Kinetics of CO Oxidation Catalyzed by Supported Gold: A Tabular Summary of the Literature

Veronica Aguilar-Guerrero · Bruce C. Gates

Received: 15 December 2008 / Accepted: 17 February 2009 / Published online: 4 March 2009 © The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract The literature of CO oxidation catalyzed by supported gold is extensive, but reports of the kinetics of the reaction are incomplete and fragmented. This paper is a summary of such information presented in tables that state (1) how the catalysts were made, treated, and tested; (2) their physical properties, such as the average gold particle size; and (3) kinetics data, including turnover frequencies, reaction orders, and apparent activation energies.

Keywords Gold catalyst · Supported gold · CO oxidation · Kinetics of CO oxidation

1 Introduction

Extensive research on catalysis by supported gold has been reported since the pioneering discoveries by Hutchings [1] and Haruta [2] demonstrating high catalytic activities of highly dispersed gold. CO oxidation and the water gas shift are among the best investigated of the reactions catalyzed by supported gold; most of the work has focused on the former [3], as it apparently offers the advantages of taking place at low temperatures combined with the simplicity of small reactant molecules and the value of CO as a sensitive probe of surface structure [4].

Notwithstanding the extensive research on supported gold catalysts for CO oxidation, the mechanism(s) of the reaction and the catalytically active species remain matters of debate, and the reports of quantitative kinetics of the reaction, although numerous, are largely incomplete.

V. Aguilar-Guerrero · B. C. Gates (🖂)

Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA e-mail: bcgates@ucdavis.edu The lack of thorough kinetics data reflects the complexities of the catalyst performance, influenced by catalyst activation and deactivation, which are often rapid; it is sometimes difficult to determine from published reports whether the reaction rates or conversions characterize fresh or deactivated catalysts.

Our goal was to provide a summary facilitating access to the literature of the kinetics of CO oxidation catalyzed by supported gold. The literature is summarized here in tabular form; earlier, much less complete summaries were reported by Bond et al. [5], Deng et al. [6], and Kung et al. [7]. Some issues regarding the challenges of comparing supported gold catalysts on the basis of performance were addressed by Long et al. [8]. We have limited the content here by excluding catalysts with doped supports (except when they were part of a set including undoped supports) and results characterizing "preferential oxidation" of CO in the presence of excess H₂. Otherwise, the compilation contains most of the literature that includes kinetics data for CO oxidation catalyzed by supported gold, although it is not exhaustive, with a number of examples of only partially documented kinetics data being omitted.

2 Tables of Data

The data are presented in three tables, with the entries linked by the entry number shown in the left-hand column of each table. Table 1 is a list of supported gold catalysts used for CO oxidation, how they were made and treated, their gold contents and surface areas, and the average gold particle sizes and methods used to determine them. Table 2 is a summary of the conditions under which the kinetics data were determined, with information about the degree of deactivation of the catalyst. Table 3 is a summary of the kinetics data,

Table 1	Characteristics of the supp	orted gold CO oxid	lation catalysts						
Entry number	Catalyst	Catalyst surface area (m ² /g)	Catalyst precursor	Preparation method ^a	Catalyst treatment	Gold content (wt %)	Average gold particle size (nm)	Method of determining gold particle size	References
1	Au/SiO ₂	Not stated	AuCl ₃	IW	1 h in H ₂ (1 bar, 2,500 h ⁻¹) at 723 K	1.8	30	XRD	[6]
2	Au/TiO_2				2 h in H ₂ at 473 K, 1 bar, 2,500 h ⁻¹	2.3	25		
3	Au/TiO_2				1 h in H_2 at 773 K, 1 bar, 2,500 h ⁻¹	2.3	25		
4	Au/TiO_2				1 h in H_2 at 773 K 1 bar, 2,500 h^{-1}	2.3	25		
5	Au/TiO ₂				1 h in H_2 at 773 K, 1 bar, 2,500 h ⁻¹	2.3	25		
9	Au/TiO ₂				1 h in H ₂ at 773 K, 1 bar, 2,500 h ⁻¹ followed by a calcination with 20% O ₂ in He at 673 K for 1 h, then 2 h under H ₂ at 473 K 1 bar, 2,500 h ⁻¹	2.3	~ 30	XRD	
٢	Au/TiO ₂ (after deactivation)				1 h in H ₂ at 773 K 1 bar, 2.500 h ⁻¹ followed by a calcination with 20% O ₂ in He at 673 K for 1 h, then 2 h under H ₂ at 473 K 1 bar, 2.500 h ⁻¹ after deactivation				
×	Au/TiO2(HTR/C/LTR) -	I			1 h in H ₂ at 773 K 1 bar, 2.500 h ⁻¹ followed by a calcination with 20% O ₂ in He at 673 K for 1 h, then 2 h under H ₂ at 473 K 1 bar, 2.500 h ⁻¹				
6	Au/TiO2(HTR/C/LTR) -	I			1 h in H ₂ at 773 K 1 bar, 2.500 h ⁻¹ followed by a calcination with 20% O ₂ in He at 673 K for 1 h, then 2 h under H ₂ at 473 K 1 bar, 2.500 h ⁻¹				
10	Au/Fe ₂ O ₃	Not stated	HAuCl ₄	CP	Calcination at 673 K in air for 4 h	10	3.6	XRD	[10]
11	Au/Co ₃ O ₄	73					6.0		
12	Au/NiO	69					8.0		
13	Au/CuO	116					Not stated		
14	Au/Fe ₂ O ₃	20	$HAuCl_4$	CP	Calcination in air at 673 K for 4 h	5 ^b	Not stated	Not stated	Ξ
15	Au/MnO_x	Not stated				5 ^b			
16	Au/CeO _x	74°				5 ^b			
17	Au/CeO ₂	Not stated	$\begin{array}{l} Au(CH_3)_2 \\ (C_5H_7O_2) \end{array}$	GR	48 h under CO oxidation conditions at 353 K	1	Mononuclear Au species	EXAFS	[12, 13]
18	Au/CeO ₂	173.3°	$\begin{array}{l} Au(CH_3)_2 \\ (C_5H_7O_2) \end{array}$	GR	48 h under CO oxidation conditions at 353 K followed by 48 h under CO oxidation conditions at 303 K	1	0.8	EXAFS	[12, 13]
19	Au/TiO_2	173.3°	HAuCl ₄	DP	Calcined in air at 673 K for 4 h	0.7	3.1 ± 0.7	TEM	[14]
20	Au/TiO_2					1.8	2.7 ± 0.6		
21	Au/TiO_2					1.0	10<		
22	Au/TiO ₂					1.0	4.6 ± 1.5		
23	Au/TiO ₂	50°	HAuCl ₄	DP	Calcined in air at 673 K for 4 h	0.7-1.8	2.7 ± 0.6	TEM	[15]
24	Au/TiO ₂			DP		0.5	3.5 ± 1.1		
25	Au/TiO ₂			DP		0.7	3.1 ± 0.7		

