
Vol.: (0123456789)
1 3

Cell Tissue Bank (2023) 24:285–306 
https://doi.org/10.1007/s10561-022-10039-z

FULL LENGTH REVIEW

Platelet‑rich plasma: a comparative and economical therapy 
for wound healing and tissue regeneration

Ranjan Verma · Subodh Kumar · Piyush Garg · 
Yogesh Kumar Verma

Received: 16 November 2021 / Accepted: 10 September 2022 / Published online: 12 October 2022 
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

classification,application in wound healing, and PRP 
as regenerative therapeutics combined with biomate-
rials and mesenchymal stem cells (MSCs).
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Abbreviations 
PRP	� Platelet-rich plasma
MSCs	� Mesenchymal stem cells
GFs	� Growth factors
PDGF	� Platelet-derived growth factor
EGF	� Epidermal growth factor
FGF	� Fibroblast growth factor
IGF	� Insulin-like growth factor
VEGF	� Vascular endothelial growth factor
TGF-β	� Transforming growth factor-beta
KGF	� Keratinocyte growth factor
HGF	� Hepatocyte growth factor
TNF	� Transforming growth factor
PEG	� Poly (ethylene glycol)
CD	� Cluster of differentiation
RANTES	� Regulated on activation, normal T 

expressed, and secreted
PMPs	� Platelet microparticles
PRF	� Platelet-rich fibrin
RBCs	� Red blood cells
WBC	� White blood cells
PPP	� Platelet-poor plasma

Abstract  Rise in the incidences of chronic degener-
ative diseases with aging makes wound care a socio-
economic burden and unceasingly necessitates a 
novel, economical, and efficient wound healing treat-
ment. Platelets have a crucial role in hemostasis and 
thrombosis by modulating distinct mechanistic phases 
of wound healing, such as promoting and stabilizing 
the clot. Platelet-rich plasma (PRP) contains a high 
concentration of platelets than naïve plasma and has 
an autologous origin with no immunogenic adverse 
reactions. As a consequence, PRP has gained signifi-
cant attention as a therapeutic to augment the healing 
process. Since the past few decades, a robust volume 
of research and clinical trials have been performed to 
exploit extensive role of PRP in wound healing/tis-
sue regeneration. Despite these rigorous studies and 
their application in diversified medical fields, effi-
cacy of PRP-based therapies is continuously ques-
tioned owing to the paucity of large samplesizes, 
controlled clinical trials, and standard protocols. 
This review systematically delineates the process of 
wound healing and involvement of platelets in tis-
sue repair mechanisms. Additionally, emphasis is 
laid on PRP, its preparation methods, handling, 
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DEAP	� Dose of injected platelets, production 
efficiency, activation

ROS	� Reactive oxygen species
PLA	� Polylactic acid
RGD	� Arginine-glycine-aspartic acid
SDF	� Stromal cell-derived factor-1
IFN-γ	� Interferon-gamma
MMPs	� Matrix metalloproteinases

Introduction

Millennia of evolution have created our skin; it is the 
largest organ of the human body and contributes10% 
of the total body mass (Theoret 2009; Hanson et  al. 
2010; Maxson et  al. 2012). Itis a highly adaptive, 
multifunctional organ that serves as a shield for inter-
nal organs and protects body from the onslaught of 
mechanical damage, microbial infections,andother 
environmental extremities. Additionally, any imbal-
ance in the skin’s structural, anatomical, and func-
tional integrity may result in wound formation. Inter-
estingly, wound healing is a dynamic physiological 
process that restores typical structure and function 
of damaged tissue (Shaw and Martin 2009). When 
tissue gets damaged, wide varieties of cells, growth 
factors, cytokines, and chemokines underneath the 
skin layers coordinate to stimulate and complete dif-
ferent steps of wound healing cascade viz. hemosta-
sis, inflammation, angiogenesis, epithelization, and 
tissue remolding (Cristina De Oliveira Gonzalez 
et  al. 2016) (Fig. 1). According to statistical data of 
Medicare retrospective analysis 2014, for all wounds, 
including acute and chronic wounds, it was observed 
that approximately 8.2 million Medicare beneficiaries 
had at least one type of wound or related infection. 
Medicare budget for all wound treatments (infection 
management) ranged from $28.1 billion to $96.8 bil-
lion; a significant portion was contributed by surgical 
wounds and diabetic ulcers as they were more expen-
sive to treat (Sen et al. 2009; Nussbaum et al. 2018; 
Sen 2019). In 2014, globally, the annual cost required 
for global wound care was estimated to be $2.8 bil-
lion, which will hike up to $3.5 billion at the end of 
2021. According to a market research study, due to 
advancing technology, expensive wound care proce-
dures, and increasing geriatric population, wound clo-
sure and dressing market will expand to $15 billion 
and $22 billion by 2022 and 2024, respectively. In 

progressing biomedical research era, several methods 
such as conventional and advanced dressing, biomate-
rial-based matrices, growth factors (GFs), cell-based 
therapies, and nanotechnology procedures are used 
to overcome wound healing complications (Gimble 
et  al. 2007; Engel et  al. 2008; Mason and Dunnill 
2008; Negut et  al. 2018). However, due to the eco-
nomic burden of wound healing procedures, there is 
a great demand for effective, economical, and side-
effect-free healing strategies.

