013.08.003

    Article  Google Scholar 

  35. Chen Y, Zhuo J, Zheng D et al (2014) Stereoselective oxidation of sulfides to optically active sulfoxides with resting cells of Pseudomonas monteilii CCTCC M2013683. J Mol Catal B Enzym 106:100–104. https://doi.org/10.1016/j.molcatb.2014.05.004

    Article  CAS  Google Scholar 

  36. Holt R, Lindberg P, Reeve C, Taylor S (1998) Preparation of pharmaceutically active compounds by biooxidation. U.S. Patent No. 5,840,552

  37. Yoshida T, Kito M, Tsujii M, Nagasawa T (2001) Microbial synthesis of a proton pump inhibitor by enantioselective oxidation of a sulfide into its corresponding sulfoxide by Cunninghamella echinulata MK40. Biotechnol Lett 23:1217–1222. https://doi.org/10.1023/a:1010521217954

    Article  CAS  Google Scholar 

  38. Gong PF, Xu JH (2005) Bio-resolution of a chiral epoxide using whole cells of Bacillus megaterium ECU1001 in a biphasic system. Enzyme Microb Technol 36:252–257. https://doi.org/10.1016/j.enzmictec.2004.07.014

    Article  CAS  Google Scholar 

  39. He JY, Sun ZH, Ruan WQ, Xu Y (2006) Biocatalytic synthesis of ethyl (S)-4-chloro-3-hydroxy-butanoate in an aqueous–organic solvent biphasic system using Aureobasidium pullulans CGMCC 1244. Process Biochem 41:244–249. https://doi.org/10.1016/j.procbio.2005.06.028

    Article  CAS  Google Scholar 

  40. Kansal H, Banerjee UC (2009) Enhancing the biocatalytic potential of carbonyl reductase of Candida viswanathii using aqueous–organic solvent system. Bioresour Technol 100:1041–1047. https://doi.org/10.1016/j.biortech.2008.08.042

    Article  CAS  PubMed  Google Scholar 

  41. El’kin AA, Grishko VV, Ivshina IB (2010) Oxidative biotransformation of thioanisole by Rhodococcus rhodochrous IEGM 66 cells. Appl Biochem Microbiol 46:586–591. https://doi.org/10.1134/S0003683810060050

    Article  CAS  Google Scholar 

  42. Holland HL, Poddar S, Tripet B (1992) Effect of cell immobilization and organic solvents on sulfoxidation and steroid hydroxylation by Mortierella isabellina. J Ind Microbiol 10:195–197. https://doi.org/10.1007/BF01569766

    Article  CAS  PubMed  Google Scholar 

  43. Holland HL, Rand CG, Viski P, Brown FM (1991) Microbial oxidation of benzyl sulfides and bibenzyl by Mortierella isabellina and Helminthosporium species. Can J Chem 69:1989–1993. https://doi.org/10.1139/v91-287

    Article  CAS  Google Scholar 

  44. Tarasova EV, Grishko VV, Ivshina IB (2017) Cell adaptations of Rhodococcus rhodochrous IEGM 66 to betulin biotransformation. Process Biochem 52:1–9. https://doi.org/10.1016/j.procbio.2016.10.003

    Article  CAS  Google Scholar 

  45. Aguirre-Pranzoni C, Bisogno FR, Orden AA, Kurina-Sanz M (2015) Lyophilized rhodotorula yeast as all-in-one redox biocatalyst: access to enantiopure building blocks by simple chemoenzymatic one-pot procedures. J Mol Catal B Enzym 114:19–24. https://doi.org/10.1016/j.molcatb.2014.07.011

    Article  CAS  Google Scholar 

  46. Grishko VV, Tarasova EV, Ivshina IB (2013) Biotransformation of betulin to betulone by growing and resting cells of the actinobacterium Rhodococcus rhodochrous IEGM 66. Process Biochem 48:1640–1644. https://doi.org/10.1016/j.procbio.2013.08.012

    Article  CAS  Google Scholar 

  47. Holland HL, Brown FM, Larsen BG, Zabic M (1995) Biotransformation of organic sulfides. Part 7. Formation of chiral isothiocyanato sulfoxides and related compounds by microbial biotransformation. Tetrahedron Asymmetr 6:1569–1574. https://doi.org/10.1016/0957-4166(95)00200-9