109

Table 1	continued								
Entry number	Catalyst	Catalyst surface area (m^2/g)	Catalyst precursor	Preparation method ^a	Catalyst treatment	Gold content (wt %)	Average gold particle size (nm)	Method of determining gold particle size	References
26	Au/TiO ₂			DP		1.8	2.7 ± 0.6		
27	Au/TiO ₂			DP		2.3	2.5 ± 0.6		
28	Au/TiO ₂			DP		3.1	2.9 ± 0.5		
29	Au/TiO ₂			PD		1.0	4.6 ± 1.5		
30	Au/TiO ₂			PD		3.6	6.0 ± 2.5		
31	Au/TiO ₂			IMP	No treatment	1.0	Not stated		
32	Au/TiO ₂	Not stated	HAuCl ₄	DP (supplied by the World Gold Council)	Calcined at 573 K	1.5	3.7	TEM	[16]
33	Au/MgO	Not stated	Not stated	Gold clusters prepared on single crystal surfaces of TiO ₂	Not stated	Not stated	2.5-6	MTS/STS/MTS	[17]
34	Unsupported nanoporous gold	Not stated	Silver/gold alloy	Dealloying of silver from silver/gold alloy	Not stated	Not stated	5-20	SEM	[18]
35	Nanoporous gold foams	Not stated	Silver/gold alloy	Selective leaching of silver from a silver/gold alloy	Untreated	Not stated	~Tens	SEM	[19]
36	Au/MgO	Not stated	$\operatorname{Au}_4[(p-toly])$	GR	Treated in O ₂ at 773 K for 3 h. Annealing at 972	Not stated	Not stated	TEM	[20]
37	Au/MgO		NCN		Treated in O ₂ at 773 K for 3 h. Annealing at 1,073		4.3		
38	Au/MgO		4[(1 (10)		Treated in O ₂ at 773 K for 3 h. Annealing at 1,121		Not stated		
	Au/MgO				Treated in O ₂ at 773 K for 3 h. Annealing at 1,173		3.8		
39	Au/MgO				Treated in O ₂ at 773 K for 3 h. Annealing at 1,273		Not stated		
40	Au/TiO ₂	Not stated	Not stated	Gold clusters prepared on single crystal surfaces of TiO ₂	Not stated	Not stated	2-4.5	STM	[21]
41	Au/TiO ₂	Not stated	HAuCl ₄	DP (supplied by the World Gold Council)	Not stated	1.47	3.7	TEM	[22]
42	Au/TiO ₂	Not stated	High purity gold foils	VD	None	Not stated	2.6	XPS, LEIS (low energy ion spectroscopy)	[23]
43	Au/TiO ₂	50 ^c	HAuCl ₄	CP	Calcined in air at 673 K for 5 h	3.3	3.6 ± 1.3	EXAFS, TEM, XRD	[24]
4	Au/Fe ₂ O ₃	37 ^c				0.66	4.0		
45	Au/Co ₃ O ₄	59°				1.1	6-7		

110

Table 1	continued								
Entry number	Catalyst	Catalyst surface area (m ² /g)	Catalyst precursor	Preparation method ^a	Catalyst treatment	Gold content (wt %)	Average gold particle size (nm)	Method of determining gold particle size	References
46	Au/Fe ₂ O ₃	Not stated	HAuCl ₄	DP	Calcined in O ₂ at 673 K for 30 min (20 mL/min,	Not stated	2.3-7	TEM, XRD	[25]
47	Au/Fe ₂ O ₃			Not stated	100 mbar)		Not stated		
48	Au/Fe ₂ O ₃			CP			5.5-7		
49	Au/NiO_x			G			3.2 ± 1.0		
50	Au/CoO_x			IMP			3.4 ± 1.4		
51	Au/TiO_x			IMP			2.4 ± 0.7		
52	Au/Mg(OH) ₂			СР			4>		
53	Au/MgO			CP			9		
54	Au/Al ₂ O ₃			IMP			4.4		
55	Au/Al ₂ O ₃	Not stated	$HAuCl_4$	DP	Calcined in He at 673 K for 4 h (100 mL/min)	1.08	2.5 ± 1.1	STEM, EXAFS	[26]
56	Au/TiO ₂					1.22	3.3 ± 0.5		
57	Au/TiO ₂	Not stated	HAuCl ₄	DP	Calcined at 353 K in air for 8 h	3.1	2.0 ± 1.0	TEM	[27]
58	Au/TiO ₂	58	HAuCl ₄	DP	Initial sample	3.1	21-30	XRD	[28]
59	Au/TiO ₂	63			6 h, air, 673 K ^d	2.8	12		
09	Au/TiO ₂	66			20 h, vacuum, 573 K ^d 4 h, air, 673 K	3.5	6		
61	Au/TiO ₂	76			4 h, air, 673 K ^d	2.9	11		
62	Au/TiO ₂	110			4 h, air, 673 \mathbf{K}^{d}	3.5	6		
63	Au/TiO ₂	Not stated	HAuCl ₄	DP	Heating from room temperature to 573 K in N ₂ followed b. 30 min in $H_2'O_2'N_2$ 25/25/50	Not stated	3.0 ± 0.6	TEM	[8]
2	Au/Al ₂ O ₃	Not stated	$HAuCl_4$	DP	In helium at 623 K for 4 h	1.16	1.2	EXAFS	[29]
65	Au/α-Fe ₂ O ₃	44.2	$HAuCl_4$	DP	None	2.0	5.0	XRD	[9]
99	Au/ α -Fe ₂ O ₃	41.1	HAuCl ₄	DP	Leached	0.7	Not stated	Not stated	
67	Au/α-Fe ₂ O ₃	Not stated			Leached then reduced in H_2 at 673 K for 2 h	0.7	Not stated	Not stated	
68	Au/CeO ₂	146.3			None	4.7	5.0	XRD	
69	Au/CeO ₂	161.6			Leached	0.5	Not stated	Not stated	
70	Au/CeO ₂	Not stated			Leached then reduced in H_2 at 673 K for 2 h	0.5	Not stated	Not stated	
71	Au/Al ₂ O ₃	Not stated	HAuCl ₄	DP	In air at 473 K for 1 h	1	2–7	TEM	[30]
72	Au/Al ₂ O ₃	210 ^c				1	3-9		
73	Au/Al ₂ O ₃	Not stated	HAuCl ₄	DP	0.5 h in air at 523 K	0.4	3.9	TEM	[31]
74	Au/SiO ₂			GR		10	8.2		
75	Au/TiO ₂			DP		0.0	3.0		
76	Au/TiO ₂	Not stated	HAuCl ₄	DP	4 h in helium at 623 K	1.22	3.3 ± 0.5	TEM	[32]
LL	Au/Al ₂ O ₃					1.08	2.5 ± 1.1		
78	Au/TiO ₂	150°	HAuCl ₄	DP	1 h in H_2 flow (50 mL/min) at room temperature	4	2	Not stated	[33]
<i>6L</i>	Au/MgO	60 ^c	Au(CH ₃) ₂ (C ₅ H ₇ O ₂)	GR	No treatment	1.0	3.0	EXAFS	[34]
^a The ab	meviations recording the	nrenaration methods	are as follows:	DP denosition	wavinitation 1W incinient watness CP co-merinitation 10	D immomotion	DD nhotochamical danseit	ion GR arafting VD	anor denosition

