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Abstract Single-site organometallic catalysts supported

on solid inorganic or organic substrates are making an

important contribution to heterogeneous catalysis. Early

and late transition metal single-site catalysts have changed

the polyolefin manufacturing industry and research with

their ability to produce polymers with unique properties.

Moreover, several of these catalysts have been commer-

cialized on a large scale. Their heterogenization for slurry

or gas phase olefin polymerization is important to produce

polyolefin as beads and to avoid reactor fouling. The large

majority of supports currently used in industry are inor-

ganic materials (SiO2, Al2O3, MgCl2), with silica being the

most important. Single-site supported catalysts are most

commonly prepared by molecular-level anchoring/chemi-

sorption, in which a molecular precursor undergoes reac-

tion with the surface while maintaining most of the ligand

sphere of the parent molecule. Chemisorption of discrete

organometallic complexes on solid supports yields cata-

lysts with well-defined active sites, greater thermal stability

than the homogeneous analogues, and decreased reactor

fouling versus the homogeneous analogues. This review

presents a detailed account of the synthesis, characteriza-

tion and polymerization properties of single-site catalysts

supported on metal oxides and metal sulfated oxides, pri-

marily carried out at Northwestern University.

Keywords Heterogeneous catalysis � Homogeneous

catalysis � Polymerization

1 Introduction

Polyolefins are the most widely used class of polymers

with a global consumption of approximately 211 million

metric tons with an average price on the US market of

$1,422.00 per metric ton [1]. Notwithstanding ‘‘green’’

concerns, polyolefins still surpass biopolymers in perfor-

mance and energy efficiency [2]. While biopolymers rank

high in terms of green design metrics, their production

incurs relatively large environmental impact. On the other

hand, polyolefins rank first in terms of life cycle assess-

ment. Polyethylene is the simplest (and cheapest) poly-

olefin, having the general formula (–CH2–)n. It is typically

a semicrystalline material, with mixture of interconnected

crystalline and amorphous regions. In terms of micro-

structure, different polyethylenes are commercially avail-

able, with completely dissimilar chemical, physical, and

mechanical properties. Polyethylene is conventionally

classified as either: (i) high-density polyethylene (HDPE),

(ii) low-density polyethylene (LDPE), or (iii) linear low-

density polyethylene (LLDPE). HDPE has small amounts

of branching (\1 %), with a density of 0.941 g/cm3, LDPE

contains a mixture of long ([C6) and short branches

(methyl, ethyl, butyl) with a density of about 0.92 g/cm3,

while LLDPE has a high content of short branches (\C6)

and a density less than 0.925 g/cm3 (Fig. 1) [3]. The type

and degree of branching underlie many of the differing

HDPE, LDPE, and LLDPE physical properties because

they affect crystallinity and the extent of amorphous

character [4].

Historically, polyolefins were produced using highly

active heterogeneous catalysts prepared from supported

groups 4 or 6 halides, activated by aluminum alkyls. In the

1950s, the first olefin polymerization catalyst was reported

by Phillips Petroleum constituted essentially of Cr/silica or
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Cr/silica–alumina (Fig. 2) [5–7]. This catalyst system,

modified and optimized, is used today by various

companies around the world, and accounts for a large share

(*40 to 50 %) of the world’s HDPE production. In 1963

Karl Ziegler and Giulio Natta received the Nobel Prize in

Chemistry ‘‘for their discoveries in the field of the chem-

istry and technology of high polymers’’ [8]. Heterogeneous

Ziegler–Natta catalysts are binary combinations of sup-

ported TiCl4 and AlR3 (R = alkyl, aryl, hydride) on MgCl2
(Fig. 2), and are still employed on a large scale to produce

isotactic polypropylene (iPP) and HDPE [9–12]. In the late

1980s, molecule-based group 4 metallocene homogeneous

olefin polymerization catalysts emerged from discoveries
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Fig. 3 Selected examples of metallocene precatalysts and activating
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Fig. 4 Molecular structure of the mononuclear ion-pair polymeriza-

tion catalyst [(1,2-(CH3)2C5H3)2ZrCH3]?[CH3B(C6F5)3]-. Adapted

with permission from J Am Chem Soc (1991) 113:3623–3625 [26].