Interestingly, it has been found that the regenera-
tive potential of stem cells and platelets (especially 
platelet-rich plasma (PRP)) can serve as an appro-
priate alternate method for wound healing. Platelets 
are anucleated blood components, they circulate for 
7–10 days in blood, critically modulating hemostasis 
and thrombo-inflammation (Ni and Freedman 2003; 
Versteeg et  al. 2013). They secrete ample cytoplas-
mic granules, lysosomal content, microparticles, and 
exosomes, that play a pivotal role in regulating wound 
healing signalling mechanisms (Blair and Flaumen-
haft 2009; De Pascale et al. 2015a; Golebiewska and 
Poole 2015). PRP (an autologous biological product 
isolated from a patient’s blood)has a high platelet 
concentration compared to naïve plasma. According 
to some previous studies, PRP has a copious number 
of growth factors and cytokines, and these factors 
promote proliferation, differentiation, and migration 
of cells such as fibroblast, epithelial, endothelial, and 
mesenchymal stem cells (MSCs) and are responsi-
ble for wound healing (Blair and Flaumenhaft 2009). 
Moreover, they are involved inhemostasis, angiogen-
esis, collagen synthesis, and revascularization of the 
damaged tissue. Clinical studies on different research 
models also substantiated the efficiency and efficacy 
of PRP in improving wound and tissue regeneration. 
This compilation highlights the process of wound 
healing, its phases, strategies used to cure wounds 
and reviews the involvement of platelet, its secretome, 
and autologous product (PRP) as a cost-effective, 
easy to handle regenerative method for wound heal-
ing/tissue regeneration.

Platelets in wound healing

One microlitre of human blood contains approxi-
mately 150,000–450,000 platelets (anucleate bicon-
vex discoid cell fragments of diameter 2–3  µm and 
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0.5  µm thick) in circulation (Kaushansky 2005, 
2008). Due to various cellular receptors on their sur-
face, they are the first responder to a wound/tissue 
repair and play a critical role in wound healing mech-
anism (Harrison 2005; Rivera et  al. 2009; Kauskot 
and Hoylaerts 2012). These receptor proteins bind to 
von Willebrand factor (vWF), thrombin, and fibrino-
gen, resulting in platelet plug formation and platelet 
morphological transition at the injury site.

Moreover, platelets also accommodate several 
secretory cytoplasmic and lysosomal granules, micro-
particles, and exosomes,which release various factors 
as platelets secretome (GFs, cytokines, adhesive mol-
ecules, chemokines, and other signalling molecules)

that significantlyparticipatein wound repair mecha-
nism (Anitua et al. 2004, 2006; Pietrzak and Eppley 
2005; Fitch-Tewfik and Flaumenhaft 2013; Gole-
biewska and Poole 2015; Heijnen and van der Sluijs 
2015). These secretomes regulate diverse biochemi-
cal, molecular, and cellular aspects of wound niche, 
such as inflammation, recruitment of neutrophils and 
macrophages, promoting angiogenesis, ECM for-
mation, and tissue remodelling (Etulain et  al. 2014; 
Burnouf et  al. 2016a; Gresele et  al. 2017; Etulain 
2018; Nurden 2018; Everts et  al. 2020). There are 
three types of platelet secretome: α-granules, dense 
granules, and lysosomal granules, approximately 
50–80 granules are present in each platelet (Lacci 

Fig. 1   The four phases of wound healing. It starts with hemo-
stasis, where blood loss is prevented by platelet plug and fibrin 
matrix formation. The inflammation phase ensures the removal 
of dead cell debris and prevents further infection after neu-
trophil influx (stimulated by histamine release from the mast 
cell). Monocytes also get differentiated into macrophages to 
clear leftover dead cells and neutrophils around the wounded 