 $^{\rm c}$ This value corresponds to the surface area of the support $^{\rm d}$ Treatment of the support

^b Atom %

Table 2	Reaction conditi	ons under which the supported gold CO oxidation catalysts w	ere tested							
Entry number	Catalyst	Degree of deactivation	Catalyst mass (mg)	Reactor type	Total feed flow rate (mL)/min)	Feed flow conditions	Space velocity (mL/min g _{cat})	Feed partial Pressures (mbar) P _{CO} P _{O2}	Reaction temperature (K)	References
- 0 0 4 v	Au/SiO ₂ Au/TiO ₂ Au/TiO ₂ Au/TiO ₂	Not stated	600-1,000	Plug flow	50	Normal temperature and pressure	50-83.3	50.7 49.3 52 49.3 50.7 49.3 18.7 9.3 0.3 4.7	313	[6]
0 0 1 0 0	Au/TiO ₂ Au/TiO ₂ (after deactivation) Au/TiO ₂ Au/TiO ₂	Not stated	350	Plug flow	35	Normal temperature and pressure	100	5.0.7 48 50.7 48 49.3 49.3 20 9.9 9.9 4.8	313	
10 11 13 13	Au/Fe ₂ O ₃ Au/Co ₃ O ₄ Au/NiO Au/CuO	Not stated	200	Fixed bed	66	Normal temperature and pressure	330	10.1 208	203 203 203 Not stated	[10]
14 15 16	Au/Fe ₂ O ₃ Au/MnO _x Au/CeO _x	Initial activities are above 90% decreasing 10% after 167 h	150	Fixed bed (integral mode, high X)	10	1 bar	66.6	10.1 5.1	303,323,348 303,323,348 303,323,348	Ξ
17 18	Au/CeO ₂ Au/CeO ₂	Activates during CO oxidation at 353 K increasing activity during CO oxidation at room temperature Catalyst activated during CO oxidation at 353 K then stabilized at 303 K after 48 h of reaction	25 25	Plug flow Plug flow	200 200	298 K, 1 bar 298 K, 1 bar	800	20.3 10.1 20.3 20.3	298 303	[12, 13] [12, 13]
19 21 22	Au/TiO2 Au/TiO2 Au/TiO2 Au/TiO2	Not stated	200	Fixed bed	67	Normal temperature and pressure	1,340	10.1 208	300	[14]
23 25 25 26 23 30 31	Au/TiO2 Au/TiO2 Au/TiO2 Au/TiO2 Au/TiO2 Au/TiO2 Au/TiO2	Not stated	50	Fixed bed	17	Normal temperature and pressure	340	10.1 208	313	[15]
32 33	Au/MgO	Not stated Not stated	55 Not stated	Fixed bed Fixed bed UHV	25 Not stated	Not stated Total pressure: 53.3 mbar	454.5 Not stated	10.1 10.1 8.6 43.3	243–363 300	[16]