Copyright 1991 American Chemical Society
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by Walter Kaminsky [13–15]. A methylaluminoxane

(MAO, Fig. 3) cocatalyst, a partially hydrolyzed trimethyl

aluminium reagent, was found to be an efficient activator

for these homogeneous group 4 metallocene catalysts

(Fig. 3) [13–15]. This highly active homogeneous system

allows for tuning of the product polymer microstructure

(Mw, PDI, % comonomer incorporation, tacticity) exclu-

sively by varying the organic ancillary ligands surrounding

the group 4 metal [14, 16–24].

Another major advance in olefin polymerization catal-

ysis was the independent discovery in the 1990s by the

Marks group [25, 26] at Northwestern and Ewen and co-

workers at Exxon Chemical Company [27] of catalytically

active, isolable, and structurally well-defined, 1:1 catalyst/

cocatalyst ion pairs derived from metallocene dialkyls and

the organo-Lewis acid B(C6F5)3 (Fig. 4) [28–30].

Detailed thermodynamic/thermochemical and NMR

molecular dynamics studies of the ion-paired catalytic

systems show that [LnM-R]?[MeB(C6F5)3]- polymeriza-

tion properties are sensitive to metal ancillary ligation, R

substituent, borane acidity, and solvent polarity. These

trends can be understood in terms of the ability of the

metallocene ancillary ligands to stabilize the cationic

charge, the homolytic M–CH3 bond dissociation enthal-

pies, and the electron withdrawing power of the borane

substituents. These new ‘‘single-site’’ catalytic systems are

far better defined and more rationally tunable in terms of

catalytic activity and product selectivity, structure, ther-

modynamics, and mechanism, which enable the discovery

of new catalysts, cocatalysts, deeper mechanistic under-

standing of both the homogeneous and heterogeneous

systems, and macromolecules with dramatically different

properties, and finally, large-scale industrial processes [31].

At the beginning of the 1990s, new generations of ‘‘non-

metallocene’’ [32–35] catalysts based on various pheno-

xyiminato ligands were reported by Fujita and co-workers

(Group 4, Fig. 5) [36–42] and Grubbs and co-workers

(Group 10, Fig. 5) [43–46]. In 1995, Brookhart and co-

workers reported high activity a-diimine Ni and Pd

complexes which are able to co-polymerize ethylene with

polar monomers (Fig. 5) [47–53]. In addition, in early 2000,

Drent and co-workers [54] at Shell reported that neutral

Pd(II) catalysts generated in situ from phosphonium-sulfo-

nate ligands copolymerize ethylene and methyl acrylate to

produce linear copolymers (Fig. 5) [55]. Especially in the

case of group 4, these new catalysts and cocatalyst/activa-

tors have achieved great success in the production of

advanced polyolefin materials [4]. The new systems are

able to control product molecular weight, polydispersity,

comonomer enchainment level and pattern, the tacticity of

poly(a-olefins) [17, 56, 57], copolymerization of olefins

with polar comonomers (group 10) [54, 55, 58–62], and the

catalytic synthesis of block copolymers by processes such

as chain shuttling polymerization [63–67].

Heterogeneous olefin polymerization catalysts offer

many distinct attractions, such as thermal robustness, high

activity, high degrees of coordinative unsaturation, high

product molecular masses, and in some cases, high iso-

selectivity. However, understanding structure/reactivity/

selectivity relationships in these systems is severely com-

plicated by uncertainties in the active site structure(s) and

the percentage(s). For all these reasons, grafting well-

defined, single-site homogeneous molecular catalysts on

surfaces has emerged as a powerful tool to create new

catalysts, to characterize surface species, and thus to

establish unambiguous structure/activity relationships [68–

73]. For example, it has been shown that well-defined

zirconium hydrides supported on alumina are highly active

catalysts for alkane hydrogenolysis (Fig. 6a) [74] and sil-

ica-supported tungsten [75–78] and molybdenum com-

plexes (Fig. 6b) [79–82] are effective catalysts for alkane

metathesis [69, 71, 77, 83–85].