area. In the proliferative phase, various cascade culminates, 
such as keratinocytes migrate to seal the wound; angiogenesis 
starts for new blood vessel formation, and fibroblast triggers 
granulation tissue formation. Finally, fibroblast, blood vessels, 
MSCs, and myofibroblasts trigger tissue remolding, resulting 
in complete wound closure
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and Dardik 2010; Heijnen and van der Sluijs 2015; 
Sekhon and Sen Gupta 2018)(Pietrzak and Eppley 
2005). After activation or programmed cell-death 
(apoptosis), platelet also shed some small evagina-
tion-mediated microparticles {platelet microparticles 
(PMPs)} of size 0.05–1  µm, also known as platelet 
dust or platelet-derived microvesicles (Varon and 
Shai 2015; Wojtukiewicz et  al. 2017). They pro-
mote transfer of different platelet antigens viz CD41, 
CD61, CD62P, CXCR4, and PAR-1, to hematopoi-
etic stem cell progenitor, and contain various pro-
teinaceous wound healing factors like RANTES that 
stimulates multiple responses such as coagulation, 
inflammation,angiogenesis, neovascularization, and 
tissue regeneration (Janowska-Wieczorek et al. 2001; 
Ohtsuka et al. 2013). Apart from PMP, platelets also 
secrete exosomes by direct exocytosis; they are rich 
in various microRNAs and tetraspanin family of pro-
teins. Some studies (in vitro and preclinical models) 
substantiate thatexosomes positively influence wound 
healing. However, detailed mechanism of platelet 
exosomes mediated wound recovery is still unclear, 
and it is one of the objectives of future research 
(Gawaz and Vogel 2013; Torreggiani et  al. 2014; 
Rani et al. 2015; Guo et al. 2017).

Platelet rich plasma

PRP, also termed as autologous plasma, is rich in 
growth factors (PRGF), platelet-rich fibrin (PRF) 
matrix, and platelet concentrate. Haematologists 
introduced this concept in 1970 to describe elevated 
platelet level in a small amount of plasma, used 
initially to treat patients with thrombocytopenia 
(Pietrzak and Eppley 2005); (Jayadev et  al. 2013). 
PRP has a high concentration of growth factors and 
cytokines that participate in various cellular, immune, 
and regenerative processes, such as wound healing 
and tissue regeneration, with sufficient tissue repara-
tive efficacy (Currie et al. 2001; Kawase et al. 2003; 
Christgau et  al. 2006; Banerjee et  al. 2009; Lyras 
et al. 2010). In recent years, many controversies have 
arisen regarding the definition and nomenclature of 
PRP. Anitua and co-workers proposed definition of 
PRP as a vague and imprecise term because blood 
preparation differs in their production, resulting in 
variation in quantitative and qualitative characteristics 
of isolated PRP (Chicharro-Alcántara et al. 2018). All 

these complications stress the need for standard pro-
cessing and preparation methods for PRP, which can 
compare different aspects of studies.

Preparation of PRP

Various systems can synthesize PRP in a reproduc-
ible manner, and its preparation procedures mainly 
rely on the type of device and instruction provided 
by the manufacturers (Table 1). Most of the devices 
obtain PRP with platelet concentrations higher than 
naïve plasma, but their platelet and leucocyte con-
centrations differ due to variability in isolation meth-
ods and centrifugation time. Hence, it is challenging 
to decide which preparatory kit is best and which is 
worst. All these systems generally operate on a small 
volume of blood and centrifugation principle. PRP is 
prepared through differential centrifugation, in which 
individual blood components are sedimented based 
on specific gravity (ratio of density of an object to 
reference’s density) (Dhurat and Sukesh 2014). The 
procedure of PRP preparation usually includes three 
sequential steps. The blood of an individual is col-
lected by venipuncture in a tube with an adequate 
anticoagulating agent (e.g., acid citrate dextrose and 
sodium citrate solution). It is followed by centrifu-
gation at varying speeds of 100-3000  g, depending 
upon the device, PRP type, and purpose of extrac-
tion. After centrifugation, blood sample separates 
into three layers: bottom layer (RBC with leucocytes 
deposited immediately above), middle layer (contains 
PRP), and top layer (contains platelet-poor plasma 
(PPP) (Fig.  2). Usually, two centrifugation spins 
are applied; the first spin (hard spin) separates PRP 
from RBCs, while the second spin (soft spin) sepa-
rates PRP from platelet-poor plasma (PPP) (Mishra 
et al. 2009; Dohan Ehrenfest et al. 2009; Lyras et al. 
2010). Inducers of aggregation like bovine thrombin 
and 10% of calcium chloride are used for PRP’s acti-
vation to stimulate degranulation, further releasing 
GFs. These activators increase platelet concentration 
up 3–5 times within 15  min as compared to native 
plasma (Mishra et al. 2009; Everts et al. 2012; Dhurat 
and Sukesh 2014; De Pascale et  al. 2015b; Burnouf 
et al. 2016b).

After successful extraction of PRP from patient’s 
blood, it is either used or stored. For storage of 
PRP, some scientists claim that in circulating blood 
PRP could not be preserved beyond 6  h of blood 
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collection, while others observed that additives 
solution might enhance their stability, viability 
and enable their storage up to 7 h (Sweeney et  al. 
2006; Etulain 2018). Moreover, frozen PRP can be 
stored for longer. In some studies, frozen PRP was 
stockpiled with a 3-D scaffold (Lee and Blajchman 
2001; Li et al. 2017). According to Shinga and co-
workers, level of growth factors present in PRP 
reduce after 2  weeks of storage at room tempera-
ture. Whereas, in freeze-dried PRP, a baseline level 
of growth factors is maintained up to 8  weeks of 
storage. Therefore, PRP’s freeze-dried form can be 
stored for an extended period with bioactivity and 
efficacy, a prerequisite for PRP’s multiple applica-
tions in the same patient (Shiga et al. 2017).