Table 2	continued										
Entry number	Catalyst	Degree of deactivation	Catalyst mass (mg)	Reactor type	Total feed flow rate (mL)/min)	Feed flow conditions	Space velocity (mL/min g _{cat})	Feed partis (mbar)	d Pressures	Reaction temperature (K)	References
								P _{co}	P ₀₂		
34	Unsupported nanoporous gold	Not stated	50	Fixed bed	66.7	Not stated	222.3	10.1	101.3	243, 273, 303	18]
35	Nanoporous gold foams	Not stated	80	Fixed bed	15	1 bar	187.5	10.1–81	18.4–19.8	253–323	[6]
36	Au/MgO	Not stated	Not stated	Not stated	45	Not stated	Not stated	36.2	72.4	373	20]
37	Au/MgO							36.2	72.4	373	
38	Au/MgO							36.2	72.4	373	
	Au/MgO							36.2	72.4	373	
39	Au/MgO							36.2	72.4	373	
40	Au/TiO ₂	Not stated	Not stated	Fixed bed	Not stated	Total pressure: 6.7 mbar	Not stated	8.6	43.3	300	21]
41	Au/TiO ₂	Not stated	45	Fixed bed	25	Not stated	555.6	10.1	10.1	248	22]
42	Au/TiO ₂	Not stated	Not stated	Plug flow	Not stated	UHV	Not stated	4×10^{-7}	2×10^{-5}	Room	[23]
ç	():L/ ·· ·	Not of the second	000	Dired had	5	Mot stated	22	1.01	110	cmperature 272	
54 5	Au/IIO2 Au/Fe ₂ O3	NOT Stated	007	FIXED DED	/0	INOL STATED	0.0	10.1	117	617	74
45	Au/Co ₂ O ₄										
46	Au/Fe ₂ O ₃	Not stated	100	Plug flow	Not stated	273 K. 1 bar	Not stated	10	10	353	25]
47	Au/Fe ₂ O ₃			0							-
48	Au/Fe ₂ O ₃										
49	Au/NiO_x										
50	Au/CoO_x										
51	Au/TiO _x										
52	Au/Mg(OH) ₂										
53	Au/MgO										
54	Au/Al ₂ O ₃										
55 56	Au/Al ₂ O ₃	Not stated	06	Plug flow	100–239	1.22 bar, room temperature	111-2,655	20.2 ^a	20.2 ^b	296	26]
PC 5	Au/TIO2	Contrast shows high initial activity which documents	01 33	Dlue Acres	09	1 how moon	1 200 230	101	101 200	303 353	
10	All/ 1102	Cataryst shows right initial activity which decreases during operation in flow reactor	0/00	Plug now	00	1 bar, room temperature	1.626-108	10.1	10.1, 202	<i>ccc</i> , <i>c</i> nc	[17]
58	Au/TiO ₂	Activity decreased 25% after 16.7 h of operation	65-70	Plug flow	60	1 bar, room temperature	857–923.1	10.1	10.1	353	28]
59	Au/TiO ₂	Activity decreased 17% after 16.7 h of operation	65-70	Plug flow	60	1 bar, room temperature	857–923.1	10.1	10.1	353	
60	Au/TiO ₂	Activity decreased 18% after 16.7 h of operation	65-70	Plug flow	60	1 bar, room temperature	857–923.1	10.1	10.1	353	
61	Au/TiO ₂	Activity decreased 14% after 16.7 h of operation	65-70	Plug flow	60	1 bar, room temperature	857–923.1	10.1	10.1	353	
62	Au/TiO ₂	Activity decreased 15% after 16.7 h of operation	65-70	Plug flow	60	1 bar, room temperature	857–923.1	10.1	10.1	353	

Entry number	Catalyst	Degree of deactivation	Catalyst mass (mg)	Reactor type	Total feed flow rate (mL)/ 1 min)	Feed flow conditions	Space velocity (mL/min g _{cat})	Feed parti Pressures	ial (mbar)	Reaction temperature (K)	References
								P_{CO}	P_{O2}		
63	Au/TiO ₂	Catalyst activity showed a slight decrease in activity in the first hour on stream	0.2	Plug flow	27	1 bar, room temperature	135,000	10.1	208	293	[8]
64	Au/Al ₂ O ₃	Not stated	5-100	Plug flow	75–250	1 bar, room temperature	1,000–15,000	3-70	3-70	298	[29]
65	Au/α- Fe ₂ O ₃	Not stated	10-50	Plug flow	150	1 bar, room temperature	3,000–15,000	20.3	10.1	303	[9]
66	Au/α- Fe ₂ O ₃										
67	Au/α- Fe ₂ O ₃										
68	Au/CeO ₂										
69	Au/CeO ₂										
70	Au/CeO ₂										
71	Au/Al ₂ O ₃	Not stated	Not stated	Plug flow	Not stated	1 bar, room temperature	$15,000^{\circ}$	10.1	208	298	[30]
71	Au/Al ₂ O ₃										
73	Au/Al_2O_3	Not stated	Not stated	Plug flow	Not stated	1 bar, room	333 - 1, 333	10.1	208	200-500	[31]
74	Au/SiO ₂					temperature					
75	Au/TiO_2										
76	Au/TiO_2	Not stated	45-160	Plug flow	250-382	1.22 bar, room	1,500-8,500	20.2	20.2	273	[32]
LL	Au/Al_2O_3					temperature					
78	Au/TiO_2	Not stated	20	Plug flow	70	273 K, 1 bar	3,500	10.1	25.2	213	[33]
79	Au/MgO	Not stated	Not stated	Plug flow	Not stated	273 K, 1 bar	83.3–333.3	15-293	15-293	373	[34]
^a CO in fé	ed, was C ¹⁶ 0	D; total pressure was greater than atmos	pheric (1,216 mba	r)							
^b Oxygen	in feed was	¹⁶ O ₂									
° Values á	tre for gas hc	our space velocity									