In many cases, the catalytic activities of the supported

organometallics far surpass those achievable with the

analogous metal complexes in homogeneous system. Also,

the structural nature of the molecule-derived adsorbates

can be well characterized by a combination of techniques

such as solid state NMR, X-ray photoelectron spectroscopy
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(XPS), vibrational spectroscopy (FT-IR), X-ray absorption

spectroscopy (XAS), and density functional theory (DFT)

calculations. However despite this progress, many impor-

tant mechanistic and structural details remain unclear such

as (i) the nature of both the catalytically active and cata-

lytically inactive surface species created on chemisorption,

including the degree to which the original ligation is pre-

served; (ii) the number and type of bonds established to the

oxide support and the most reactive oxide surface sites for

the grafting process; and (iii) the adsorbate structures

which maximize catalytic activity. Thus, comparing the

key aspects of the adsorbate–oxide surface interaction with

the relevant features in well-characterized solution-phase

analogues offers an opportunity to better understand the

distinctive aspects of the surface organometallic chemistry.

This review focuses primarily on recent research at

Northwestern in which organo-groups 4 and 5, and or-

ganoactinide complexes are supported on dehydroxylated

c-alumina [86, 87] and sulfated metal oxides [88–90]. The

combined application of solid-state NMR spectroscopy,

periodic DFT calculations, and metal X-ray absorption

spectroscopy indicates formation of organometallic cations

having a largely electrostatic Ln-M?���surface- interaction.

It will be also seen that these species are highly active

catalysts for a-olefin polymerization and arene hydroge-

nation, with nearly *100 % of active site in the case of

sulfated metal oxide supports.

2 Discussion

2.1 Dehydroxylated c-Alumina Supports

Dehydroxylated c-alumina (DA) and partially dehydroxy-

lated c-alumina (PDA) surfaces show pronounced Lewis

acidic character due to coordinatively unsaturated surface

Al sites [74, 91–93] that are reminiscent of analogous

MAO cocatalysts and structurally well-defined perflu-

oroarylborane and borate catalyst activators [28–30]. From

a coordination chemistry point of view, the accessibility of

both Brønsted and Lewis acid sites on alumina offers a

unique complexation environment. DA and PDA substrates

are prepared by heating c-alumina (Scheme 1) with con-

sequent elimination of water molecules and formation of

Al–O–Al moieties [74, 91–93]. Reaction of organometallic

precursors with PDA or DA yields highly active catalysts

for both olefin and arene hydrogenation and olefin poly-

merization (vide infra). Heterolytic M–C bond scission is

the primary chemisorption mechanism for highly Lewis

acidic surfaces [73]. Here the hydrocarbyl anion is trans-

ferred to the surface (Lewis acid sites) to give rise to a

cationic organometallic adsorbate (Scheme 1, Pathway A).

In marked contrast to these results, chemisorption of

organometallic precursors on SiO2, Al2O3, and SiO2–Al2O3

surfaces having appreciable coverage by weakly acidic OH

groups, predominantly yields covalently bound, poorly

electrophilic species via M–CH3 protonolysis with CH4

evolution (Scheme 1, Pathway B) [72]. While these sites

can be characterized by high-resolution solid state NMR

and X-ray adsorption fine structure spectroscopy (EXAFS),

they display minimal catalytic turnover in the absence of

added activators (e.g., MAO or B(C6F5)3), and the fraction

of catalytically significant sites is unknown [94, 95].

The 13C CPMAS NMR spectrum of Cp2*Th(13CH3)2

chemisorbed on DA [96] shows the transfer of a methide

anion from the actinide center to a quadrupolar Al Lewis

acid site on the surface. The Al-13CH3 resonance appears at

the characteristic upfield position (d = -5 ppm), whereas

the downfield shifted Th-13CH3 signal at d *60 ppm

indicates formation of a ‘‘cation-like’’ electron-deficient

organothorium species as in Scheme 1 Pathway A [97–99].

No evidence of Cp* protonation or redox processes are

observed. Interestingly, homogeneous solutions of Cp2*

Th(CH3)2 are minimally active for ethylene polymerization

and olefin hydrogenation [100–104]. On the other hand,

on adsorption DA results in a profound increase in cata-

lytic activity [86, 105]. However, by means of quantitative

poisoning experiments using either H2O or CO as probes, it

was shown that only *4 % of the Cp2*Th(CH3)2/DA sites

are ethylene polymerization/olefin hydrogenation active

[86, 96, 104, 106–110].