Classification of PRP

Depending upon different parameters and their clini-
cal applications, PRP is categorized into four distinct 
groups: activated PRP, non-activated PRP, leuco-
cyte rich, and leucocyte poor. Activated PRP is pre-
pared with the aid of CaCl2 and with or without use 
of thrombin. They stimulate cytokine release from 
plateletgranules, while non-activated PRP synthesis 
includes platelet contact with intrinsic collagen and 
thrombin. The presence of leukocytes in PRP impedes 
bacterial growth and enhances soft tissue injury 
repair. In 2016, Magalon and co-workers postulated a 
DEAP classification of PRP based on dose of injected 
platelets, production efficiency, PRP activation, and 

Fig. 2   Preparation of PRP for treatment
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PRP purity (Magalon et  al. 2016). Moreover, some 
studies categorized PRP; based onmethods used in 
their preparation (centrifugation and anti-coagula-
tion), content, and composition of platelets, leuco-
cytes, growth factors, and medical applications.

Ehrenfest and his colleagueproposed another way 
to classify PRP based on the presence and absence of 
leucocytes and fibrin.

The purest form of PRP: After activation, theyhave 
a low concentration of fibrin.

1.	 Leucocytes and PRP: This composition contains 
leucocytes with a low density of fibrin.

2.	 Pure-platelet-rich fibrin: They have a high den-
sity of fibrin network, but leucocytes are more or 
less absent.

3.	 Leucocyte and platelet-rich fibrin: This prepara-
tion has a high leucocyte concentration anda high 
fibrin network density.

3Growth factors present in PRP

PRP has a significant role in hemostasis, innate 
immunity, angiogenesis, stem cell migration, pro-
liferation, and wound healing (Andia and Abate 
2013; Shin et  al. 2014; Anitua et  al. 2016; Suthar 
et al. 2017a; Guszczyn et al. 2017). It contains many 
growth factors, cytokines, and chemokines, as they 
stimulate downstream signaling pathways required 
to synthesize proteins necessary for collagen, oste-
oid, and extracellular matrix formation(Jee et  al. 
2016) (Brissett and Hom 2003a) (Table 2). Platelets 
are a reservoir of more than 800 proteins,interacting 
with stem cells, fibroblast, endothelial and epithelial 
cells. PRP is a natural source of many growth fac-
tors (PDGF, IGF, VEGF, TGF-β), primarily stored in 
platelets α-granules (Anitua et al. 2004). The activat-
ing agents or stimuli like thrombin, CaCl2, and col-
lagen could trigger release of these growth factors 
(Fig. 3), which are further involved in crucial stages 
of wound healing and regenerative processes like 
chemotaxis, proliferation, differentiation, and angio-
genesis (Bennett and Schultz 1993). In addition to 
these growth factors, PRP also contains some adhe-
sive molecules such as fibronectin, vitronectin, fibrin-
ogen, and sphingosine-1-phosphate. These are also 
essential for completing wound healing and bone for-
mation process (Fernández-Barbero et al. 2006).

PRP as a regenerative therapeutic agent

Since year 1990, platelets derived products are effi-
ciently been used in sub-fields of regenerative medi-
cine. Over the past few years, PRP-based treatments 
are continuously in the limelightto curemultiple clini-
cal challenges such as wound healing, skin and bone 
regeneration, ophthalmology, ulcer, burn, muscle 
repair, and others (De Pascale et al. 2015b; Burnouf 
et  al. 2016b; Gresele et  al. 2017). PRP influences-
bone, tendon, and cartilage regeneration by modu-
lating MSCsproliferation, chondrogenic differen-
tiation, bone cell proliferation, and differentiation. It 
mobilizes circulating cells for tendon healing, matrix 
biosynthesis, and angiogenesis in acute tissue injury 
(Kajikawa et  al. 2008; Lin et  al. 2013; Kreuz et  al. 
2015). Reportedly, PRP is predominantly utilized in 
dermatology, especially in tissue regeneration, wound 
healing, acute and chronic ulcers, due to their impact 
on mitogenesis, angiogenesis, chemotaxis, type-I col-
lagen synthesis, and proliferation and migration of 
keratinocytes, dermal fibroblast cells, and endothelial 
cells (Shin et al. 2014; Anitua et al. 2016; Guszczyn 
et al. 2017).