Table 2 continued

🖄 Springer

Entry	Catalyst	Conversion	Temperature range	Apparent	$TOF (s^{-1})$	Details about TOF	Reaction ord	er		Comments	References
number		(\mathscr{Y})	(K) for activation energy	activation energy (kJ/mol)		calculations	CO	0_2	CO2		
-	Au/SiO ₂	<15	312-454	15.1 ^a	2.0×10^{-2}	Lower limit based on	Not stated	Not stated	Not stated	Catalyst from entry number 2 showed the	[6]
2	Au/TiO ₂			-0.2 ± 1.8^{a}	1.3×10^{-3}	total number of Au	0.2–0.6 ^{b, c}	0.4 ^{b, c}		lowest activity. Catalysts from entries 3-9	
З	Au/TiO ₂			1.4 ± 0.2^{a}	7.5×10^{-2}	atoms	0.2–0.6 ^{b, c}	0.4 ^{b, c}		showed catalytic activity near room temperature. Activity of Au/SiO ₂ was	
4	Au/TiO ₂			$1.5 \pm 1.1^{\mathrm{a}}$	4.5×10^{-2}		0.2–0.6 ^{b, c}	0.4 ^{b, c}		tenfold higher than that of the catalyst in	
5	Au/TiO ₂			3.5 ± 1.5^{a}	2.2×10^{-2}		0.2–0.6 ^{b, c}	0.4 ^{b, c}		Entry Number 2, but tenfold lower than that	
9	Au/TiO ₂	<15	312-454	3.1 ± 1.6^{a}	2.4×10^{-1}		0.2–0.6 ^{b, c}	0.4 ^{b, c}	Not stated	of catalysts in Entry Numbers 3–9.	
7	Au/TiO ₂			9.2 ± 2.8^{a}	7.3×10^{-2}		0.2–0.6 ^{b, c}	0.4 ^{b, c}		Catalyst in Entry Number 1 retained 50% of Cl from precursor, other catalysts only 16%.	
	(after deactivation)									Low catalytic activity.	
8	Au/TiO ₂			Not stated	8.5×10^{-2}		0.2–0.6 ^{b, c}	0.4 ^{b, c}		Langmuir–Hinshelwood equation used to fit data hut not able to distinguish between	
6	Au/TiO ₂			Not stated	4.6×10^{-2}		0.2–0.6 ^{b, c}	0.4 ^{b, c}		competitive or noncompetitive adsorption	
10	Au/Fe_2O_3	50	Not stated	Not stated	Not stated	Not stated	Not stated	Not stated	Not stated	Enhanced catalytic activity attributed to a	[10]
= :	Au/Co ₃ O ₄									combined effect of gold and transition metal oxides. These catalysts were active	
13 13	Au/NiO Au/CuO									for CO oxidation at temperatures as low as 203 K	
14	Au/Fe ₂ O ₃	~ 100	313	33 ^d	Not stated	Not stated	Not stated	Not stated	Not stated	Au/MnO _{x} stated to be most active catalyst that	[]]
15	Au/MnO_x	~ 100	313	8.4 ^d						these authors tested. The catalyst sustained 10000^{-2000} for t_{2000} by	
16	Au/CeO_x	>80	Not stated	Not stated							
17	Au/CeO ₂	Ş	333–348	138 ± 2^{a}	$(6.5 \pm 0.6) \times 10^{-3}$	Lower limit based on total number of Au atoms	Not stated	Not stated	Not stated	Gold species remained mononuclear during CO oxidation as demonstrated by EXAFS spectroscopy	[12, 13]
18	Au/CeO ₂	Ŷ	303–333	54 ± 8^{a}	$(5.6 \pm 0.2) \times 10^{-2}$	Lower limit based on total number of Au atoms	0.19	0.18	-0.4	Catalyst with mononuclear gold species activated during CO oxidation at 353 K while clusters formed. Values reported in this table correspond to steady-state conditions at 303 K	[12, 13]
01	O:T/ A	2	343 310	1 0 ⁸	3 4 10-2	I arrow limit hand an	7000	20.0	Mot stated	Authons attributed increases in cotoletic coticity	
20	Au/IIO2 An/TiO5	C >	010-047	19 18 ^a	12×10^{-1}	total number of Au	7610	C7:0	INOL STATED	Authors autholiced increase in catalytic activity to decrease in gold particle size	[14]
21	Au/TiO ₂			58 ^a	Not stated	atoms					
22	Au/TiO2			56 ^a	9.6×10^{-6}						
23	Au/TiO ₂	<15	190–250	75^{a}	3.7×10^{-2}	Based on surface metal	Not stated	Not stated	Not stated	Various synthesis methods were used in the	[15]
24	Au/TiO ₂		Not stated	27^{a}	3.7×10^{-2}	atoms determined				preparation of Au/TiO ₂ catalysts.	
25	Au/TiO ₂		364-526	19 ^a	3.4×10^{-2}	structure, amount of				Authors stated that activity for CO oxidation strongly demendent on menaration method	
26	Au/TiO ₂		323-434	18^{a}	1.2×10^{-1}	gold loading				Deposition precipitation suggested to give	
27	Au/TiO ₂		Not stated	20^{a}	6.8×10^{-2}	determined by ICP, X-rav fluorescence				most active catalysts	
28	Au/TiO ₂		Not stated	27^{a}	2.6×10^{-1}	and TEM					
29	Au/TiO ₂		444-750	56^{a}	9.6×10^{-6}						
30	Au/TiO ₂		Not stated	57^{a}	8.3×10^{-6}						
31	Au/TiO ₂		450–1,060	58 ^a	Not stated						

115

Table 3	continued										
Entry	Catalyst	Conversion	Temperature range	Apparent	$TOF (s^{-1})$	Details about TOF	Reaction orde	sr		Comments	References
THURDER		(2/)	energy	energy (kJ/mol)		carculations	co	0 ₂ C	202		
32	Au/TiO ₂	Not stated	Not stated	Not stated	Not stated	Not stated	o	2 o	lot stated	Authors suggested that CO_2 desorption appears to be rate-limiting step, suggesting negative reaction order in CO_2 .	[16]
										Another finding is that carbon oxide species formed on the surface of Au/TiO ₂ ; authors suggested these were only spectators	
33	Au/MgO	Not stated	Not stated	Not stated	$(5 \times 10^{-2})-$ (2.5 × 10 ⁻¹)	Based on surface metal atoms determined by constant-current topographic images	Not stated	Not stated N	lot stated	Gold supported on crystalline surfaces of TiO ₂ (a low-surface-area model support).	[17]
34	Unsupported nanoporous gold	~ 100	Not stated	Not stated	3.4×10^{-2}	Not stated	Not stated	Not stated N	lot stated	Nanoporous gold made by dealloying of silver from silver/gold alloy. Potential roles of silver not described.	[18]
										Authors claimed that metallic gold plays a catalytic role in CO oxidation	
35	Nanoporous gold foams	60-100	Not stated	Not stated	Not stated	Not stated	Not stated	Not stated N	lot stated	Authors carried out similar experiments with catalyst having higher loadings of silver. These samples had activities almost the same as others. Authors ruled out role of silver in CO oxidation catalysis	[61]
36 37	Au/MgO Au/MgO	- 6	Not stated	Not stated	Not stated	Not stated	Not stated	Not stated N	lot stated	Authors claimed that catalytic activity and activation of gold correlated with F centers.	[20]
38	Au/MgO Au/MgO	12 22								Authors suggested the possibility that reduced Ti defect sites at the boundary between gold clusters and TiO ₂ determine shape and	
39	Au/MgO	27								electronic properties of gold clusters	
40	Au/TiO ₂	Not stated	Not stated	Not stated	$\begin{array}{c} (7.1 \times 10^{-1}) \\ (2 \times 10^{1})^{\mathrm{f}} \end{array}$	Lower limit based on total number of Au atoms	Not stated	Not stated N	lot stated	Authors claimed strong metal-support interactions responsible for catalytic activity of Au/FiO ₂ . Model catalyst: support was thin TiO ₂ film on Mo(112).	[21]
41	Au/TiO ₂	Not stated	Not stated	Not stated	4.3×10^{-2}	Lower limit based on total number of Au atoms	Not stated	Not stated N	lot stated	Authors concluded that desorption of CO _{2(a)} is rate-limiting step in CO oxidation.	[22]
										CO by reaction with oxygen	
42	Au/TiO ₂	Not stated	294–385 K	11.4 ± 2.8^{g}	Not stated	Based on surface metal atoms determined by low energy ion	$1.1 \pm 0.1^{\rm h}$	l ⁱ	lot stated	Apparent activation energy calculated for CO_g + $O_a \rightarrow CO_{2a}$ (g = gas phase a = adsorbed).	[23]
						spectroscopy (LEIS) and XPS				Proposed rate-determining step is decomposition of carbonate intermediates	
43	Au/TiO ₂	<10	263338	34.3 ^a	3.5×10^{-2}	Based on surface metal atoms determined by TEM assuming fcc structure	0.05	0.24 N	lot stated	Authors concluded CO oxidation is structure sensitive. Rate of CO oxidation independent of or only slightly dependent on $P_{\rm CO}$ and $P_{\rm O2}$.	[24]
										Authors proposed that CO ₂ formation results from decomposition of bidentate carbonate species	