In order to test the generality of the supported organo-

actinide chemistry discussed above, group 4 zirconocenes

have also been supported on dehydroxylated c-alumina

[111]. Analogous to the 13C CPMAS NMR experiments

performed with Cp*2Th(13CH3)2, Cp2Zr(13CH3)2 supported

on DA produces cationic complexes via methide transfer to

the surface, while the same precursor supported on PDA

yields both l-oxo (Scheme 1 Pathway B) and cationic

species, indicative of the presence of both weak Brønsted

and Lewis acid sites. Measurements of evolved CH4 during

the supporting reaction find similar yields for both thorium

and zirconium species on DA, while lower yields were

observed for zirconium species on PDA, likely due to the

increased protonolytic stability of Zr-alkyl bonds [112].
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The catalytic activity of the group 4 complexes was tested

for propylene hydrogenation and ethylene polymerization.

For those supported on DA, activity was generally found to

be approximately 30 % of that of related organoactinide

catalysts. However, in marked contrast to organoactinides,

organozirconium complexes on PDA also showed reac-

tivity for propylene hydrogenation. Active site measure-

ments for organozirconium complexes on DA indicated

that for Cp2Zr(CH3)2/DA, *4 % of sites are active, and for

Cp*Zr(CH3)3/DA, *12 % are active, roughly mirroring

the previous results for organoactinides on DA.

Periodic density functional calculations has been per-

formed to investigate the structural and catalytic properties

of the organozirconium precatalyst Cp2Zr(CH3)2, chemi-

sorbed on a model dehydroxylated c-alumina (110) surface

[113]. Two different prototypical surface oxide environ-

ments, namely l3-O and l2-O, can interact with the Cp2

ZrCH3
? adsorbate (Fig. 7). The interaction of the Cp2

ZrCH3
? adsorbate species with the l2-O sites is far

stronger than that with the l3-O sites due to the greater

coordinative unsaturation of the former. Moreover, the

interaction with the l3-O sites is weaker than that in the

parent homogeneous Cp2ZrCH3
? H3CB(C6F5)3

- ion pair

structure. The energetics of catalytic processes for the

chemisorbed Cp2ZrCH3
? sites for ethylene polymerization

was examined at both l2-O and l3-O environments and

compared to the analogous homogeneous catalyst. A Cos-

see enchainment mechanism proceeds via ethylene

p-complex formation and an a-agostic assisted transition

state to yield c- and b-agostic insertion products. The

overall kinetics of enchainment are closely correlated with

the energetics of p-complex formation, and it is suggested

that the differing kinetic behaviors of the surface-bound

Cp2ZrR? species on the various Al2O3 coordination sites

and the analogous homogeneous species reflect differences

in the olefin p-complex stabilization energies. Specifically,

the activation energy for olefin insertion rises in the order

l3-O site \homogeneous Cp2ZrCH3
? H3CB(C6F5)3

- cata-

lyst \l2-O site.

2.2 Sulfated Metal Oxides

Sulfated metal oxides (SMOs) have received significant

attention in the past as environmentally friendly
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alternatives for superacid catalyzed reactions, such as the

skeletal isomerization of alkanes [114] and the production

of biodiesel [115]. To this end, a variety of oxides have been

sulfated, such as zirconia (ZrS, H0 = -16), alumina (AlS,

H0 = -14.6), stannia (SnS, H0 = -18), hematite (FeS,

H0 = -13), and titania (TiS, H0 = -14.6), [116] typically

by exposure to a sulfation reagent, the most common of

which is sulfuric acid, and subsequent calcination. As

supports for single site catalysts, sulfated metal oxides are

particularly well-suited due to the presence of a generally

large concentration of strong Brønsted and Lewis acid sites,

which yield highly active ‘cationic’ metal adsorbate centers

(vide supra). Similar to the studies discussed previously

with PDA and DA, the use of model adsorbates (Fig. 8)

along with 13C CPMAS NMR techniques have been valu-

able in elucidating the surface character of these SMOs-

organometallic complexes/catalysts (Fig. 9).