Application of PRP in wound healing

Advancing medical field is trying to trailblaze less 
invasive and cost-effective treatments (Lacci and 
Dardik 2010; Yung et  al. 2017). Over the last few 
decades, PRP-based treatment had a potent impact 
in reducing economic cost of standard medical treat-
ment and served as a potential competitor for replac-
ing conventional therapies. PRP-based therapies sup-
plement wound sites with a high concentration of 
GFs, cytokines, and chemokines, which play a crucial 
role in tissue repair (Glover 1992; Brissett and Hom 
2003b; Jee et  al. 2016). These factors also regulate 
inflammation, angiogenesis, synthesis of extracellu-
lar matrix, and newly formed tissue remodeling. An 
increased concentration of GFs also stimulates regen-
eration of epithelial and endothelial cells and syn-
thesized collagen. For the first time, the PRP-based 
treatment method was used to treat chronic leg ulcers, 
which successfully resulted in vascularized connec-
tive tissue formation (Andia and Abate 2013; Suthar 
et  al. 2017a). Besides humans, clinical studies have 
suggested that PRP-based treatment enhances wound 
healing in dogs, horses, and other animals (Carter 
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et al. 2003; Kimura et al. 2005; Lee et al. 2008; Sard-
ari et al. 2011; CH et al. 2016; Suthar et al. 2017b). In 
chronic diseases such as diabetic ulcers, excess reac-
tive oxygen species (ROS) are generated, resulting 
in an imbalance between pro-inflammatory and anti-
inflammatory cytokines. PRP contains a high con-
centration of GFs and cytokines that maintain ROS 
levels and reduces wound recovery time (Lacci and 
Dardik 2010). Several studies have been performed 
to observe clinical effects of PRP-based therapies, 
majority of them showed a significant reduction in 
wound size without side-effects. Subcutaneous PRP 
administration in patients suffering from nonhealing 
ulcers demonstrated decreased wound size, pain, and 
inflammation. According to Babaei et al., after topical 
PRP application in 150 patients diagnosed with a dia-
betic foot ulcer, a significant granulation tissue forma-
tion, and early wound closure was observed (Babaei 
et al. 2017). In a study by Man et al., a quantitative 
improvement in human skin wound healing was also 
reported after using a cutaneous flap with autologous 
PRP (Man et  al. 2001). Even AIDS patients suffer-
ing from crural ulcers showed increased neovascu-
larization and re-epithelization after PRP and platelet 
application to achieve faster wound healing than other 
conventional methods (Cieslik-Bielecka et al. 2018).

The second intension wound (SIH) occurs when 
a significant tissue loss and edges cannot be brought 
together by granulation, contraction, and epitheliza-
tion. It can be affected by a wide variety of factors, 
such as inadequate blood supply, previous infection, 
and systemic disease that result in imperfect wound 
healing (Schreml et  al. 2010; Zaman Phull et  al. 
2018). For efficient closure, proper regulation of 
granulation tissue formation, angiogenesis, collagen 
synthesis, and epithelization is highly needed. Karay-
annopoulou et al. evaluated the effect of intra-lesional 
PRP administrationon SIH involving acute full-thick-
ness skin defect in dogs. They observed improved tis-
sue perfusion that uplifted granulation tissue forma-
tion and attracted nutrients and oxygen towards the 
wound, simultaneously accelerating collagen forma-
tion and wound healing process (Karayannopoulou 
et al. 2015). A full-thickness wound was treated with 
PRP in a study by Ostvar and co-workers on rabbits 
and other small research models. The PRP applica-
tion increased vascular density, angiogenesis, granu-
lation tissue formation, and healing rate compared 
to thestandard method (Ostvar et  al. 2015). Some Ta
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studies have also mentioned PRP’s synergistic effect 
combined with bone-morrow-derived mesenchy-
mal stem cells (BM-MSCs) (Lian et  al. 2014). This 
combination offers a suitable microenvironment for 
proliferation and differentiation for facilitated wound 
healing. In a study by Park et al., when wounded mice 
were treated with a combination of PRP and hydro-
gel, a marked improvement in wound healing was 
observed in comparison to control and PRP/hydrogel 
(Park et al. 2017).

Platelet inspired biomaterials

As previously discussed, platelet and their secretory 
molecules are used in wound healing procedures. But 
during their administration, various constraints have 
been observed, like prominent risk of contamination, 
low viability, and portability (Spinella et  al. 2012, 
2016; Lambert et  al. 2013; Shin et  al. 2014; Miron 
et al. 2017). These shortcomings limit the efficiency 
and efficacy of platelet-based therapies. Several bio-
material and nanotechnology procedures are consid-
ered to develop synthetic and non-synthetic platelet 

mimics to overcome these limitations. For designing 
platelet mimics, nanotechnology approaches are used 
in which polymer nanoparticles of polylactic acid 
(PLA) and poly-N-isopropyl acrylamide-co-acrylic 
acid (pNIPAm-AAc) are coated with fibrinogen 
(Fg) or Fg-mimetic Arginine-Glycine-Aspartic Acid 
(RGD) peptides. Also, surface of liposome was deco-
rated with fibrinogen γ-chain dodecapeptide. These 
synthetical designs reduce bleeding in various injury 
models and are used in platelet-inspired drug deliv-
ery (Coller 1980; Takeoka et al. 2001, 2003; Bertram 
et  al. 2009; Ravikumar et  al. 2012; Modery-Paw-
lowski et  al. 2013a, b; Anselmo et  al. 2014; Brown 
et al. 2014; Shukla et al. 2017).