Table 3	continued											
Entry	Catalyst	Conversion	Temperature range	Apparent	$TOF(s^{-1})$	Details about TOF	Reaction ord	er		Comments	References	
number		(9/.)	(N) IOT acu vauon energy	acuvanon energy (kJ/mol)		calculations	CO	0_2	CO_2			
4	Au/Fe ₂ O ₃			35.1 ^a	3.0×10^{-2}		0	0.05				
45	Au/Co ₃ O ₄			16.3 ^a	Not stated		0.05	0.27				
46	Au/Fe ₂ O ₃	<20	Not stated	29 ^d	1.3–3 ^j	Lower limit based on	Not stated	Not stated	Not stated	Dominant reaction pathway concluded to	[25]	
47	Au/Fe ₂ O ₃			Not stated	2.9–6.7	total number of Au				involve adsorption of a mobile, molecular		
48	Au/Fe_2O_3			Not stated	3.2-3.4	atoms				uxygen species on support, missociation at the gold-support interface and reaction on		
49	Au/NiO_x			Not stated	1.3 ^j					gold particles and/or at the interface with		
50	Au/CoO_x			Not stated	1.8 ^j					CO adsorbed on the gold		
51	Au/TiO_x			21 ^d	1.6 ^j							
52	Au/Mg(OH) ₂			Not stated	$0.5-0.9^{j}$							
53	Au/MgO			Not stated	0.3^{j}							
54	Au/Al ₂ O ₃			Not stated	0.35 ^j							
55	Au/Al ₂ O ₃	13–23	273–329	10	1.6	Steady-state isotopic transient kinetics	Not stated	Not stated	Not stated	Oxygen exchange proposed to occur between supports and CO ₂ .	[26]	
						analysis used to evaluate the intrinsic turnover frequency				Labeled oxygen found in H ₂ O exiting reactor appeared to originate from ¹⁸ O associated with CO ₂ reactant		
56	Au/TiO ₂									Authors concluded that dissociative adsorption of O ₂ not reversible and observed that oxygen in CO ₂ was exchanged by oxidation of C ¹⁶ O with ¹⁸ O ₂ of the support		
57	Au/TiO ₂	5-20	303–353	72 ^d , 20 ^d	Not stated	Not stated	Not stated	Not stated	Not stated	Catalysts deactivated during CO oxidation at both 303 and 353 K.	[27]	
										Deactivation of catalyst correlated with and assigned to buildup carbonates on support		
58	Au/TiO ₂	5-20	303–353	33 ± 3	1.6 ^k	Not stated	Not stated	Not stated	Not stated	Authors concluded that the formation of a	[28]	
59	Au/TiO ₂	5-20		36 ± 4	1.2^k					reaction inhibiting carbonate adlayer is the	0	
60	Au/TiO ₂	5-20		34 ± 4	1.6^k							
61	Au/TiO ₂	5-20		31 ± 3	2.2 ^k							
62	Au/TiO ₂	5-20		28 ± 3	2.0 ^k							
63	Au/TiO ₂	1–2	260–294	28	Not stated	Not stated	Zero	0.18-0.20	Not stated	Catalyst was thiol monolayer -protected gold clusters prepared from dendrimer templates and deposited onto high-surface-area titania, followed by removal of thiol in H_2/N_2 .	[8]	
										Authors concluded that the monolayer- protected gold clusters are comparable in terms of gold particle size, rate laws, and		
										apparent activation energies, to the standard catalysts available from the World Gold	-	
										Council (WGC); however, these catarysis are 50% more active than the ones from WGC		