Fig. 7 a Dioxo- and

b oxo-bridged zirconocenium

coordination on an alumina

l2-O site. c Dioxo- and d
oxo-bridged zirconocenium

coordination on a l3-O alumina

surface site. Adapted with

permission from J Am Chem

Soc (2008) 130:16533–16546

[113]. Copyright 2008

American Chemical Society
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Sulfated zirconia (ZrS) was one of the first SMOs

investigated by our group [117–119]. Initial studies of the

surface characteristics of ZrS were performed by the

chemisorption of 13C labeled Cp*2Th(13CH3)3 (1*) [118].

The 13C CPMAS spectrum of 1*/ZrS compared to that of

1*/DA revealed important differences in the chemisorption

pathways. Specifically, the peak resulting from methide

transfer is substantially diminished, suggestive of only a

small density of Lewis sites on the ZrS surface. The shift of

the Th-13CH3
? resonance to lower field also denotes a

more electrophilic ‘cationic’ metal center (Scheme 1,

Pathway A), resulting from the greater surface acidity and

suggesting a more active catalytic site (vide infra). The

minimal presence of hydrocarbyl transfer to the surface

and increased electrophilicity of the adsorbate metal

center are also confirmed with adsorbates CpTi(13CH3)2/

ZrS (2*/ZrS), Cp*Zr(13CH3)2/ZrS (3*/ZrS), Cp2Zr13CH3/

ZrS (4*/ZrS), and Zr(tBu)3/ZrS. 1*/ZrS is also observed to

have the most downfield shifted resonance for Zr-13CH3
?

when compared with homogeneous analogues, indicating

the highly electrophilic character of the metal center

(Scheme 2).

Other SMOs, including AlS [117, 120–123], SnS [117],

FeS [117], and TiS [117] were analyzed in a similar way

and found to yield analogous surface species. In comparing

a given series, it is noted that the magnitude of the shift in

resonances between the precursor and the adsorbate qual-

itatively correlates with the electronic unsaturation of the

electrophilic species (Table 1). For 4* chemisorbed on

AlS, SnS, and TiS, mainly ‘cationic’ species (A), with

small amounts of l-oxo (B) present in SnS, are produced

via protonolytic chemisorption of 4*, with methide transfer

remaining below the detection limits, implying the pre-

sence of primarily strong Brønsted sites. For 4*/ZrS,

however, l-oxo species are formed, with protonolysis by

weak Brønsted acid sites dominating, and a small,

downfield shifted resonance for ‘cationic’ species also

observed. Nanoparticles of AlS (n-AlS) [121] yield similar

structural results to bulk AlS, except for a larger presence

of methide transfer, indicative of a higher density of Lewis

acid sites. n-AlS also enables increased loadings of Zr due

to minimized internal surface area.

Adsorption of organo-group 4 complexes on AlS was

also studied by extended X-ray absorption fine structure

(EXAFS) and periodic density function theory (DFT)

computation in order to gain a more realistic understanding

of the structural characteristics of the adsorbates on SMOs.

[120]. Zr K-edge EXAFS data were collected under strictly

anhydrous/anaerobic conditions and, due to the structural

complexity of the supported moieties, difference spectra

(before and after chemisorption) were utilized, since

changes in the metal ligation are of primary interest. For

4*/AlS, the Zr–Osupport bond length is found to be

2.37 ± 0.02 Å, which is significantly elongated from

typical literature covalent Zr(IV)-OR bond lengths,

2.000 ± 0.002 Å [120], supporting the 13C CPMAS NMR

characterization of loose ion pairing between the ‘cationic’

metal adsorbate and the negative charged-delocalized
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Scheme 2 Synthesis of

monometallic CGC-Zr catalysts

supported on sulfated metal

oxides

Table 1 13C CPMAS NMR parameters for model adsorbates on

various SMOs

Complex M–CH3 (d) Cp (d)