In some cases, these synthetic platelets are also 
loaded with some anti-infective agents and GFs 
(PDGF, VEGF, and others); they are released in 
spatio-temporally controlled manner during hemo-
stasis to stimulate post-hemostasis wound healing 
mechanism. Even fibrin-coagulated PGFM, bFGF, 
and PDGF are incorporated in gelatine hydrogel; they 
collectively promote tissue and blood regeneration 
(Matsui and Tabata 2012; Leotot et  al. 2013; Santo 

Fig. 3   Mechanistic role of PRP in tissue repair
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et  al. 2015; Mittermayr et  al. 2016; Robinson et  al. 
2016). Furthermore, synthetic platelets integrated 
biomaterial matrix system was also used to develop 
multi-component technology, affecting different 
aspects of wound healing and assisting direct loading 
and delivery of platelet-relevant biomolecules. Some 
studies have demonstrated that recombinant FGF in 
combination with collagen sponge system reduces 
recovery and wound closure time. Tuneable hydro-
gel has been shown to regulate delivery of various 
cell secretory GFs and cytokines (e.g., interferon-γ 
and IL-4), resulting in macrophages transition to 
promotetissue regeneration (Yao et  al. 2006; Spiller 
et al. 2015; Skardal et al. 2017). Even PEG-fibrin gel 
also secretes some muscle cell markers, for instance, 
α-smooth muscle actin, PDGF-β, NG2 proteoglycan, 
and angiopoietin-1 that assist the development of vas-
cular structure in a wound area. For sustained degra-
dation, release, and activation, PRP was encapsulated 
within enzyme-degradable hydrogel matrices to mod-
ulate wound healing mechanism. These combinations 
of polymer, synthetic platelets, and nanotechnology 
systems are administered via topical, intracavitary, 
or intravascular passage to interact with bleeding site 
and damaged tissue directly. These systems release 
several GFs and biomolecules to enhance wound 
healing (Zamora et al. 2013).

Synergism of PRP and MSCs in wound healing

Treatment of chronic and nonhealing wounds is 
a tedious and challenging task for the health sec-
tor as it involves replacing cutaneous lesions with 
new regenerative skin. Also, pre-existing strategies 
(bioengineered dressings and cell therapies) were 
not optimal for chronic wound treatment as these 
wounds persist as an unmet medical need. Wound 
care products should have a similar composition to 
normal skin, which constitutes a proper amalgama-
tion of GFs, extracellular proteins, MSCs, fibroblast, 
and endothelial cells. Even presence of endogenous 
MSCs in skin and their involvement in various phases 
of wound healing substantiate the application of 
exogenous MSCs combined with other tissue repair 
therapies (Paquet-Fifield et  al. 2009; Sellheyer and 
Krahl 2010). In the inflammatory phase, these cells 
prevent deleterious effects of inflammatory cytokines 
(TNF and IFN-γ) and secrete several antimicrobials 

factors to facilitate wound clearance via stimulat-
ing phagocytosis through immune cell and promote 
transition from inflammatory to proliferative phase 
in a chronic wound, otherwise which is hindered due 
to high level of inflammation (Robson et  al. 2001; 
Ramasastry 2005; Velnar et  al. 2009). Like PRP, 
MSCs also secrete numerous soluble factors (VEGF 
and SDF-1), growth factors and cytokines, micro-ves-
icles/exosomes with cytoprotective, proangiogenic, 
and anti-inflammatory properties. MSCs associated 
secretomes are adopted well in their niche, and their 
paracrine effect lasts for a more extended period post-
engraftment (Yong et  al. 2018)(Yiou et  al. 2016). 
During proliferative and remodeling phase, MSCs 
release GFs like VEGF, bFGF, and KGF; they pro-
mote granulation, neovascularization, tissue epitheli-
zation, ECM organization, and mobilization of stem 
cells at the wound site (Clark 1993, 2001; Tonnesen 
et al. 2000; Mulder and Vande Berg 2002; Baum and 
Arpey 2006; Koellensperger et al. 2014; Marfia et al. 
2015). A considerable number of completed clinical 
trials are available, which validate safety and efficacy 
of MSCs in stimulating regeneration of damaged tis-
sues, including the skin. Based on genetic modifica-
tion, pharmacological pre-conditioning, and use with 
biomaterial, robust studies have been performed to 
ameliorate viability, retention, and functionality of 
MSCs, but these approaches are pretty expensive and 
non-feasible to translate in humans (Sheykhhasan 
et al. 2015; Li et al. 2016; Frese et al. 2016).