					-						
Entry number	Catalyst	Conversion (%)	Temperature range (K) for activation energy	Apparent activation energy (kJ/mol)	TOF (s ⁻¹)	Details about TOF calculations	Reaction ord CO	er O ₂	CO ₂	Comments	References
64	Au/Al ₂ O ₃	10	298-377	12	0.02 at 298 K 0.04 at 373 K	The turnover frequency is the reaction rate per Au atom in the catalyst normalized by the fraction of metal exposed	0.32	0.36		Reaction orders in CO and O_2 were affected by H ₂ O added to the feed—the reaction order in CO decreased to 0.18 and that in O_2 increased to 0.48	[29]
65	Au/α-Fe ₂ O ₃	Ŷ	324–343	13.4	Not stated	Not stated	Not stated	Not stated	Not stated	Authors concluded that dry CO oxidation is	[9]
66	Au/α -Fe ₂ O ₃	Ŷ	560-573	32.6						much more facile on Au0 than on oxidized	
67	Au/α -Fe ₂ O ₃	Ŷ	560-573	9.9						goid clusters	
68	Au/CeO ₂	Ŷ	Not stated	29.5							
69	Au/CeO ₂	Ŷ	Not stated	50.8							
70	Au/CeO ₂	Ŷ	Not stated	39.9							
71	Au/Al ₂ O ₃	22	298–373	2.7	0.25	Not stated	Not stated	Not stated	Not stated	Al ₂ O ₃ support was one-dimensional nanofibers	[30]
72	Au/Al_2O_3	Ŷ		23.7	0.07					Al ₂ O ₃ was commercially available	
73	Au/Al_2O_3	Not stated	238-500	22	3×10^{-2} - 2×10^{-1}	Values per surface Au	Not stated	Not stated	Not stated	Reaction rates enhanced by moisture. The	[31]
74	Au/SiO ₂	Not stated	Not stated	Not stated	$1 \times 10^{-3} - 4 \times 10^{-2}$	atom				degree of rate enhancement depends on	
75	Au/TiO ₂	Not stated	200-263	25-26	3 × 10 ⁻¹ -Saturation of CO conversion					type or support. Effect of moisture becomes significant only when > 200 ppm H ₂ O present for Au/ Al ₂ O ₃ whereas activity for Au/SiO ₂ diminishes considerably with a decrease in moisture to about 0.3 ppm. The activity of Au/TiO ₂ at about 3,000 ppm H ₂ O is so high that it vives consulate conversion of CO	
77	Au/TiO ₂ Au/Al ₂ O ₃	3.7	196-360 196-360	8 8	3.4×10^{-1} 1.8×10^{-1}	Calculated dividing the global reaction rate by the dispersion of gold. Fraction of exposed gold was estimated from the inverse of the surface-avergae gold particle size determined by STEM	0.2 0.15	0.52	Not stated Not stated	Authors suggested intrinsic rate of CO oxidation nearly independent of the support, suggesting that the ability of Autheral oxide to activate O_2 is a key feature in determining the global reaction rate	[32]

Entry	Catalyst	Conversion	Temperature range	Apparent	$TOF(s^{-1})$	Details about TOF	Reaction orde	r		Comments	References
number		(%)	(K) Ior acuvation energy	acuvanon energy (kJ/mol)		calculations	co	0_2	CO2		
78	Au/TiO ₂	Not stated	Not stated	Not stated	1.4 ± 0.2	Based on the reaction od adsorbed CO species	Not stated	Not stated	Not stated	Authors concluded CO adsorbed on gold is reactive species; they proposed hydroxycarbonyl as an intermediate	[33]
79	Au/MgO	4-15	Not stated	Not stated	$(2-8) \times 10^{-2}$	Based on total number of Au atoms	Not stated	Not stated	Not stated	Authors conluded that both Au(I) and Au(0) present in working catalysts	[34]
^a Appare	nt activation obtain	ted from Arrhei	iius plot								
^b No spe	scific values for we.	re given for ind	ividual catalysts; only	a range of values	of reaction orde	r was provided					
^c The va	lues of temperature	at which the ru	saction orders were de	stermined fall betwo	cen 310 and 36	0 K					
^d Methor	d to obtain value of	f apparent activ:	ation energy not stated	d in paper							
e Noncoi	mpetitive absorption	u									
f Units a	re: molecules CO ₂ /	(Au site s)									
^g Appare	int activation energ	y was determin	ed from rates of titrati	ion of adsorbed oxy	gen (Oa) with g	gas-phase CO					
h Reactic	on order with respe-	ct to CO partial	pressure								

Fable 3 continued

including values of TOF and how they were determined, reaction orders, and apparent activation energies.

We believe that these tables provide the most complete available statement of kinetics of CO oxidation catalyzed by supported gold.

3 Generalizations Based on the Data

Table 2 is a summary of the catalysts tested for CO oxidation; the catalysts were investigated at temperatures in the range of 203–373 K. Haruta [35] referred to a lowtemperature regime (typically, ~210 K) and a high-temperature regime (typically, ~300 K). The O₂ partial pressures were varied between 4 and 200 mbar, and the CO partial pressures between 10 and 40 mbar. The results indicate orders of reaction in CO and in O₂ in the range 0.0–0.6. The reaction order in CO has been approximated as zero by some researchers [24]. Correspondingly, numerous researchers have postulated that CO is adsorbed on the gold; some [4] have suggested that CO is bonded to gold at the gold-support interface.

The roles of oxygen in the gold-catalyzed CO oxidation are evidently not fully elucidated. Some authors have postulated that oxygen adsorbed on the gold [4] or at the gold-support interface [36] may play a role. In contrast, Guzman et al. [37] reported evidence of the involvement of reactive oxygen species (such as superoxides) on their CeO₂ support; the influence of the presence of reactive oxygen species on some supports but not on others (e.g., γ -Al₂O₃ [38]) would suggest that the form of kinetics would differ from one support to another, but there are too few data to test this statement.

A few reports of the influence of CO_2 on the rate indicate that it inhibits the reaction; according to one report [16, 22], the desorption of CO_2 from Au/TiO₂ is rate limiting under some conditions. Others [39] have reported that CO_2 (rather than O_2) is the oxidizing agent of gold in supported gold catalysts, implying that the gold in the catalytic sites cycles between more than one oxidation state.

Haruta's group [40] reported a detailed investigation of the influence of water in the reactant stream on CO oxidation catalyzed by TiO_2^- , $Al_2O_3^-$, and SiO_2^- supported gold. Water in low concentrations increases the activity of the catalyst.

The most thorough investigation of the kinetics of CO oxidation catalyzed by supported gold was reported by Vannice's group [9]; the catalyst support was TiO_2 . The authors tested several catalysts that had been subjected to various pretreatments, and kinetics parameters are reported for each (entry numbers 1–9 in Tables 1, 2, 3).

Values are those corresponding to initial activities

exposed gold only

calculated using a

TOF was

Reaction order with respect to O₂ coverage

Many of the most active supported gold catalysts for CO oxidation are supported on TiO_2 or on various oxides of iron

or of cerium. Turnover frequencies (rates of reaction per accessible gold site; Table 3) span a wide range, between 10^{-6} and 10^{-1} s⁻¹. There is one report of an intrinsic turnover frequency—that is, per active site [41] (entry numbers 55, 56, 64, 76, and 77, Tables 1, 2, 3)—determined in transient measurements with isotopically labeled reactant ¹³CO for Au/ γ -Al₂O₃; the value is 1.6×10^{-1} s⁻¹ at 296 K and CO and O₂ partial pressures of 24.2 mbar each.