Cp2Zr(13CH3)2 30.45 110.45

Cp2Zr13CH3/ZrS 37.1 114.1

Cp2Zr13CH3/SnS 35.7 and 20.5 113.8

Cp2Zr13CH3/FeS 37.6 and 21.7 110.7

Cp2Zr13CH3/TiS 33.8 113.4

Cp*2Zr13CH3 36.8 117.4

Cp*2Zr13CH3/AlS 46.0 123.0

Cp*2Zr13CH3/n-AlS 43.0 123.3
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surface. This is further supported by DFT calculations,

which, based on two potential types of sulfate site

(Fig. 10), find mean Zr–Osupport distances of 2.22 and

2.42 Å. As for the interaction between the adsorbate and

the surface, the EXAFS difference spectra reveal a

CN = 2.1, such that the negative charge on the surface is

delocalized between two proximate oxygen atoms that both

bind to the metal center. After exposure to benzene under

hydrogenation conditions, DFT calculations predict inser-

tion of the benzene between the Zr?���Ō bond, which finds

close analogy to the ion pair weakening and anion dis-

placement in activated homogeneous early transition metal

polymerization catalysts upon olefin approach/activation.

In the interest of expanding the variety of supported

organometallic moieties, constrained geometry catalysts

(CGC, Fig. 11) [124] were also chemisorbed onto AlS

[122]. CGCs are valued for their increased thermal stability

and favorable incorporation of comonomers during poly-

merization, resulting in long chain branching polymers,

due to more open coordination spheres. The formation of

cationic surface species was further verified by a distinct

color change, from colorless to yellow (for organozirco-

nium complexes) or colorless to orange (for organotitani-

um complexes), which is analogous to the color change

observed during homogenous activation with organo-Lewis

acids such as B(C6F5)3. For the bimetallic 9/AlS, both the

number of metal centers activated (one or both) and the

type (protonolytic or methide transfer) of chemisorption

permits the exact structural characterization of this adsor-

bate (Fig. 12). The integration of the 9/AlS 13C CPMAS

NMR resonances suggests that the majority of adsorbate

species have both metal centers activated, while the inte-

gration of the Zr-13Me:Al-Me resonances in the 13C

CPMAS NMR is found to be 1:0.6, whereas a ratio

of * 3:1 is expected for activation of a single metal

center. Thus, both metals in the bimetallic precursor are

likely activated, approximately 40 % by metal-hydrocarbyl

protonolytic chemisorption and 60 % by methide transfer

to the surface.

Following structural and chemical characterization of

the chemisorption pathways, olefin homo- and copoly-

merizations underscore the catalytic utility of SMOs as

activators and weakly coordinating anions. For the cata-

lysts discussed here, the principal product of ethylene

polymerization is HDPE with minimal branching and

ultrahigh molecular weight, as observed in previous studies

of organozirconium hydrocarbyls supported on alumina

(vide supra). For ethylene homopolymerizations using ZrS

and AlS as supports (118–120; 124), a number of adsor-

bates with varying electronic and coordinative saturation

were assayed (Table 2). In general, polymerization activity

is found to increase with increasing coordinative unsatu-

ration, such that Zr(CH2Ph)4 [ Cp*Zr(CH3)3 for every

SMO. As for support effects, activity follows the trend

ZrS C AlS [ SnS [ FeS [ TiS. Importantly, AlS is found

to have an ethylene homopolymerization activity

almost10x that of Cp*Zr(CH3)3/DA (1.2 9 105 g PE/mol

Zr h), proving that chemisorption on SMOs yields more

active ‘cationic’ centers, reflecting both the increased

number of active sites and their ‘cationic’ nature (vide

infra). Nanoparticle-AlS is also found to be an effective

activator and high surface area support for the rapid pro-

duction of high molecular weight PE and its performance is

found to be solvent dependent, heptane [ toluene, likely

due to the coordinative inhibition of arenes at the electro-

philic active sites [126]. Although solvent dependence was

only tested on n-AlS supported catalysts, all SMO adsor-

bates are expected to exhibit similar behavior due to their

mainly ‘cationic’ character.