Barbara Hersant and her colleague performed a 
studyto evaluaterole of a combination of MSCs and 
PRP in wound healing. According to their observa-
tions, this amalgamation is more efficient in promot-
ing vascularization, proangiogenic potential, and 
tissue regeneration in wound as compared to indi-
vidual treatment of PRP and MSCs (Hersant et  al. 
2019). After PRP treatment, MSCs secrete VEGF and 
SDF-1 in higher concentration, resulting in more sig-
nificant vessel formation and endothelial cell migra-
tion. Moreover, PRP also serves as a clinical-grade 
adjuvant to elevate therapeutic efficacy of engrafted 
MSCs and increase its adaptability, paracrine effect, 
retention, and persistence at wound site and shields 
MSCs from oxidative damage (as cytoprotectant) 
by increasing oxygen consumption and ATP-linked 
respiration (Badiavas and Falanga 2003; Falanga 
et al. 2007; Yoshikawa et al. 2008; Dash et al. 2009; 
Lu et al. 2011; Martínez et al. 2016; Chen and Liao 
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2018; Samberg et al. 2019). Still, there is a scope for 
exploring different mechanisms that affect regenera-
tive properties of MSCs to develop a more efficient 
protocol for tissue repair and other degenerative 
diseases.

Merit and demerits of using PRP based therapies

The prime advantage of using platelets as a regen-
erative agent in wound healing/tissue regeneration is 
that they can be prepared instantly and do not require 
any advanced preparation facilities. They are safe and 
natural due to their direct extraction from a patient’s 
blood, and this method even demolishes probability 
of any adverse immune response and blood-born con-
taminations (Lyras et al. 2010) (Bianco et al. 2008).

There are as such no such demerits of platelet-
based treatments. However, infection site morbidity, 
infection, and blood vessel injury were reported in 
some cases due to formation of tissue scars and cal-
cification at injection site. Platelet and its secretomes 
and autologous PRPare generally injected intrave-
nously; sometimes, it might damage arteries and 
veins, resulting in blood coagulation. Patients with 
ahistory of platelet dysfunctions syndromes, throm-
bocytopenia, hyper-fibrogenemia, hemodynamic 
instability, chronic heart disease, and cancerexperi-
enceseveral complications during platelet-based treat-
ment (Bianco et al. 2008).

Cost effectiveness of PRP and comparision 
with standard treatment

Through Meta-analysis using the Markov Mode, the 
cost of PRP in skin ulcers was calculated. The com-
parative result showed that the probability of healing 
was 56% using PRP and 31% with standard treatment. 
The associated costs were €5224 and €5133 respec-
tively. The major benefit of PRP treatment is associ-
ated with reducing the average length of hospital stay 
which compensates for the normal cost of treatment. 
The incremental cost to achieve additional healing 
was €364, within a 48-week time of treatment. In an 
another comparative study, the cost of PRP treatment 
in 81 patients with ulcers demonstrated that the aver-
age length of stay with PRP was (11 ± 2.5 days) and 
cost € 785.25, whereas the standard treatment average 

length of stay in the hospital was 23.1 ± 1.5 days with 
cost € 1649.02. The overall study demonstrated that 
PRP therapy would significantly reduce the length 
of hospital stay and directly becomes economic. The 
major reason for the slightly high cost of PRP treat-
ment is the procedure of PRP preparation. Scientists 
are exploring new approaches to reduce the cost of 
preparation of PRP so that a significant reduction in 
cost can be observed (Oliveira et al., 2020).

