Skip to main content
Log in

Heterogeneous Photo-Fenton Degradation of Norfloxacin with Fe3O4-Multiwalled Carbon Nanotubes in Aqueous Solution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A catalyst, ferroferric oxide nanoparticles decorated with multiwalled carbon nanotubes was successfully fabricated, and applied for the degradation of norfloxacin in the presence of H2O2 and xenon light. The catalyst was characterized by different techniques i.e., X-ray diffraction, transmission electron microscope, and fourier transform infrared. The effects of initial pH, catalyst dosage, hydrogen peroxide concentration and iron leaching on the degradation of norfloxacin were studied. The multiwalled carbon nanotubes showed higher ability of degradation efficiency of norfloxacin than bare Fe3O4 nanoparticles in the batch degradation experiment. The results showed that the multiwalled carbon nanotubes catalyst demonstrated good performance in the degradation of norfloxacin with optimum operating conditions of multiwalled carbon nanotubes 1.2 g L−1, pH 3.0, H2O2 0.098 mol L−1 and the multiwalled carbon nanotubes catalyst still exhibited good chemical stability after five consecutive degradation cycles. Further, the catalyst showed stable catalytic activity, fairly good mechanic stability and convenient recycling. Negligible iron leaching demonstrated the reused multiwalled carbon nanotubes could withstood the oxidation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hirsch R, Ternes T (1999) Sci Total Environ 225:109–118

    Article  CAS  Google Scholar 

  2. Bozzi A, Yuranova T, Mielczarski J (2002) Chem. Commun. 19: 2202–2203

    Article  Google Scholar 

  3. Devi LG, Rajashekhar KE (2009) Catal A 314:88–94

    Article  CAS  Google Scholar 

  4. Oberle K, Capdeville MJ (2012) Environ Sci Technol 46:1859–1868

    Article  CAS  Google Scholar 

  5. Watkinson AJ, Murby EJ (2007) Water Res 41:4164–4176

    Article  CAS  Google Scholar 

  6. Kümmerer K, Al-Ahmad A (2000) Chemosphere 40:701–710

    Article  Google Scholar 

  7. Ikehata K, Gamal El-Din M (2008) Ozone-Sci Eng 30:21–26

    Article  CAS  Google Scholar 

  8. Park JH, Row K, Shin CH (2013) Catal Commun 31:76–80

    Article  CAS  Google Scholar 

  9. An T, Yang H (2010) Appl Catal B 94:288–294

    Article  CAS  Google Scholar 

  10. An T, Yang H(2010) J Phys Chem A 114:2569–2575

    Article  CAS  Google Scholar 

  11. Naik PN, Chimatadar SA (2009) Ind Eng Chem Res 48:2548–2555

    Article  CAS  Google Scholar 

  12. Duong HA, Pham NH (2008) Chemosphere 72:968–973

    Article  CAS  Google Scholar 

  13. Tamtam F, Mercier F (2008) Sci Total Environ 393:84–95

    Article  CAS  Google Scholar 

  14. Watkinson AJ, Murby EJ (2009) Sci Total Environ 407:2711–2723

    Article  CAS  Google Scholar 

  15. Neyens E, Baeyens J (2003) J Hazard Mater 98:33–50

    Article  CAS  Google Scholar 

  16. Zhou T, Li Y (2008) Sep Purif Technol 62:551–558

    Article  CAS  Google Scholar 

  17. Bremner DH, Carlo SD (2008) Ultrason Sonochem 15:416–419

    Article  CAS  Google Scholar 

  18. Wang X, Lu J (2008) Environ Sci Technol 42:7267–7272

    Article  CAS  Google Scholar 

  19. Pignatello JJ, Oliveros E (2006) Sci Technol. 36:1–84.

    CAS  Google Scholar 

  20. Soon AN BH Hameed (2011)Desalination 269:1–16

    Article  CAS  Google Scholar 

  21. Shukla P, Wang S 2010 Chem Eng J 164:255–260

    Article  CAS  Google Scholar 

  22. Guo S, Zhang G (2014) J Colloid Interface Sci 433:1–8

    Article  CAS  Google Scholar 

  23. Fernandez J, Bandara J (1998) Chem Commun 14:1493–1494

    Article  Google Scholar 

  24. Ferraz W, Oliveira LCA (2007) Catal Commun 82:131–134

    Article  Google Scholar 

  25. Pan B, Xing B (2008) Environ Sci Technol 42:9005–9013

    Article  CAS  Google Scholar 

  26. Chou S, Huang C (1999) Chemosphere 38:2719–2731

    Article  CAS  Google Scholar 

  27. Costa RC, Lelis MF (2006) J Hazard Mater 129:171–178

    Article  CAS  Google Scholar 

  28. Bossmann SH, Oliveros E (2001) Prog React Kinet Mech 26:113–137.

    Article  CAS  Google Scholar 

  29. Gonzalez-Olmos R, Roland U(2009) Appl Catal B 89:356–364

    Article  CAS  Google Scholar 

  30. Xu M, Wang Q, Hao Y (2007).J Hazard Mater 148:103–109

    Article  CAS  Google Scholar 

  31. Frontistis Z, Xekoukoulotakis NP (2011) Chem Eng J 178:175–182

    Article  CAS  Google Scholar 

  32. Lan H, Wang A (2015) Hazard Mater 285:167–172

    Article  CAS  Google Scholar 

  33. Punzi M, Mattiasson B (2012) Photobiol A 248:30–35

    Article  CAS  Google Scholar 

  34. Malato S, Fernández-Ibáñez P (2009) Catal Today 147:1–59

    Article  CAS  Google Scholar 

  35. Zhao H, Cao J(2013) Catal Commun 41:87–90

    Article  Google Scholar 

  36. Kong S-H, Watts RJ (1998)Chemosphere 37:1473–1482

    Article  CAS  Google Scholar 

  37. He J, Ma W (2002) Appl Catal B 39:211–220

    Article  CAS  Google Scholar 

  38. Liu Y, Yu Z (2016) Catal Commun 86:63–66

    Article  CAS  Google Scholar 

  39. Du J, Bao J (2016) Appl Catal B 184:132–141

    Article  CAS  Google Scholar 

  40. Kim Y-S, Cho J-H (2006) Synth Met 156:938–943

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by 2015 annual Jiangsu province environmental protection scientific research subject (Grant No. 2015026),and Science and Technology Project-Nanotechnology Special(ZX201441) of Suzhou Municipal Science and Technology Bureau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, T., Peng, J., Chen, J. et al. Heterogeneous Photo-Fenton Degradation of Norfloxacin with Fe3O4-Multiwalled Carbon Nanotubes in Aqueous Solution. Catal Lett 147, 1598–1607 (2017). https://doi.org/10.1007/s10562-017-2026-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2026-4

Keywords

Navigation