Only a few values of apparent activation energies of CO oxidation catalyzed by gold have been reported, and the information about the conditions under which they were determined is often lacking. The apparent activation energies range from values that are essentially indistinguishable from 0 to 138 kJ/mol (Table 3).

Most reports of catalyst deactivation and how it occurs (e.g., [11]) do not include kinetics data, but the work of Vannice's group [9] is exceptional, providing kinetics data for various catalysts before and after deactivation (Table 2).

Supported gold catalysts typically undergo rapid deactivation during CO oxidation, and this complication has hindered the collection of kinetics data. For example, the initial conversion observed with a zeolite-supported gold catalysts was about 40%, and this decreased to <5% within 15 min of operation in a once-through flow reactor at 298 K [42]. An Au/TiO₂ [27] catalyst, on the other hand, showed an initial conversion at 303 K of nearly 100%, and the conversion had declined to 10% after 2,000 min of operation in a flow reactor when O₂ was present in stoichiometric excess; but the decline in activity was more rapid when the O₂ was not present in stoichiometric excess. Other authors have also observed that the rate of catalyst deactivation was less when the reaction took place in an O₂-rich atmosphere [25].

It is clear that the available data do not lend themselves to conclusive integration and that much work remains to be done to consolidate the literature and to represent CO oxidation catalyzed by supported gold quantitatively.

4 Conclusions

The results summarized here show that the literature of CO oxidation catalyzed by supported gold is extensive but fragmented and not easily generalized; it is not easy to make meaningful comparisons of various supported gold catalysts for this reaction, and much work remains to be done to consolidate the literature of CO oxidation catalyzed by supported gold.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

- 1. Hutchings GJ (2005) Catal Today 100:55
- 2. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 405
- 3. Hashmi S, Hutchings GJ (2006) Angew Chem Int Ed 45:7896
- 4. Mihaylov M, Knözinger H, Hadjiivanov K, Gates BC (2007) Chem Ing Tech 79:795
- Bond GC, Louis C, Thompson DT (2006) Catalytic series V.6: catalysis by gold. World Scientific Imperial College Press, London
- Deng W, Carpenter C, Yi N, Flytzani-Stephanopoulos M (2007) Topics Catal 44:199
- 7. Kung MC, Davis RJ, Kung HH (2007) J Phys Chem C 111:11767
- Long CG, Gilbertson JD, Vijayarahavan G, Stevenson KJ, Pursell CJ, Chandler BD (2008) J Am Chem Soc 130:10103
- 9. Lin SD, Bollinger M, Vannice MA (1993) Catal Lett 17:245
- 10. Haruta M, Yamada N, Kobatashi T, Ijima S (1989) J Catal 301
- 11. Gardner S, Hoflund GB (1991) Langmuir 7:2135
- 12. Aguilar-Guerrero V, Gates BC (2007) Chem Comm 3210
- 13. Aguilar-Guerrero V, Gates BC (2008) J Catal 260:351
- 14. Haruta M (2004) J New Mat Electrochem Systems 7:163
- 15. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83
- 16. Chang B, Jang BW, Dai S, Overbury SH (2005) J Catal 236:392
- 17. Valden M, Lai X, Goodman DW (1998) Science 281:1647
- Xu C, Su J, Xu X, Liu P, Zhao H, Tian F, Ding Y (2007) J Am Chem Soc 129:42
- Zielasek V, Jürgens B, Schulz C, Biener J, Biener MM, Hamza AV, Bäumer M (2006) Angew Chem Int Ed 45:8241
- Yan Z, Chinta S, Mohamed AA, Fackler JP, Goodman DW (2005) J Am Chem Soc 127:1604
- 21. Goodman DW (2005) Catal Lett 99:1
- 22. Clark JC, Dai S, Overbury SH (2007) Catal Today 126:135
- 23. Bondzie VA, Parker SC, Campbell CT (1999) Catal Lett 63:143
- Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175
- 25. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113
- 26. Calla JT, Davis RJ (2006) J Catal 241:407
- Denkwitz Y, Zhao Z, Hörmann U, Kaiser U, Plzak V, Behm RJ (2007) J Catal 251:363
- Denwitz Y, Geserik J, Hörmann U, Plzak V, Kaiser U, Hüsing N, Behm RJ (2007) Catal Lett 119:199
- 29. Calla JT, Davis RJ (2005) Ind Eng Chem Res 44:5403
- 30. Han Y, Zhong Z, Ramesh K, Chen F, Chen L (2007) J Phys Chem C 111:3163
- 31. Date M, Okumura M, Tsubota M, Haruta M (2004) Angew Chem Int Ed 43:2129
- 32. Calla JT, Bore MT, Datye AK, Davis RJ (2006) J Catal 238:458
- Henao JD, Caputo T, Yang JH, Kung MC, Kung HH (2006) 110:8689
- 34. Guzman J, Gates BC (2004) 129:26
- 35. Haruta M (2008) In: Corain B, Schmid G, Toshima N (eds) Relevance of metal nanoclusters in catalysis and materials science: the issue of size control, ch 9. Elsevier, Amsterdam, p 183
- 36. Bond GC, Thompson DT (1999) Catal Rev Sci Eng 41:319
- Guzman J, Carrettin S, Fierro-Gonzalez JC, Hao Y, Gates BC, Corma A (2005) Angew Chem Int Ed 117:4856
- van Bokhoven JA, Louis C, Miller JT, Tromp M, Safonova OV, Glatzel P (2006) Angew Chem Int Ed 45:465
- Mihaylov M, Ivanova E, Hao Y, Hadjiivanov K, Gates BC, Knözinger H (2008) Chem Comm 175
- 40. Daté M, Okumura M, Tsubota S, Haruta M (2004) Angew Chem Int Ed 43:21
- 41. Calla JT, Davis RJ (2005) J Phys Chem B 109:2307
- 42. Fierro-Gonzalez JC, Gates BC (2004) J Phys Chem B 108:16999