Meta‑analysis for cost effectiveness of PRP therapy

The cost-effective comparison was done through 
meta-analysis (Fig. 4). A total of 27 published papers 
were found with the search term (Economic cost 
effectiveness PRP) term from the Pubmed database. 
Papers were screed, out of 27 papers, 7 paper was 
considered for analysis because the data and study 
were more relevant to our study. In one study, Liner-
tová et.al observed that PRP treatment with the man-
ual method was more effective and less costly com-
pared to PRP treatment with the commercial kit and 
standard methods (Linertová et.al. 2021). The cost of 
PRP treatment with the manual method was signifi-
cantly less but not as effective as PRP treatment with 
a commercial kit. According to Alcerro et al. (2019) 
when PRP was compared with Stem cells Therapy 
(SCT), the mean cost of PRP injection was $897, and 
for SCT injection, it was $3,100. It was also observed 
that about 36% of people preferred PRP whereas 
24.5% accepted SCT. The cost-effectiveness of PRP 
therapy and hyaluronic acids (HA) was compared 
by Samuelson et al., it was observed that PRP injec-
tion was more effective and less economical as com-
pared to HA (Samuelson et  al. 2020). Randomized 
controlled clinical trials (RCTs) indicate that autolo-
gous PRP was associated with an increase in hair 
density when compared to placebo but the economic 
cost-effective measurement was not done (Dervishi 
et al. 2020). Bendich et al. also conducted RCTs for 
PRP, HA, and Saline groups, the result showed that 
the lowest total cost for HA and saline were $681.93 
and $516.29 respectively. For PRP to be cost-effec-
tive, total treatment cost would have to be less than 
$3,703.03 and $1,192.08 for 6-month and 12-month 
outcomes respectively (Bendich et  al. 2020). When 
PRP gel and gas dressing was compared by Uçar et al. 
2020, the result showed PRP gel had a positive effect 
on the healing of stage II pressure ulcers with PRP 
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gel dressings. In addition, when evaluated in the long 
term, it was concluded that PRP gel is easily accessi-
ble and less costly than serum physiological dressing 
(Uçar et  al. 2020). The overall analysis from differ-
ent papers suggested that the PRP is therapeutically 
effective but more research are required to minimize 
the cost. Many studies have suggested that PRP treat-
ment was cost-effective but need more clarity.

Future prospects and market value

The total market valuation of PRP therapy has 
reached US$ 370.78 million in 2021. The data also 
demonstrated that the market is projected to expand 
at a steady 6% compound annual growth rate (CAGR) 
through 2031. According to Future Market Insights 
(FMI) analysis on PRP, growth prospects will remain 
positive because of gaining traction in diverse medi-
cal procedures such as orthopaedic and neurological 
surgeries. In recent years, the application of PRP in 
regenerative therapies and surgical procedures has 
created prospects for intensive medical research. 
There was significant use of PRP therapy observed in 
COVID-19. The growth of PRP in the year 2021 was 

8.8% [https://​www.​futur​emark​etins​ights.​com/​repor​ts/​
plate​let-​rich-​plasma-​market].

Conclusion

In wound healing, several intracellular, intercellu-
lar, and extracellular signaling mechanisms regulate 
distinct phases of healing. Some studies substanti-
ate significant involvement of platelets and their 
related products such as PMPs and exosomes in 
wound healing phases. Due to these characteristics, 
PRP is continuously explored for its role in wound 
healing/tissue regeneration as they have higher 
platelet concentrations (Lacci and Dardik 2010; De 
Pascale et  al. 2015b). Apart from natural platelets, 
robust research has been done to develop platelets’ 
bio-mimics. An amalgamation of PRP-based com-
ponents with synthetic biomaterials was also used 
to designs several biohydride systems (Oryan et al. 
2016) (Salamanna et  al. 2015). These approaches 
enhance wound healing, prompt site-specific deliv-
ery, and even regulate loaded drugs’ release pat-
terns. However, wide variability in preparation, 
composition, and concentration of these platelet 
products makes standardized correlation a tedious 

Study included for 
qualitative synthesis

(Meta-analysis)

Fig. 4   Meta-analysis of cost effectiveness of PRP therapy

https://www.futuremarketinsights.com/reports/platelet-rich-plasma-market
https://www.futuremarketinsights.com/reports/platelet-rich-plasma-market
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task. In recent years, various clinical trials have 
been performed to evaluate the significance of plate-
let-based products; they showed several beneficial 
results in clinical conditions with minimal sideef-
fects. However, their efficacy as regenerative medi-
cine is still in its infancy owing to a lack of accepted 
standard preparation protocol. For illustration, PRP-
based therapy has shown its salutary role in many 
health complications, but their significance is con-
tinuously undermined. Metanalysis of clinical trials 
also showed a disparity in the results of these trials, 
which might be due to variation in preparation, acti-
vation, and administration procedure. Therefore, it 
is imperative to understand the mechanism of PRP 
in regeneration, step-wise preparation, long-term 
side effects, and anti-aggregating drug effects on 
PRP-based treatment. There is dearth of data that 
could substantiate long-term outcome of cutaneous 
wound healing with PRP application. Therefore, 
controlled studies with a significant sample size are 
highly needed to validate PRP’s efficacy as regen-
erative medicine to treat wound healing. Despite 
these complications and controversies in PRP-based 
approaches, recent clinical trials show promising 
results of PRP application in dermatology, den-
tistry, ophthalmology, orthopedics, and other fields. 
Further insights can be made after completion of 
phase 3 and phase 4 trials. Therefore, PRP can serve 
as a potentform of therapeutic, solo, or in combina-
tion with other regenerative approaches for wound 
healing and tissue regeneration. Due to economic 
sufficiency, these therapies also have the potential to 
replace conventional treatments. Thus, it is essen-
tial to collect more consensus data obtained from 
various clinicaltrials and standardize application of 
its formulation as a potent regenerative therapy for 
wound healing/tissue regeneration.
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