    Article  CAS  Google Scholar 

  48. Salama S, Dishisha T, Habib MH et al (2020) Enantioselective sulfoxidation using Streptomyces glaucescens GLA.0. RSC Adv 10:32335–32344

    Article  CAS  Google Scholar 

  49. He YC, Ma CL, Yang ZX et al (2013) Highly enantioselective oxidation of phenyl methyl sulfide and its derivatives into optically pure (S)-sulfoxides with Rhodococcus sp. CCZU10-1 in an n-octane-water biphasic system. Appl Microbiol Biotechnol 97:10329–10337. https://doi.org/10.1007/s00253-013-5258-2

    Article  CAS  PubMed  Google Scholar 

  50. He YC, Zhou Q, Ma CL et al (2012) Biosynthesis of benzoylformic acid from benzoyl cyanide by a newly isolated Rhodococcus sp. CCZU10-1 in toluene–water biphasic system. Bioresour Technol 115:88–95. https://doi.org/10.1016/j.biortech.2011.09.084

    Article  CAS  PubMed  Google Scholar 

  51. Seenivasaperumal M, Federsel HJ, Szab K (2010) Mechanism of the asymmetric sulfoxidation in the esomeprazole process: effects of the imidazole backbone for the enantioselection. Adv Synth Catal 351:903–919. https://doi.org/10.1002/adsc.200800753

    Article  CAS  Google Scholar 

  52. Waghmare GV, Chatterji A, Rathod VK (2017) Kinetics of enzymatic synthesis of cinnamyl butyrate by immobilized lipase. Appl Biochem Biotechnol 183:792–806. https://doi.org/10.1007/s12010-017-2464-x

    Article  CAS  PubMed  Google Scholar 

  53. Kim Y, Nicell JA (2006) Laccase-catalysed oxidation of aqueous triclosan. J Chem Technol Biotechnol 81:1344–1352. https://doi.org/10.1002/jctb.1507

    Article  CAS  Google Scholar 

  54. de Miranda AS, Miranda LS, de Souza RO (2015) Lipases: valuable catalysts for dynamic kinetic resolutions. Biotechnol Adv 33:372–393. https://doi.org/10.1016/j.biotechadv.2015.02.015

    Article  CAS  PubMed  Google Scholar 

  55. Mathpati AC, Badgujar KC, Bhanage BM (2016) Kinetic modeling and docking study of immobilized lipase catalyzed synthesis of furfuryl acetate. Enzyme Microb Technol 84:1–10. https://doi.org/10.1016/j.enzmictec.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  56. Luo DH, Zong MH, Xu JH (2003) Biocatalytic synthesis of (−)-1-trimethylsilylethanol by asymmetric reduction of acetyltrimethylsilane with a new isolate Rhodotorula sp. AS2. 2241. J Mol Catal B Enzym 24:83–88. https://doi.org/10.1016/S1381-1177(03)00114-0

    Article  CAS  Google Scholar 

  57. Nourani M, Baghdadi M, Javan M, Bidhendi GN (2016) Production of a biodegradable flocculant from cotton and evaluation of its performance in coagulation-flocculation of kaolin clay suspension: optimization through response surface methodology (RSM). J Environ Chem Eng 4:1996–2003. https://doi.org/10.1016/j.jece.2016.03.028

    Article  CAS  Google Scholar 

  58. Babiak P, Kyslíková E, Šteˇpánek V et al (2011) Whole-cell oxidation of omeprazole sulfide to enantiopure esomeprazole with Lysinibacillus sp. B71. Bioresour Technol 102:7621–7626. https://doi.org/10.1016/j.biortech.2011.05.052

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from China Scholarship Council (Grant Number: 201908370079) and Shandong Provincial Key R&D Program [Grant Numbers 2019GSF107027, 2019GNC106028 and 2019GSF107033].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyuan Zhang, Xin Gao or Fanye Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lv, K., Deng, Y. et al. Asymmetric Bio-oxidation Using Resting Cells of Rhodococcus rhodochrous ATCC 4276 Mutant QZ-3 for Preparation of (S)-Omeprazole in a Chloroform–Water Biphasic System Using Response Surface Methodology. Catal Lett 151, 2928–2938 (2021). https://doi.org/10.1007/s10562-021-03531-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03531-w

Keywords

Navigation