One of the principal attractions of SMOs is the high

percentage of zirconium adsorbate sites that are catalyti-

cally significant. In situ kinetic poisoning experiments

performed on the above catalysts reveal the high number of

active sites, with [60 % for all SMOs except FeS attain-

able, compared to *12 % for Cp*Zr(CH3)3/DA and\6 %

for Zr(CH2CMe2Ph)4/PDA [112]. While there is no direct

correlation between acidity and percentage active sites, for

the SMOs discussed here, it appears that materials with

H0 \ -14 have a high percentage of active sites. It has

been concluded that the exceptional catalytic activity of

these zirconium hydrocarbyl adsorbate catalysts reflects an

interplay of both the high percentage of active sites and the

electrophilicity of such sites, such that both are required for

an active catalyst. For example, TiS as a support has

63 ± 9 % active sites, but 13C CPMAS NMR reveals that

most of these are of the active l-oxo type (vide supra), thus

the catalyst performs relatively poorly. The attraction of

using SMOs as supports/activators thus lies in the fact that

Fig. 10 Energy-minimized computed chemisorbed catalyst structures

for: a Cp*Zr(CH3)2
? coordination to the S=O groups of the sulfated

alumina surface at SA sites. b Cp*Zr(CH3)2
? coordination to the S=O

groups of the sulfated alumina surface at SB sites. Distances in Å.

Avg. = average distance. Zr = purple, C = olive, H = blue,

O = red, S = orange, Al = yellow-green. Adapted with permission

from Proc Nat Acad Sci USA (2013) 110:413–418 [120]
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they provide both highly active electrophilic single cata-

lytic sites, and due to their high acidity, nearly 100 % of

these sites are catalytically active.

The CGC catalysts supported on AlS were also evaluated

for ethylene homopolymerization, along with ethylene/1-

hexene copolymerization [122]. Ethylene homopolymeriza-

tions are found to yield high molecular weight PE as deter-

mined by DSC, and to be highly crystalline with low branch

densities, but in all cases, the corresponding supported cata-

lysts have lower catalytic activity than the homogenous ana-

logs, which is attributed to steric repulsion of the support and

the adsorbate ligands. Analogously to homogeneous systems

[127], the bimetallic Ti2/AlS is more active than bimetallic

Zr2/AlS. Concerning ethylene/1-hexene copolymerizations,

the supported catalysts are again less active than their

homogenous equivalents. Minimal comonomer enchainment

is observed (Tm depressed only 3-5 �C from the homopoly-

mer) and it is likely that the steric bulk of the bimetallic Zr2

and Ti2 limits 1-hexene approach, thereby frustrating the

bimetallic cooperativity observed in homogenous systems.

3 Conclusion and Prospectus

This Review analyzes the effects on olefin polymerization by

single-site catalysts supporting them on various oxides and

sulfated oxides. The well-established synthetic routes to

achieve single-site heterogeneous catalysts and the diverse
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Fig. 11 Mononuclear and

binuclear CGC-zirconium

catalysts
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Fig. 12 Potential binding modes of 9/AlS or 10/AlS. As determined

by the type and concentration of acid sites: (i) Single metal center

protonolytically chemisorbed on a strong Brønsted acid site; (ii) Single

metal center chemisorbed via methide transfer on a Lewis acid site;

(iii) Both metal centers protonolytically chemisorbed on proximate

strong Brønsted centers; (iv) Both metal centers chemisorbed via

methide transfer on proximate Lewis acid sites; (v) One metal center

protonolytically chemisorbed, the other chemisorbed by methide

transfer

Catalysts for the Synthesis of High-Performance Polyolefins 11

123



techniques (SS NMR, EXAFS, DFT calculations) for their

characterization are described. Solid state NMR and EXAFS

studies show that alkyl migration from the organometallic

precursor to the Lewis acidic sites constitutes the principal

adsorption pathway on dehydroxylated alumina (DA),

whereas the chemisorption of the same organometallic

molecules on highly Brønsted ‘‘super-acidic’’ sulfated metal

oxides yields, via Zr-CH3 protonolysis with methane evo-

lution, highly electrophilic adsorbate species. The resulting

‘‘cation-like’’ species, reminiscent of the homogeneous

analogues, are highly active heterogeneous catalysts for

olefin polymerization and hydrogenation, with generally

high percentages of catalytically significant sites. In many

cases, extraordinarily high percentages (*100 %) of cata-

lytically significant sites can be attained, permitting accurate

structure determination and isolation/characterization of

reaction intermediates.
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